An Evolving Agricultural Extension Model for Lasting Impact: How Willing Are Tanzanian Farmers to Pay for Extension Services?
Abstract
1. Introduction
2. Methodology
2.1. Study Location and Sample
2.2. Data Description
2.3. Contingent Valuation Method
2.4. Dichotomous Choice Experiments—The Double-Bounded Model
2.5. Survey Structure
3. Results and Discussion
4. Conclusions and Policy Implications
Author Contributions
Funding
Conflicts of Interest
References
- World Bank. Poverty and Shared Prosperity 2018: Piecing Together the Poverty Puzzle; The World Bank Group: Washington, DC, USA, 2018. [Google Scholar]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2019: Safeguarding against Economic Slowdowns and Downturns; CC BY-NC-SA 3.0 IGO; FAO: Rome, Italy, 2019. [Google Scholar]
- OECD. Agriculture in Sub-Saharan Africa: Prospects and Challenges for the Next Decade; OECD Publishing: Paris, France, 2016. [Google Scholar] [CrossRef]
- FAO. Transforming the World through Food and Agriculture: FAO and the 2030 Road for Sustainable Development; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- Benin, S. Impacts of CAADP on Africa’s Agricultural-Led Development; International Food Policy Research Institute: Washington, DC, USA, 2016; Volume 1553. [Google Scholar]
- Shimeles, A.; Verdier-Chouchane, A.; Boly, A. Building a Resilient and Sustainable Agriculture in Sub-Saharan Africa; Springer Nature: Basingstoke, UK, 2018. [Google Scholar]
- World Bank. World Bank Indicators; Catalog, W.B., Ed.; The World Bank Group: Washington, DC, USA, 2020. [Google Scholar]
- Shee, A.; Azzarri, C.; Haile, B. Farmers’ willingness to pay for improved agricultural technologies: Evidence from a field experiment in Tanzania. Sustainability 2020, 12, 216. [Google Scholar] [CrossRef]
- FAOSTAT. FAOSTAT Database; FAO: Rome, Italy, 2020. [Google Scholar]
- The United Republic of Tanzania. National Agricultural Policy; Ministry of Agriculture, Food Security and Cooperatives: Dar Es Salaam, Tanzania, 2013.
- Rutatora, D.F.; Mattee, A.Z. Major agricultural extension providers in Tanzania. Afr. Study Monogr. 2001, 22, 155–173. [Google Scholar] [CrossRef]
- Lameck, W. Decentralization and the Quality of Public Service Delivery in Tanzania: A Study of the Delivery of Agricultural Extension Services in Morogoro Municipality and Hai District Council. Ph.D. Thesis, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, 2017. [Google Scholar]
- The United Republic of Tanzania. Local Government Reform Programme II (Decentralization by Devolution): Vision, Goals and Strategy July 2009–June 2014; Prime Minister’s Office Regional Administration and Local Government: Dodoma, Tanzania, 2009.
- Kyaruzi, A.; Mlozi, M.; Busindi, I. Gender based effectiveness of agricultural extension agents’ contacts with smallholder farmers in extension services delivery: A case of Kilosa District, Tanzania. J. Contin. Educ. Ext. 2010, 2, 85–93. [Google Scholar]
- The United Republic of Tanzania. Agricultural Sector Development Programme 2 (ASDP II); Prime Minister’s Office Regional Administration and Local Government: Dodoma, Tanzania, 2016.
- World Bank. Enhancing Agricultural Innovation: How to Go Beyond the Strengthening of Research Systems; World Bank Group: Washington, DC, USA, 2006. [Google Scholar]
- Sseguya, H.; Mazur, R.; Abbott, E.; Matsiko, F. Information and communication for rural innovation and development: Context, quality and priorities in southeast Uganda. J. Agric. Educ. Ext. 2012, 18, 55–70. [Google Scholar] [CrossRef]
- Wilson, R.T.; Lewis, J. The Maize Value Chain in Tanzania: A Report from the Southern Highlands Food Systems Programme; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015. [Google Scholar]
- Mtaki, B. Grain and Feed Annnual: Tanzanian Corn, Wheat and Rice Report; USDA Foreign Agricultural Service: Dar es Salaam, Tanzania, 2017.
