Physical and Hydro-Physical Characteristics of Soil in the Context of Climate Change. A Case Study in Danube River Basin, SE Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Physical-Geographical Characterization of the Study Area
2.2.1. Geology
2.2.2. Climate
2.2.3. Hydrography
2.2.4. Vegetation
2.3. Soil Mapping
2.4. Soil Pre-Treatment and Analysis
2.4.1. Physical Parameters
2.4.2. Hydro-Physical Parameters
0.1975·C·BD + 0.1·[S − (2 + 1.1·C − 0.012·C2)]}·(1.13 − 0.002966·LD + 0.00000883·LD2)
3. Results and Discussion
3.1. Soil Types and Subtypes
3.2. Soil Physico-Chemical Properties
3.2.1. Soil Organic Matter Content
3.2.2. Soil Granulometric Composition
3.2.3. Soil Compaction
3.3. The Main Hydro-Physical Parameters of Soils
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Abbreviations
Abbreviation | Explanation |
AM | Medium clay |
AP | Aeration Porosity |
AP | Silty clay |
AS | Fluvisols |
BD | Bulk Density |
C | Clay |
CR | Compaction Rate |
CZ | Chernozems |
CSSO | County Soil Survey Office |
D | Density |
DC | Draining Capacity |
EAWC | Easily Accessible Water Capacity |
FWC | Field Water Capacity |
GPS | Global Positioning System |
GS | Gleysols |
H | Soil Thickness |
LD | Layer Depth |
LL | Medium loam |
LP | Silty loam |
MNP | Minim Necessary Porosity |
NF | Fine sand |
OM | Organic Matter |
PN | Sandy silt |
Q | Soil particle > 2.0 mm diameter |
S | Silt |
SCI | Site of Community Importance |
SE | Extrafine sandy loam |
SF | Fine sandy loam |
SM | Medium sandy loam |
SPA | Special Protection Area |
TC | Total Capacity |
TP | Total Porosity |
TP | Silty clay loam |
TT | Medium clay loam |
UF | Fine loamy sand |
UWC | Useful Water Capacity |
WC | Wilting Coefficient |
References
- Bosello, F.; Roson, R.; Tol, R.S.J. Economy-wide estimates of the implications of climate change: Human health. Ecol. Econ. 2006, 58, 579–591. [Google Scholar] [CrossRef] [Green Version]
- Ray, D.K.; West, C.P.; Clark, M.; Gerber, J.S.; Prishchepov, A.V.; Chatterjee, S. Climate change has likely already affected global food production. PLoS ONE 2019, 14, e0217148. [Google Scholar] [CrossRef] [PubMed]
- Molua, E.L.; Lambi, M.C. The Economic Impact of Climate Change on Agriculture in Cameroon. World Bank Policy Res. Work. Pap. 2007, 4364. Available online: https://ssrn.com/abstract=1016260 (accessed on 4 August 2020).
- Daba, M.H.; Bazi, Z.; Belay, A. Effects of Climate Change on Soil and Water Resources: A Review. Environ. Earth Sci. 2018, 8, 71–80. [Google Scholar]
- Ummennhofer, C.C.; Meehl, G.A. Extreme weather and climate events with ecological relevance: A review. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017, 372, 1723. [Google Scholar] [CrossRef] [PubMed]
- Cotago, A.; Meggio, F.; de Antoni Migliorante, M.; Marinello, F. Extreme Weather Events in Agriculture: A Systematic Review. Sustainability 2019, 11, 2547. [Google Scholar] [CrossRef] [Green Version]
- del Pozo, A.; Brunel-Saldias, N.; Engler, A.; Ortega-Farias, S.; Acevedo-Opazo, C.; Lobos, G.A.; Jara-Rojas, R.; Molina-Montenegro, M.A. Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs). Sustainability 2019, 11, 2769. [Google Scholar] [CrossRef] [Green Version]
- Mihai, B.; Reynard, E.; Werren, G.; Savulescu, I.; Sandric, I.; Chitu, Z. Impacts of tourism on geomorphological processes in the Bucegi Mountains in Romania. Geogr. Helv. 2009, 64, 134–147. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.S.; Nozu, K.; Zhou, Q. Tourism Stakeholder Perspective for Disaster-Management Process and Resilience: The Case of the 2018 Hokkaido Eastern Iuburi Earthquake in Japan. Sustainability 2020, 12, 7882. [Google Scholar] [CrossRef]
