Cost-Benefit Analysis of Mixing Gray and Green Infrastructures to Adapt to Sea Level Rise in the Vietnamese Mekong River Delta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview
2.2. Data
2.3. Methods
2.3.1. Mapping the Inundation Area
2.3.2. Estimating Economic Damage Due to SLR without Adaptations
2.3.3. Estimating the Cost and Benefit of Adaptations
3. Results
3.1. Potentially Inundated Area in the VMRD
3.2. Estimating Socio-Economic Damage without Adaptations
3.3. Cost of Mixing Gray and Green Infrastructures
3.4. Cost-Benefit Analysis of Mixing Gray and Green Infrastructures and Comparison with Other Options
3.5. Sensitivity Analysis
3.5.1. Change in Discount Rate
3.5.2. Change in the Width of Mangrove Belt
4. Discussion
4.1. Discussion and Recommendations
4.2. Limitations of the Research and Future Work
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- General Statistical office of Vietnam. Statistical Year Book Vietnam 2018; Statistical publishing house: Hanoi, Vietnam, 2019. [Google Scholar]
- Southern Institute of Water Resources Planning (SIWRP). Review Seadyke Planning from Quang Ngai to Kien Giang; Ministry of Agriculture and Rural D: Hanoi, Vietnam, 2017. [Google Scholar]
- Syvitski, J.P.M.; Kettner, A.J.; Overeem, I.; Hutton, E.W.H.; Hannon, M.T.; Brakenridge, G.R.; Day, J.; Vörösmarty, C.; Saito, Y.; Giosan, L.; et al. Sinking deltas due to human activities. Nat. Geosci 2009, 2, 681–686. [Google Scholar] [CrossRef]
- MONRE. Climate Change and Sea Level Rise Scenarios for Viet Nam; Ministry of Natural Resources and Environment: Hanoi, Vietnam, 2016. [Google Scholar]
- Besset, M.; Gratiot, N.; Anthony, E.J.; Bouchette, F.; Goichot, M.; Marchesiello, P. Mangroves and shoreline erosion in the Mekong River delta, Viet Nam. Estuar. Coast. Shelf Sci. 2019, 226, 106263. [Google Scholar] [CrossRef]
- Anthony, E.J.; Brunier, G.; Besset, M.; Goichot, M.; Dussouillez, P.; Nguyen, V.L. Linking Rapid Erosion of the Mekong River Delta to Human Activities. Sci. Rep. 2015, 5, 14745. [Google Scholar] [CrossRef] [Green Version]
- Klein, R.J.T.; Nicholls, R.J. Assessment of Coastal Vulnerability to Climate Change. AMBIO 1999, 28, 6. [Google Scholar]
- Carew-Reid, J. Rapid Assessment of the Extent and Impact of Sea Level Rise in Viet Nam; International Centre for Environment Management (ICEM): Brisbane, Australia, 2008; Available online: http://www.icem.com.au/documents/climatechange/icem_slr/ICEM_SLR_final_report.pdf) (accessed on 12 November 2020).
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding—A Global Assessment. PLoS ONE 2015, 10, e0118571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC. FAR Climate Change: The IPCC Response Strategies; WMO (World Meteorological Organization): Geneva, Switzerland; UNEP (United Nations Environment Programme): Nairobi, Kenya; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2000; Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_far_wg_III_full_report.pdf (accessed on 12 November 2020).
- Linham, M.M.; Nicholls, R.J. Technologies for Climate Change Adaptation: Coastal Erosion and Flooding; UNEP Riso Centre on Energy, Climate and Sustainable Development: Roskilde, Denmark, 2010; ISBN 978-87-550-3855-4. [Google Scholar]
- Vietnam Central Government. Decision 667/QĐ-TTg: Approval on the Program to Strengthen and Upgrade the Sea Dyke System from Quang Ngai to Kien Giang; Prime Minister: Hanoi, Vietnam, 2009. [Google Scholar]
- Van, M.; Tri, M.; Quy, N.; Vrijling, J.K. Risk based approach for safety standard of coastal flood defences in Vietnam. J. Water Resour. Environ. Eng. 2008, 23, 204–216. [Google Scholar]
- Tamura, M.; Yasuhara, K.; Ajima, K.; Trinh, V.C.; Pham, S.V. Vulnerability to climate change and residents’ adaptations in coastal areas of Soc Trang Province, Vietnam. Int. J. Glob. Warm. 2018, 16, 102. [Google Scholar] [CrossRef]
- Vo, T.D. Adaption to Sea Level Rise in the Vietnamese Mekong River Delta: Should a Sea Dike Be Built? Research report/Economy and Environmental Program for Southeast Asia; EEPSEA: Singapore, 2012; ISBN 978-981-07-1998-2. [Google Scholar]
- Tas, S. Coastal protection in the Mekong Delta: Wave Load and Overtopping of Sea Dikes as Function of Their Location in the Cross-Section for Different Foreshore Geometries; Delft University of Technology: Delft, The Netherlands; University of Danang: Da Nang, Vietnam, 2016; Available online: http://coastal-protection-mekongdelta.com/download/library/118.CoastalProtectionMasterThesis2016_EN.pdf (accessed on 20 September 2020).