- MAFAP. Review of Food and Agricultural Policies in the United Republic of Tanzania 2005–2011: Country Report; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- USAID. Famine Early Warning Systems Network: Tanzania Market Fundamentals Summary; USAID’s Bureau for Humanitarian Assistance: Dar Es Salaam, Tanzania, 2018.
- Ley, G. Tanzania Country Profile; Africa Soil Health Consortium: Nairobi, Kenya, 2015. [Google Scholar]
- Hella, J. Study to Establish Return to Investment in Agricultural Extension Service in Tanzania; Ministry of Agriculture, Food Security and Cooperatives: Dar Es Salaam, Tanzania, 2013.
- USAID. A Decade of Progress: Feed the Future Snapshot; United States Agency for International Development: Washington, DC, USA, 2018.
- ACDI/VOCA. Feed the Future Tanzania NAFAKA FY16 Annual Report: October 2016 to September 2017; ACDI/VOCA: Washington, DC, USA, 2017. [Google Scholar]
- Africa Research in Sustainable Intensification for the Next Generation: Sustainable Intensification of Key Farming Systems in East and Southern Africa. 2014. Available online: https://cgspace.cgiar.org/handle/10568/108832 (accessed on 20 August 2020).
- Davis, K.; Nkonya, E.; Kato, E.; Mekonnen, D.A.; Odendo, M.; Miiro, R.; Nkuba, J. Impact of farmer field schools on agricultural productivity and poverty in East Africa. World Dev. 2012, 40, 402–413. [Google Scholar] [CrossRef]
- Wellard, K.; Rafanomezana, J.; Nyirenda, M.; Okotel, M.; Subbey, V. A review of community extension approaches to innovation for improved livelihoods in Ghana, Uganda and Malawi. J. Agric. Educ. Ext. 2013, 19, 21–35. [Google Scholar] [CrossRef]
- Kiptot, E.; Franzel, S. Developing sustainable farmer-to-farmer extension: Experiences from the volunteer farmer–trainer approach in Kenya. Int. J. Agric. Sustain. 2019, 17, 401–412. [Google Scholar] [CrossRef]
- Simpson, B.M.; Franzel, S.; Degrande, A.; Kundhlande, G.; Tsafack, S. Farmer-to-Farmer Extension: Issues in Planning and Implementation; USAID: Washington, DC, USA, 2015.
- Shekara, P. Status of Private Extension in India; National Institute of Agricultural Extension Management (MANAGE): Hyderabad, India, 2004. [Google Scholar]
- Kiptot, E.; Franzel, S. Voluntarism as an investment in human, social and financial capital: Evidence from a farmer-to-farmer extension program in Kenya. Agric. Hum. Values 2014, 31, 231–243. [Google Scholar] [CrossRef]
- USAID. Country Development Cooperation Strategy: Tanzania’s Socioeconomic Transformation toward Middle Income Status by 2025 Advanced; USAID: Washington, DC, USA, 2014.
- Carson, R.T.; Mitchell, R.C. Contingent valuation and the legal arena. In Valuing Natural Assets: The Economics of Natural Resource Damage Assessment; RFF Press: New York, NY, USA, 1993; pp. 231–244. [Google Scholar]
- Portney, P.R. The contingent valuation debate: Why economists should care. J. Econ. Perspect. 1994, 8, 3–17. [Google Scholar] [CrossRef]
- Carson, R.T.; Mitchell, R.C.; Hanemann, W.M.; Kopp, R.J.; Presser, S.; Ruud, P.A. A Contingent Valuation Study of Lost Passive Use Values Resulting from the Exxon Valdez oil Spill: A Report to the Attorney General of Alaska; University Library of Munich: Munich, Germany, 1992. [Google Scholar]
- Arrow, K.; Solow, R.; Portney, P.R.; Leamer, E.E.; Radner, R.; Schuman, H. Report of the NOAA Panel on Contingent Valuation; NOAA: Washington, DC, USA, 1993; pp. 4601–4614.