- Mutana, S.; Mukwada, G. Mountain-route tourism and sustainability. A discourse analysis of literature and possible future research. J. Outdoor Recreat. Tour. 2018, 24, 59–65. [Google Scholar] [CrossRef]
- Debiki, R.; Bilakowska, K.; Chodorowski, J.; Bartmiński, P. Impact of Tourism on Selected Properties of Soils of Bukowa Góra Educational Path. Ann. Univ. Mariae Curie-Skłodowska Lublin-Pol. 2014, LXIX, 69–77. [Google Scholar] [CrossRef]
- Olya, H.G.T.; Shahmirzdi, E.K.; Alipour, H. Pro-tourism and anti-tourism community groups at a world heritage site in Turkey. Curr. Issues Tour. 2017, 22, 763–785. [Google Scholar] [CrossRef]
- Kuby, M.J.; Wentz, E.A.; Vogt, B.J. Experiences in developing a tourism web site for hiking Arizona’s highest summits and deepest canyons. Tour. Geogr. 2014, 3, 454–473. [Google Scholar] [CrossRef]
- Kopittke, P.M.; Menzies, N.W.; Wang, P.; McKenna, B.A.; Lombi, E. Soil and the intensification of agriculture for global food security. Environ. Int. 2019, 132, 105078. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Climate Change and Soil Degradation Mitigation by Sustainable Management of Soils and Other Natural Resources. Agric. Res. 2012, 1, 199–212. [Google Scholar] [CrossRef] [Green Version]
- Rawls, W.J.; Gish, T.J.; Brakensiek, D.L. Estimating soil water retention from soil physical properties and characteristics. In Advances in Soil Science; Stewart, B.A., Ed.; Springer: New York, NY, USA, 1991; Volume 16, pp. 213–234. [Google Scholar] [CrossRef]
- Moncada Mansonia, P.; Penning Letiane, H.; Timm, L.C.; Gabriels, D.; Cornelis Wim, M. Visual examinations and soil physical and hydraulic properties for assessing soil structural quality of soils with contrasting textures and land uses. Soil Tillage Res. 2014, 140, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Pires Luiz, F.; Borges Jaqueline, A.R.; Rosa Jadir, A.; Cooper, M.; Heck, R.J.; Passoni, S.; Roque, W.L. Soil structure changes induced by tillage systems. Soil Tillage Res. 2017, 165, 66–79. [Google Scholar] [CrossRef] [Green Version]
- Rabot, E.; Wiesmeier, M.; Schlüter, S.; Vogel, H.J. Soil structure as an indicator of soil functions: A review. Geoderma 2018, 314, 122–137. [Google Scholar] [CrossRef]
- Montgomery, D.R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 13268–13272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaimes, G.N.; Tufekcioglu, M.; Schultz, R.C. Riparian land-use impact on stream bank and gully erosion in agricultural watersheds: What we have learned. Water 2019, 11, 1343. [Google Scholar] [CrossRef] [Green Version]
- Foucher, A.; Salvador-Blanes, S.; Evrard, O.; Simonnesu, A.; Chapron, E.; Courp, T.; Cerdan, O.; Lefèvre, I.; Adriaensen, H.; Lecompte, F.; et al. Increase in soil erosion after agricultural intensification: Evidence from a lowland basin in France. Anthropocene 2015, 7, 30–41. [Google Scholar] [CrossRef] [Green Version]
- Roesch, A.; Weisskopf, P.; Oberholzer, H.; Valsangiacomo, A.; Nemecek, T. An Approach for Describing the Effects of Grazing on Soil Quality in Life-Cycle Assessment. Sustainability 2019, 11, 4870. [Google Scholar] [CrossRef] [Green Version]
- Rosales, M.; Livinets, S. Grazing and Land Degradation in CIS Countries and Mongolia. FAO, Livestock, Environment and Development Initiative (LEAD), Animal Production and Health Division. Available online: http://www.fao.org/fileadmin/templates/lead/pdf/e-conf_05-06_background.pdf (accessed on 15 October 2020).