- Tuan, A.; Thien, N.H.; Ni, D.V.; Quoi, L.P.; Tu, N.D. A Story of Water and Human in Vietnam Mekong River Delta (Chuyện nước và con người ở Đồng bằng sông Cửu Long); International Union for Conservation of Nature and Natural Resources (IUCN): Gland, Switzerland, 2014. [Google Scholar]
- McGranahan, G.; Balk, D.; Anderson, B. The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 2007, 19, 17–37. [Google Scholar] [CrossRef]
- Reguero, B.G.; Beck, M.W.; Bresch, D.N.; Calil, J.; Meliane, I. Comparing the cost effectiveness of nature-based and coastal adaptation: A case study from the Gulf Coast of the United States. PLoS ONE 2018, 13, e0192132. [Google Scholar] [CrossRef] [Green Version]
- Browder, G.; Ozment, S.; Bescos, I.R.; Gartner, T.; Lange, G.-M. Intergrating Green and Gray; World Resources Institute: Washington, DC, USA, 2019; p. 140. [Google Scholar]
- Ellison, J.C.; Zouh, I. Vulnerability to Climate Change of Mangroves: Assessment from Cameroon, Central Africa. Biology 2012, 1, 617–638. [Google Scholar] [CrossRef] [Green Version]
- Albert, S.; Saunders, M.I.; Roelfsema, C.M.; Leon, J.X.; Johnstone, E.; Mackenzie, J.R.; Hoegh-Guldberg, O.; Grinham, A.R.; Phinn, S.R.; Duke, N.C.; et al. Winners and losers as mangrove, coral and seagrass ecosystems respond to sea-level rise in Solomon Islands. Environ. Res. Lett. 2017, 12, 094009. [Google Scholar] [CrossRef]
- Krauss, K.W.; McKee, K.L.; Lovelock, C.E.; Cahoon, D.R.; Saintilan, N.; Reef, R.; Chen, L. How mangrove forests adjust to rising sea level. New Phytol. 2014, 202, 19–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefan, A.G. Coastal Protection for the Mekong Delta: A Decision Support Tools; Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH: Bonn and Eschborn, Germany, 2018. [Google Scholar]
- Gilman, E.L.; Ellison, J.; Duke, N.C.; Field, C. Threats to mangroves from climate change and adaptation options: A review. Aquat. Bot. 2008, 89, 237–250. [Google Scholar] [CrossRef]
- Godoy, M.D.P.; de Lacerda, L.D. Mangroves Response to Climate Change: A Review of Recent Findings on Mangrove Extension and Distribution. An. Acad. Bras. Ciênc. 2015, 87, 651–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC. IPCC, 2019: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; 2019; In press; Available online: https://report.ipcc.ch/srocc/pdf/SROCC_FinalDraft_FullReport.pdf (accessed on 15 September 2020).