- Fijałkowski, K.; Kacprzak, M.; Grobelak, A.; Placek, A. The influence of selected soil parameters on the mobility of heavy metals in soils. Inżynieria Ochr. Środowiska 2012, 15, 81–92. [Google Scholar]
- Rieuwerts, J.S.; Thorton, I.; Farago, M.E.; Ashmore, M.R. Factors influencing metal bioavailability in soils: Preliminary investigations for the development of a critical loads for metals. Chem. Spec. Bioavailab. 2015, 10, 60–75. [Google Scholar] [CrossRef] [Green Version]
- Ramachela, K. Edaphic and climatic factors and the nutrient dynamics in Uapaca Kirkiana dominated miombo woodland agroforestry ecosystems. Agrofor. Syst. 2019, 93, 1501–1511. [Google Scholar] [CrossRef]
- Letey, J. Relationship between soil physical properties and crop production. In Advances in Soil Science; Stewart, B.A., Ed.; Springer: New York, NY, USA, 1985; Volume 1, pp. 277–294. [Google Scholar] [CrossRef]
- Horn, R.; Domżżał, H.; Słowińska-Jurkiewicz, A.; van Ouwerkerk, C. Soil compaction processes and their effects on the structure of the arable soils and the environment. Soil Tillage Res. 1995, 35, 23–36. [Google Scholar] [CrossRef]
- Brogowski, Z.; Kwasowski, W.; Madyniak, R. Calculating particle density, bulk density, and total porosity of soil based on its texture. Soil Sci. Annu. 2015, 65, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Ferré, T.P.A.; Warrick, A.W. Infiltration. Encycl. Soils Environ. 2005, 254–260. [Google Scholar] [CrossRef]
- Omene, M.E.; Chokor, J.U.; Eyankware, M.O. The effects of land use on soil physicochemical properties within and around Ughelli, Nigeria. Int. J. Res. Rev. 2015, 2, 656–671. Available online: https://www.ijrrjournal.com/IJRR_Vol.2_Issue11_Nov2015/IJRR0115.pdf (accessed on 25 July 2020).
- Loganathan, M.; Narendiran, J.N. Characterization of soil quality indicators: A study. J. Glob. Biosci. 2014, 3, 586–592. Available online: https://www.mutagens.co.in/jgb/vol.03/2/26.pdf (accessed on 25 July 2020).
- Gajewski, P.; Kaczmarek, Z.; Owczarzak, W.; Mocek, A.; Glina, B. Selected physical and water properties of soils lacated in the vicinity of proposed opencast lignite mine “Dezewce” (middle Poland). Soil Sci. Annu. 2015, 66, 75–81. [Google Scholar] [CrossRef]
- Carter, M.R. Soil quality for sustainable land management: Organic matter and aggregation interactions that maintain soil function. Agron. J. 2002, 94, 38–47. [Google Scholar] [CrossRef]
- Alvarez, A.M.; Carral, P.; Hernandez, Z.; Almendros, G. Assessment of soil organic matter mollecular characteristics related to hydrophysical properties in semiarid soils (Central Spain). Arid Land Res. Manag. 2014, 27, 303–326. [Google Scholar] [CrossRef]
- Murphy, B.W. Impact of soil organic matter on soil properties - a review with emphasis on Australian soils. Soil Res. 2015, 53, 605–635. [Google Scholar] [CrossRef]
- Rieder, A.; Madarasz, B.; Szabo, J.A.; Zachary, D.; Vancsik, A.; Ringer, M.; Szalai, Z.; Jakab, G. Soil organic matter alteration velocity due to land-use change: A case study under conservation agriculture. Sustainability 2018, 10, 943. [Google Scholar] [CrossRef] [Green Version]
- Antoneli, V.; Mosele, A.C.; Bednarz, J.A.; Pulido-Fernandez, M.; Lozzano-Parra, J.; Keesstra, S.D.; Rodrigo-Comino, J. Effects of applying liquid swine manure on soil quality and yield production in tropical soybean crops (Parana, Brazil). Sustainability 2019, 11, 3898. [Google Scholar] [CrossRef] [Green Version]
- Ene, A.; Bosneaga, A.; Georgescu, L. Determination of heavy metals in soils using XRF technique. Rom. J. Phys. 2010, 55, 815–820. [Google Scholar]
- Ene, A.; Pantelica, A.; Freitas, M.C.; Bosneaga, A. EDXRF and INAA analysis of soils in the vicinity of a metallurgical plant. Rom. J. Phys. 2011, 56, 993–1000. [Google Scholar]
- Ene, A.; Bogdevich, O.; Sion, A.; Spanos, T. Determination of polycyclic aromatic hydrocarbons by gas chromatography-mass spectrometry in soils from Southeastern Romania. Michrochem. J. 2012, 100, 36–41. [Google Scholar] [CrossRef]
- Ene, A.; Bogdevich, O.; Sion, A. Levels of organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) in topsoils from SE Romania. Sci. Total Environ. 2012, 439, 76–86. [Google Scholar] [CrossRef]
- Arbanas, S.S.; Ene, A.; Moraru, D.I. Contamination level of Triticum vulgare L. cultivated on soils around a metallurgical area in Galati, Romania. Ann. Dunarea Univ. Galati Fascicle II Math. Phys. Theor. Mech. 2019, 42, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ene, A.; Moraru, S.S.; Moraru, D.I. Assessment of bioaccumulation of heavy metals in sunflower cultivated in the agricultural area next to steel industry. In Proceedings of the 19th International Multidisciplinary Scientific Conference on Earth & Planetary Science—SGEM Geoconference, 3.2—Soils, Water Ecosystems, Albena, Bulgaria, 30 June–6 July 2019; pp. 25–32. [Google Scholar] [CrossRef]
- Kumar, A.; Cabral-Pinto, M.; Kumar, A.; Kumar, M.; Dinis, P.A. Estimation of risk to the eco-environment and human health of using heavy metals in the Uttarakhand Humalaya, India. Appl. Sci. 2020, 10, 7078. [Google Scholar] [CrossRef]
- Bockel, L. Climate Change and Agricultural Policies. How to Mainstream Climate Change Adaption and Mitigation into Agricultural Policies. Food and Agriculture Organization of the United Nations (FAO) Policy Learning Programme. 2019. Available online: http://www.fao.org/docs/up/easypol/779/policy-clim_change_240en.pdf (accessed on 14 October 2020).
- European Environment Agency. Climate Change Adaptation in the Agriculture Sector in Europe. EEA Report. 2019. Available online: https://www.euroseeds.eu/app/uploads/2019/09/Climate-change-adaptation-in-the-agriculture-sector-in-Europe.pdf (accessed on 15 October 2020).
- European Commission. The CAP and Climate Change. Available online: https://ec.europa.eu/info/food-farming-fisheries/sustainability/environmental-sustainability/climate-change_en#capandclimatechange (accessed on 15 October 2020).
- Stanescu, I.; Swizewski, C.; Vacarasu, I.; Sficlea, V. Masivul Ceahlau, Tara Giurgeului, Depresiunea Darmanesti, Podisul Covurlui—Cercetari in geografia Romaniei; Editura Stiintifica si Enciclopedica: Bucuresti, Romania, 1980; pp. 227–236. [Google Scholar]
- Cotet, P.V. Campia Romana—Studiu de Geomorfologie Integrate; Ceres: Bucuresti, Romania, 1976; p. 21. [Google Scholar]
- Coldea, G.; Negrean, G.; Sarbu, I.; Sarbu, A. Ghid Pentru Identificarea si Inventarierea Pajistilor Seminaturale din ROMANIA; Alo: Bucuresti, Romania, 2001; pp. 18–20. [Google Scholar]
- Florea, N.; Munteanu, I. Sistemul Roman de Taxonomie a Solurilor; Sitech: Craiova, Romania, 2012. [Google Scholar]
- County Soil Survey Office of Galati. Pedological and Agrochemical Study in Order to Achieve and Update the County Soil-Land Monitoring System for Agriculture. Sendreni Communal Territory; County Soil Survey Office of Galati: Galati, Romania, 2014.
- County Soil Survey Office of Galati. Pedological and Agrochemical Study in Order to Achieve and Update the County Soil-Land Monitoring System for Agriculture. Smardan Communal Territor; County Soil Survey Office of Galati: Galati, Romania, 2017. (In Romanian)
- County Soil Survey Office of Braila. Pedological and Agrochemical Study in Order to Achieve and Update the County Soil-Land Monitoring System for Agriculture. Vadeni Communal Territory Village Territory; County Soil Survey Office of Braila: Braila, Romania, 2018. (In Romanian)
- Dumitru, E.; Calciu, I.; Carabulea, V.; Canarache, A. Metode de Analiza Utilizate in Laboratorul de Fizica a Solului; Sitech: Craiova, Romania, 2009. [Google Scholar]
- Dumitru, M.; Dumitru, S.; Tanase, V.; Mocanu, V.; Manea, A.; Vrânceanu, N.; Preda, M.; Eftene, M.; Ciobanu, C.; Calciu, I.; et al. Monitoringul Starii de Calitate a Solurilor din Romania; Sitech: Craiova, Romania, 2011. [Google Scholar]
- Bot, A.; Benites, J. Natural factors influencing the amount of organic matter. In The Importance of Soil Organic Matter, FAO Soils Bulletin; Publishing Management Service Information Division FAO: Rome, Italy, 2005; Volume 80, p. 78. Available online: http://www.fao.org/3/a0100e/a0100e00.htm#Contents (accessed on 2 August 2020).