- Tamura, M.; Kumano, N.; Inoue, T.; Yokoki, H. Impact and cost assessment of coastal protection mixing green infrastructure against sea level rise in Vietnam. In Proceedings of the Hanoi Forum, Hanoi, Vietnam, 8–11 November 2018; p. 5. [Google Scholar]
- Asuncion, R.C.; Lee, M. Impacts of Sea Level Rise on Economic Growth in Developing Asia. Asian Dev. Bank 2017, 507, 10. [Google Scholar]
- Arndt, C.; Tarp, F.; Thurlow, J. The Economic Costs of Climate Change: A Multi-Sector Impact Assessment for Vietnam. Sustainability 2015, 7, 4131–4145. [Google Scholar] [CrossRef] [Green Version]
- Chinowsky, P.S. WIDER Working Paper 2014/148 Cost and Impact Analysis of Sea Level Rise on Coastal Vietnam; UNU-WIDER: Helsinki, Finland, 2014. [Google Scholar]
- Tamura, M.; Kumano, N.; Yotsukuri, M.; Yokoki, H. Global assessment of the effectiveness of adaptation in coastal areas based on RCP/SSP scenarios. Clim. Chang. 2019, 152, 363–377. [Google Scholar] [CrossRef] [Green Version]
- Egbert, G.D.; Erofeeva, S.Y. Efficient Inverse Modeling of Barotropic Ocean Tides. J. Atmos. Ocean. Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- O’Neill, B.C.; Kriegler, E.; Ebi, K.L.; Kemp-Benedict, E.; Riahi, K.; Rothman, D.S.; van Ruijven, B.J.; van Vuuren, D.P.; Birkmann, J.; Kok, K.; et al. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Chang. 2017, 42, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Murakami, D.; Yamagata, Y. Estimation of Gridded Population and GDP Scenarios with Spatially Explicit Statistical Downscaling. Sustainability 2019, 11, 2106. [Google Scholar] [CrossRef] [Green Version]
- Wölcke, J.; Albers, T.; Roth, M.; Vorlaufer, M.; Korte, A. Integrated Coastal Protection and Mangrove Belt Rehabilitation in the Mekong Delta—Prefeasibility Study for Investments in Coastal Protection along 480 Kilometers in the Mekong Delta; Deutsche Gesellscha für Internationale Zusammenarbeit (GIZ) GmbH: Bonn/Eschborn, Germany, 2016. [Google Scholar]
- General Statistical Office of Vietnam. Statistical Year Book Vietnam 2010; Statistical Publishing House: Hanoi, Vietnam, 2011. [Google Scholar]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Intergovernmental Panel on Climate Change, Eds.; Cambridge University Press: New York, NY, USA, 2014; ISBN 978-1-107-64165-5. [Google Scholar]
- Hinkel, J.; Klein, R.J.T. Integrating knowledge to assess coastal vulnerability to sea-level rise: The development of the DIVA tool. Glob. Environ. Chang. 2009, 19, 384–395. [Google Scholar] [CrossRef]
- Wolff, C.; Vafeidis, A.T.; Lincke, D.; Marasmi, C.; Hinkel, J. Effects of Scale and Input Data on Assessing the Future Impacts of Coastal Flooding: An Application of DIVA for the Emilia-Romagna Coast. Front. Mar. Sci. 2016, 3. [Google Scholar] [CrossRef] [Green Version]
- Tsuchida, K.; Tamura, M.; Kumano, N.; Masugana, E.; Yokoki, H. Global impact and uncertainty assessment of sea level rise based on multiple climate models. J. Jpn. Soc. Civ. Eng. G Environ. 2018, 74, 167–174. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration (NOAA). Natural and Structural Measures for Shoreline Stabilization. Available online: http://sagecoast.org/docs/SAGE_LivingShorelineBrochure_Print.pdf (accessed on 15 September 2020).