- Vasiliniuc, I. Hydeophysical indicators of the soils in Horoiata basin. PESD 2010, 4, 287–297. [Google Scholar]
- Vlad, V.; Toti, M.; Florea, N.; Mocanu, V. Corelarea Sistemelor de Clasificare a Solurilor SRCS si SRTS—Sistemul SRTS+; Sitech: Craiova, Romania, 2014; p. 19. [Google Scholar]
- Moraru, S.S.; Ene, A.; Gosav, S. Study of the correlativity between parameters and mineralogy of contaminated agricultural soils. In Proceedings of the 19th International Multidisciplinary Scientific Conference on Earth & Planetary Science—SGEM Geoconference, 3.2—Soils, Water Ecosystems, Albena, Bulgaria, 30 June–6 July 2019; pp. 441–448. [Google Scholar] [CrossRef]
- Moraru, S.S.; Ene, A.; Gosav, S. Mineralogical composition assessment of soils from Covurlui and Braila plains by ATR-FTIR technique. Proceedings 2019, 29, 80. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, B.; Singh, M.; Mandal, S.; Churchman, G.J.; Bolan, N.S. Chapter 3—Clay Minerals—Organic Matter Interactions in Relation to Carbon Stabilization in Soils. In The Future of Soil Carbon. Its Conservation and Formation; Garcia, C., Nannipieri, P., Hernandez, T., Eds.; Academic Press: London, UK, 2018; pp. 71–86. [Google Scholar] [CrossRef]
- Tang, C.S.; Cui, Y.J.; Tang, A.M.; Shi, B. Experiment evidence on the temperature dependence of desiccation cracking behavior of clayey soils. Eng. Geol. 2010, 114, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Walczak, R.; Ostrowski, J.; Witkowska-Walczak, B.; Sławiński, C. Spatial characteristic of hydro-physical properties in arable mineral soils in Poland as illustrated by field water capacity (FWC). Int. Agrophys. 2002, 16, 151–159. [Google Scholar]
Sample Site | Location | Latitude N | Longitude E | Altitude (m) | Slope |
---|---|---|---|---|---|
Smardan | |||||
1 | S Smardan | 45°27′58.20″ | 27°56′10.70″ | 18 | 2–5° |
2 | NE Smardan | 45°29′ 1.68″ | 27°57′ 8.58″ | 41 | 11–14° |
3 | SW M. Kogalniceanu | 45°29′29.14″ | 27°54′44.62″ | 80 | ≤1° |
4 | W M. Kogalniceanu | 45°30′14.69″ | 27°53′37.84″ | 83 | 1–2° |
Sendreni | |||||
5 | Trajan’s Wall arable land | 45°27′55.38″ | 27°53′50.96″ | 68 | ≤1° |
6 | W Cornet Valley | 45°26′35.37″ | 27°55′28.44″ | 58 | ≤1° |
7 | E Malina Lake | 45°26′26.79″ | 27°56′54.43″ | 39 | 2–5° |
8 | left of Siret river | 45°25′23.50″ | 27°53′22.85″ | 39 | 2–5° |
9 | left of Odabascu Valley | 45°28′22.05″ | 27°53′28.23″ | 72 | ≤1° |
10 | right of Cornet Valley | 45°26′54.89″ | 27°55′23.43″ | 60 | ≤1° |
11 | right of Rusca Mare Valley | 45°26′37.00″ | 27°53′59.00″ | 58 | 1–2° |
12 | right of Malina Valley | 45°25′5.00″ | 27°56′36.00″ | 21 | 2–5° |
Vadeni | |||||
13 | right of Pislaru Valley | 45°19′37.15″ | 27°55′49.39″ | 5 | ≤1°01′ |
14 | N Baldovinesti Village | 45°27′58.20″ | 27°56′10.70″ | 5 | ≤1°01′ |
15 | S Vadeni Village | 45°20′51.62″ | 27°55′ 5.93″ | 3 | ≤1°01′ |
16 | W Pietroiu Village | 45°19′23.10″ | 27°52′ 9.17″ | 7 | ≤1°01′ |
17 | NW Vadeni Village | 45°22′43.00″ | 27°54′40.00″ | 5 | ≤1°01′ |
18 | S Vadeni Village | 45°21′37.00″ | 27°56′25.00″ | 4 | ≤1°01′ |
19 | left of Danube river | 45°20′15.89″ | 27°58′46.09″ | 3 | ≤1°01′ |
20 | right of Zagna backwater | 45°21′38.99″ | 27°51′32.26″ | 5 | ≤1°01′ |
Sample Site | Horizon | Depth (cm) | OM (%) | Classes |
---|---|---|---|---|
Smardan | ||||
1 | Amp | 0–15 | 2.45 | medium |
AC | 15–55 | 1.52 | low | |
2 | Amt | 0–19 | 3.16 | low |
AC | 19–55 | 1.91 | low | |
3 | Amp | 0–33 | 1.48 | low |
AC | 33–65 | 1.17 | very low | |
4 | Amp | 0–21 | 1.36 | low |
AC | 21–48 | 0.79 | very low | |
Sendreni | ||||
5 | Amp | 0–21 | 3.33 | medium |
Am | 21–30 | 3.40 | medium | |
6 | Amp | 0–25 | 2.95 | low |
Am | 25–40 | 2.46 | low | |
7 | Amp | 0–14 | 2.51 | low |
Am | 14–29 | 2.67 | low | |
8 | ACp | 0–22 | 2.49 | low |
Ck | 22–59 | 1.22 | very low | |
9 | Amp/Am | 0–30 | 3.03 | low |
10 | Amp/ACk | 0–30 | 2.53 | low |
11 | Amp/ACk | 0–30 | 1.59 | low |
12 | Amp/Am | 0–30 | 1.19 | medium |
Vadeni | ||||
13 | Amp | 0–24 | 3.04 | low |
Ck | 24–51 | 1.80 | very low | |
14 | Amp | 0–22 | 2.88 | low |
CkGox | 22–50 | 2.07 | very low | |
15 | Amp | 0–23 | 4.17 | low |
CkGox | 23–50 | 3.56 | low | |
16 | Aop | 0–22 | 2.21 | low |
CkGox | 22–50 | 1.14 | very low | |
17 | Aop/Ck | 0–30 | 1.31 | very low |
18 | Amp/CkGr | 0–30 | 2.37 | low |
19 | Amp/CkGox | 0–30 | 1.92 | low |
20 | Amp/CkGr | 0–30 | 2.97 | low |
Sample Site | Soil Type [53] | Horizon | Depth (cm) | Clay (%) | Silt (%) | FineSand (%) | CoarseSand (%) | Texture [61] * |
---|---|---|---|---|---|---|---|---|
Smardan | ||||||||
1 | CZ ka | Amp AC | 0–15 1–55 | 15.18 9.34 | 23.56 24.47 | 57.63 63.82 | 3.63 2.37 | SM UF |
2 | CZ ka | Amt AC | 0–19 19–55 | 40.13 41.43 | 34.32 26.95 | 23.85 30.05 | 1.70 1.57 | TP TT |
3 | CZ ka | Am AC | 0–33 33–65 | 19.97 15.61 | 32.79 35.91 | 46.78 47.65 | 0.46 0.83 | SE SE |
4 | CZ ka | Amp AC | 0–21 21–48 | 6.72 7.08 | 32.39 31.83 | 60.44 60.86 | 0.47 0.23 | UF UF |
Sendreni | ||||||||
5 | CZ ka | Amp | 0–21 | 29.90 | 24.80 | 45.23 | 0.07 | LL |
Am | 21–30 | 29.30 | 25.40 | 45.21 | 0.09 | LL | ||
6 | CZ ti | Amp | 0–25 | 30.83 | 26.42 | 42.67 | 0.08 | LL |
Am | 25–40 | 32.84 | 26.41 | 40.59 | 0.16 | LL | ||
7 | CZ ka | Amp | 0–20 | 27.01 | 25.35 | 47.26 | 0.38 | LL |
Am | 20–35 | 26.37 | 26.16 | 47.11 | 0.36 | LL | ||
8 | CZ ka | ACp | 0–22 | 23.04 | 29.31 | 47.41 | 0.24 | LL |
Ck | 22–59 | 23.16 | 24.20 | 52.58 | 0.06 | LL | ||
9 | CZ ka | Amp/Am | 0–30 | 29.41 | 27.91 | 42.68 | 0.21 | LL |
10 | CZ ka | Amp/ACk | 0–30 | 28.30 | 30.20 | 41.50 | 0.17 | LL |
11 | CZ ka | Amp/ACk | 0–30 | 7.31 | 35.12 | 57.57 | 0.36 | PN |