- Verhagen, H.J. The Beneficial Effects of Mangrove Forest to Sea Defence Structures. In Threats to Mangrove Forests; Makowski, C., Finkl, C.W., Eds.; Coastal Research Library; Springer International Publishing: Cham, Switzerland, 2018; Volume 25, pp. 475–495. ISBN 978-3-319-73015-8. [Google Scholar]
- Tran, Q.B. Effect of mangrove forest structures on wave attenuation in coastal Vietnam. Oceanologia 2011, 53, 807–818. [Google Scholar] [CrossRef] [Green Version]
- Vo, T.D.; Khai, H.V.K. Using a Risk Cost-Benefit Analysis for a Sea Dike to Adapt to the Sea Level in the Vietnamese Mekong River Delta. Climate 2014, 2, 78–102. [Google Scholar] [CrossRef]
- Vu, D.T.; Yamada, T.; Ishidaira, H. Assessing the impact of sea level rise due to climate change on seawater intrusion in Mekong Delta, Vietnam. Water Sci. Technol. 2018, 77, 1632–1639. [Google Scholar] [CrossRef] [Green Version]
- Smajgl, A.; Toan, T.Q.; Nhan, D.K.; Ward, J.; Trung, N.H.; Tri, L.Q.; Tri, V.P.D.; Vu, P.T. Responding to rising sea levels in the Mekong Delta. Nat. Clim. Chang. 2015, 5, 167–174. [Google Scholar] [CrossRef]
- Vietnam Central Government. Decision 2139/QĐ-TTg The National Strategy on Climate Change; Prime Minister: Hanoi, Vietnam, 2011. [Google Scholar]
- Ha, T.T.T.; van Dijk, H.; Bush, S.R. Mangrove conservation or shrimp farmer’s livelihood? The devolution of forest management and benefit sharing in the Mekong Delta, Vietnam. Ocean Coast. Manag. 2012, 69, 185–193. [Google Scholar] [CrossRef]
- Kam, S.P.; Badjeck, M.-C.; Teh, L.; Teh, L.; Tran, N. Autonomous Adaptation to Climate Change by Shrimp and Catfish Farmers in Vietnam’s Mekong River Delta; WorldFish Center: Penang, Malaysia, 2012; Volume 24. [Google Scholar]
- Torell, M.; Salamanca, A.M. Wetlands Management in Vietnam’s Mekong Delta: An Overview of the Pressures and Responses; WorldFish Center: Penang, Malaysia, 2003. [Google Scholar]
- van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- United Nations Environment Programme. The Emissions Gap Report 2019; UNEP: Nairobi, Kenya, 2019; ISBN 978-92-807-3766-0. [Google Scholar]
- Kapetas, L.; Fenner, R. Integrating blue-green and grey infrastructure through an adaptation pathways approach to surface water flooding. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2020, 378, 20190204. [Google Scholar] [CrossRef] [Green Version]
- Haasnoot, M.; Middelkoop, H.; Offermans, A.; van Beek, E.; van Deursen, W.P.A. Exploring pathways for sustainable water management in river deltas in a changing environment. Clim. Chang. 2012, 115, 795–819. [Google Scholar] [CrossRef] [Green Version]
- Minderhoud, P.S.J.; Coumou, L.; Erkens, G.; Middelkoop, H.; Stouthamer, E. Mekong delta much lower than previously assumed in sea-level rise impact assessments. Nat. Commun. 2019, 10, 3847. [Google Scholar] [CrossRef] [PubMed]
- Menéndez, P.; Losada, I.J.; Torres-Ortega, S.; Narayan, S.; Beck, M.W. The Global Flood Protection Benefits of Mangroves. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Alverson, K. Vulnerability, Impacts, and Adaptation to Sea Level Rise: Taking an Ecosystem-Based Approach. Oceanography 2012, 25, 231–235. [Google Scholar] [CrossRef] [Green Version]
- Sanderman, J.; Hengl, T.; Fiske, G.; Solvik, K.; Adame, M.F.; Benson, L.; Bukoski, J.J.; Carnell, P.; Cifuentes-Jara, M.; Donato, D.; et al. A global map of mangrove forest soil carbon at 30 m spatial resolution. Environ. Res. Lett. 2018, 13, 055002. [Google Scholar] [CrossRef]
Data | Sources | Description |
---|---|---|
SLR scenarios | MIROC-ESM, GFDL, NorESM (RCP8.5) [32] Topographic data (ETOPO1) Mean higher high water level (TPXO7.2) | Raster, mapping inundated areas |