12 | CZ ka | Amp/Am | 0–30 | 1.04 | 21.17 | 77.78 | 0.42 | NF |
Vadeni | ||||||||
13 | AS ka mo | Amp | 0–24 | 53.41 | 34.16 | 12.08 | 0.35 | AP |
Ck | 24–51 | 48.54 | 36.08 | 15.34 | 0.04 | AP | ||
14 | AS ka mo gc | Amp | 0–22 | 54.11 | 35.99 | 9.72 | 0.18 | AP |
CkGox | 22–50 | 49.84 | 39.11 | 10.78 | 0.26 | AP | ||
15 | GS ka mo | Amp | 0–23 | 65.91 | 25.78 | 8.17 | 0.14 | AM |
CkGox | 23–39 | 63.18 | 25.99 | 10.64 | 0.19 | AM | ||
16 | AS gc sc ac | Aop | 0–22 | 18.68 | 25.99 | 55.16 | 0.17 | SF |
CkGox | 22–50 | 14.76 | 22.44 | 62.68 | 0.12 | SF | ||
17 | AS ka | Aop/Ck | 0–30 | 21.32 | 20.06 | 58.62 | 0.83 | LL |
18 | GS ka mo | Amp/CkGr | 0–30 | 27.79 | 25.60 | 46.62 | 1.13 | LP |
19 | GS ka mo | Amp/CkGox | 0–30 | 36.03 | 40.79 | 23.19 | 0.08 | TP |
20 | GS ka mo | Amp/CkGr | 0–30 | 41.03 | 37.30 | 21.66 | 0.08 | TP |
Sample Site | Horizon | Depth (cm) | BD (g·cm−3) | TP (%, v/v) | CR (%, v/v) | AP (%, v/v) |
---|---|---|---|---|---|---|
Smardan | ||||||
1 | Amp | 0–15 | 1.28 | 52 | −10 | 23 |
AC | 15–55 | 0.78 | 71 | −53 | 56 | |
2 | Amt | 0–19 | 1.00 | 63 | −22 | 32 |
AC | 19–55 | 1.08 | 60 | −16 | 29 | |
3 | Amp | 0–33 | 1.45 | 46 | 4 | 13 |
AC | 33–65 | 1.34 | 50 | −6 | 20 | |
4 | Amp | 0–21 | 1.24 | 54 | −17 | 30 |
AC | 21–48 | 1.12 | 59 | −27 | 37 | |
Sendreni | ||||||
5 | Amp | 0–21 | 1.11 | 59 | −17 | 29 |
Am | 21–30 | 1.25 | 53 | −7 | 20 | |
6 | Amp | 0–25 | 1.16 | 57 | −13 | 26 |
Am | 25–40 | 1.22 | 54 | −8 | 21 | |
7 | Amp | 0–14 | 1.14 | 57 | −19 | 29 |
Am | 14–29 | 1.37 | 49 | −2 | 17 | |
8 | ACp | 0–22 | 1.17 | 56 | −16 | 26 |
Ck | 22–59 | 1.32 | 51 | −5 | 20 | |
9 | Amp/Am | 0–30 | 0.91 | 66 | −33 | 41 |
10 | Amp/ACk | 0–30 | 0.82 | 69 | −40 | 47 |
11 | Amp/ACk | 0–30 | 1.21 | 55 | −19 | 31 |
12 | Amp/Am | 0–30 | 1.26 | 53 | −18 | 35 |
Vadeni | ||||||
13 | Amp | 0–24 | 1.32 | 51 | 6 | 12 |
Ck | 24–51 | 1.22 | 55 | −4 | 19 | |
14 | Amp | 0–22 | 1.40 | 48 | 11 | 8 |
CkGox | 22–50 | 1.38 | 49 | 9 | 10 | |
15 | Amp | 0–23 | 1.11 | 59 | −5 | 17 |
CkGox | 23–50 | 1.08 | 60 | −8 | 21 | |
16 | Aop | 0–22 | 1.34 | 50 | −4 | 20 |
CkGox | 22–50 | 1.30 | 52 | −9 | 25 | |
17 | Aop/Ck | 0–30 | 1.05 | 61 | −26 | 35 |
18 | Amp/CkGr | 0–30 | 1.11 | 59 | −18 | 30 |
19 | Amp/CkGox | 0–30 | 0.91 | 66 | −30 | 39 |
20 | Amp/CkGr | 0–30 | 0.91 | 66 | −28 | 38 |
Sample Site | Horizon | Depth (cm) | WC (%, w/w) | FWC (%, w/w) | UWC (%, w/w) | TC (%, w/w) | DC (%, mm) | EAWC (m3·ha−1) |
---|---|---|---|---|---|---|---|---|
Smardan | ||||||||
1 | Amp | 0–015 | 5.36 | 22.71 | 17.35 | 40.81 | 18.10 | 1110 |
AC | 15–55 | 3.32 | 19.52 | 16.20 | 91.17 | 71.65 | 505 | |
2 | Amt | 0–19 | 14.10 | 30.80 | 16.70 | 62.69 | 31.89 | 668 |
AC | 19–55 | 14.55 | 28.50 | 13.95 | 55.56 | 27.06 | 602 | |
3 | Amp | 0–33 | 7.04 | 22.81 | 15.78 | 31.93 | 9.11 | 1144 |
AC | 33–65 | 5.51 | 22.88 | 17.37 | 37.59 | 14.71 | 1164 | |
4 | Amp | 0–21 | 2.40 | 19.67 | 17.37 | 43.61 | 23.93 | 857 |
AC | 21–48 | 2.53 | 19.81 | 17.29 | 52.52 | 32.71 | 774 | |
Sendreni | ||||||||
5 | Amp | 0–21 | 10.52 | 27.07 | 16.55 | 52.78 | 25.71 | 919 |
Am | 21–30 | 10.31 | 26.82 | 16.52 | 42.69 | 15.86 | 1032 | |
6 | Amp | 0–25 | 10.84 | 26.81 | 15.97 | 48.89 | 22.08 | 926 |
Am | 25–40 | 11.54 | 27.31 | 15.77 | 44.65 | 17.34 | 962 | |
7 | Amp | 0–14 | 7.37 | 24.79 | 17.42 | 50.41 | 25.62 | 993 |
Am | 14–29 | 6.72 | 22.96 | 16.24 | 35.68 | 12.72 | 1112 | |
8 | ACp | 0–22 | 8.11 | 25.76 | 17.64 | 48.16 | 22.40 | 1032 |
Ck | 22–59 | 8.16 | 23.41 | 15.25 | 38.72 | 15.31 | 1007 | |
9 | Amp/Am | 0–30 | 10.34 | 27.64 | 17.30 | 72.58 | 44.93 | 787 |
10 | Amp/ACk | 0–30 | 9.96 | 27.84 | 17.88 | 84.64 | 56.80 | 733 |
11 | Amp/ACk | 0–30 | 2.61 | 19.96 | 17.35 | 45.61 | 25.65 | 1050 |
12 | Amp/Am | 0–30 | 0.42 | 14.34 | 13.92 | 42.33 | 27.99 | 877 |
Vadeni | ||||||||
13 | Amp | 0–24 | 18.74 | 30.18 | 11.43 | 38.44 | 8.27 | 503 |
Ck | 24–51 | 17.04 | 30.16 | 13.12 | 44.93 | 14.77 | 534 | |
14 | Amp | 0–22 | 18.99 | 29.54 | 10.55 | 34.12 | 4.57 | 493 |
CkGox | 22–50 | 17.49 | 28.66 | 11.17 | 35.15 | 6.49 | 514 | |
15 | Amp | 0–23 | 23.12 | 38.16 | 15.05 | 52.78 | 14.61 | 557 |
CkGox | 23–50 | 22.16 | 36.51 | 14.35 | 55.28 | 18.77 | 517 | |
16 | Aop | 0–22 | 6.59 | 23.26 | 16.67 | 37.31 | 14.05 | 1117 |
CkGox | 22–50 | 5.22 | 21.64 | 16.42 | 39.89 | 18.25 | 1067 | |
17 | Amp/Ck | 0–30 | 7.51 | 24.41 | 16.90 | 58.20 | 33.79 | 887 |
18 | Amp/CkGr | 0–30 | 9.78 | 26.20 | 16.42 | 52.78 | 26.58 | 911 |
19 | Amp/CkGox | 0–30 | 12.66 | 30.37 | 17.70 | 72.85 | 42.49 | 805 |
20 | Amp/CkGr | 0–30 | 14.41 | 31.05 | 16.64 | 72.58 | 41.53 | 757 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moraru, S.-S.; Ene, A.; Badila, A. Physical and Hydro-Physical Characteristics of Soil in the Context of Climate Change. A Case Study in Danube River Basin, SE Romania. Sustainability 2020, 12, 9174. https://doi.org/10.3390/su12219174
Moraru S-S, Ene A, Badila A. Physical and Hydro-Physical Characteristics of Soil in the Context of Climate Change. A Case Study in Danube River Basin, SE Romania. Sustainability. 2020; 12(21):9174. https://doi.org/10.3390/su12219174
Chicago/Turabian StyleMoraru, Sorina-Simona, Antoaneta Ene, and Alina Badila. 2020. "Physical and Hydro-Physical Characteristics of Soil in the Context of Climate Change. A Case Study in Danube River Basin, SE Romania" Sustainability 12, no. 21: 9174. https://doi.org/10.3390/su12219174
APA StyleMoraru, S.-S., Ene, A., & Badila, A. (2020). Physical and Hydro-Physical Characteristics of Soil in the Context of Climate Change. A Case Study in Danube River Basin, SE Romania. Sustainability, 12(21), 9174. https://doi.org/10.3390/su12219174