VMRD land use planning | Land use classes [24] | Shapefile, mapping inundated areas |
VMRD administrative map | The database of Global Administrative Areas https://gadm.org/ | Shapefile, province-level administrative boundaries and mapping inundated areas |
VMRD socio-economic condition | [38] | Land price bracket, Population density Estimating the socio-economic damage |
Socio-economic scenarios | [36] | SSP scenarios; Gross domestic product (GDP), Population, Estimating socio-economic damage |
Cost of mixing gray and green infrastructures | [15,37] | Estimating the effectiveness of mixing gray and green infrastructures |
GFDL (%) | MIROC-ESM (%) | NorESM (%) | |
---|---|---|---|
Land for cultivation of annual crops | 92.52 | 93.40 | 93.73 |
Land for production forests | 87.67 | 85.19 | 89.16 |
Land for aquaculture | 56.70 | 57.26 | 57.26 |
Land for cultivation of perennial trees | 85.15 | 89.04 | 85.24 |
Rural residential land | 92.36 | 93.18 | 93.51 |
Urban residential land | 83.80 | 85.16 | 87.39 |
Land for salt production | 68.84 | 68.84 | 68.84 |
Cost Category | Upgrade Earthen Dike to 4 m High | 4 m-High Concrete Dike | 350 m-Wide Mangrove Belt | 500 m-Wide Mangrove Belt |
---|---|---|---|---|
Construction cost | 0.189 | 3.75 | 0.28 | 0.4 |
Maintenance cost | 0.0095 | 0.04 | 0.27 | 0.37 |
Rebuilding cost | 0.189 | - | - | - |
SSP1 | SSP2 | SSP3 | SSP4 | SSP5 | ||
---|---|---|---|---|---|---|
Mixing gray and green | Benefit | 3303.0 | 2809.0 | 2132.9 | 2111.7 | 4404.7 |
Cost | 16.4 | 14.2 | 12.4 | 12.3 | 19.1 | |
Earthen dikes and mangroves | Benefit | 3307.9 | 2813.1 | 2136.2 | 2115.0 | 4410.9 |
Cost | 21.9 | 18.7 | 16.0 | 15.8 | 25.8 | |
Concrete dikes | Benefit | 3290.2 | 2798.0 | 2124.1 | 2103.1 | 4388.5 |
Cost | 15.5 | 14.1 | 12.5 | 12.4 | 18.0 |
SSP1 | SSP2 | SSP3 | SSP4 | SSP5 | |
---|---|---|---|---|---|
Benefit | 1302.4 | 1198.8 | 1104.0 | 1090.3 | 1427.5 |
Cost | 6.5 | 6.3 | 6.2 | 6.1 | 6.7 |
NPV | 1295.9 | 1192.5 | 1097.9 | 1084.1 | 1420.8 |
BCR | 200.1 | 190.1 | 179.6 | 177.5 | 212.3 |
SSP1 | SSP2 | SSP3 | SSP4 | SSP5 | |
---|---|---|---|---|---|
Benefit | 1040.9 | 976.3 | 921.5 | 911.6 | 1109.2 |
Cost | 5.7 | 5.6 | 5.5 | 5.5 | 5.8 |
NPV | 1035.2 | 970.7 | 916.0 | 906.0 | 1103.4 |
BCR | 183.2 | 174.7 | 167.0 | 165.2 | 192.1 |
SSP1 | SSP2 | SSP3 | SSP4 | SSP5 | |
---|---|---|---|---|---|
Benefit | 3299.1 | 2805.6 | 2130.2 | 2108.9 | 4388.4 |
Cost | 13.1 | 11.4 | 10.0 | 9.9 | 15.3 |
NPV | 3286.0 | 2794.2 | 2120.3 | 2099.0 | 4373.1 |
BCR | 251.3 | 245.7 | 214.0 | 213.5 | 287.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oanh, P.T.; Tamura, M.; Kumano, N.; Nguyen, Q.V. Cost-Benefit Analysis of Mixing Gray and Green Infrastructures to Adapt to Sea Level Rise in the Vietnamese Mekong River Delta. Sustainability 2020, 12, 10356. https://doi.org/10.3390/su122410356
Oanh PT, Tamura M, Kumano N, Nguyen QV. Cost-Benefit Analysis of Mixing Gray and Green Infrastructures to Adapt to Sea Level Rise in the Vietnamese Mekong River Delta. Sustainability. 2020; 12(24):10356. https://doi.org/10.3390/su122410356
Chicago/Turabian StyleOanh, Pham Thi, Makoto Tamura, Naoko Kumano, and Quang Van Nguyen. 2020. "Cost-Benefit Analysis of Mixing Gray and Green Infrastructures to Adapt to Sea Level Rise in the Vietnamese Mekong River Delta" Sustainability 12, no. 24: 10356. https://doi.org/10.3390/su122410356
APA StyleOanh, P. T., Tamura, M., Kumano, N., & Nguyen, Q. V. (2020). Cost-Benefit Analysis of Mixing Gray and Green Infrastructures to Adapt to Sea Level Rise in the Vietnamese Mekong River Delta. Sustainability, 12(24), 10356. https://doi.org/10.3390/su122410356