- Bishop, R.C.; Heberlein, T.A. Measuring values of extramarket goods: Are indirect measures biased? Am. J. Agric. Econ. 1979, 61, 926–930. [Google Scholar] [CrossRef]
- Hanemann, M.; Loomis, J.; Kanninen, B. Statistical efficiency of double-bounded dichotomous choice contingent valuation. Am. J. Agric. Econ. 1991, 73, 1255–1263. [Google Scholar] [CrossRef]
- Lopez-Feldman, A. Introduction to Contingent Valuation Using Stata; University Library of Munich: Munich, Germany, 2012. [Google Scholar]
- Bateman, I.J.; Carson, R.T.; Day, B.; Hanemann, M.; Hanley, N.; Hett, T.; Jones-Lee, M.; Loomes, G.; Mourato, S.; Pearce, D.W. Economic Valuation with Stated Preference Techniques: A Manual; Edward Elgar Publishing Ltd.: Cheltenham, UK, 2002. [Google Scholar]
- Whitehead, J.C. A practitioner’s primer on the contingent valuation method. In Handbook on Contingent Valuation; Edward Elgar Publishing: Cheltenham, UK, 2006; pp. 66–91. [Google Scholar]
- Jorgensen, B.S.; Syme, G.J.; Bishop, B.J.; Nancarrow, B.E. Protest responses in contingent valuation. Environ. Resour. Econ. 1999, 14, 131–150. [Google Scholar] [CrossRef]
- Strazzera, E.; Scarpa, R.; Calia, P.; Garrod, G.; Willis, K.G. Modelling Zero Bids in Contingent Valuation Surveys; CRENoS: Cagliari, Italy, 2000. [Google Scholar]
- Day, R.; Abrahams, P.; Bateman, M.; Beale, T.; Clottey, V.; Cock, M.; Colmenarez, Y.; Corniani, N.; Early, R.; Godwin, J. Fall armyworm: Impacts and implications for Africa. Outlooks Pest Manag. 2017, 28, 196–201. [Google Scholar] [CrossRef]
- Fisher, B.; Naidoo, R. The geography of gender inequality. PLoS ONE 2016, 11, e0145778. [Google Scholar] [CrossRef] [PubMed]
- Onemolease, E.; Alakpa, S. Determinants of adoption decisions of rural youths in the Niger delta region of Nigeria. J. Soc. Sci. 2009, 20, 61–66. [Google Scholar] [CrossRef]
- Larochelle, C.; Alwang, J.; Travis, E.; Barrera, V.H.; Dominguez Andrade, J.M. Did you really get the message? Using text reminders to stimulate adoption of agricultural technologies. J. Dev. Stud. 2019, 55, 548–564. [Google Scholar] [CrossRef]
- Ulimwengu, J.; Sanyal, P. Joint estimation of farmers’ stated willingness to pay for agricultural services. In International Food Policy Research Institute Discussion Paper; IFPRI: Washington, DC, USA, 2011; Volume 1070. [Google Scholar]
- Deininger, K.W. Land Policies for Growth and Poverty Reduction; World Bank Publications and Oxford University Press: Washington, DC, USA, 2003. [Google Scholar]
- De Janvry, A.; Sadoulet, E. Achieving the Sustainable Development Goal on Poverty Eradication; Fondation pour les études et recherches sur le développement international (FERDI): Clermont-Ferrand, France, 2017. [Google Scholar]
- Ajayi, A. An assessment of farmers’ willingness to pay for extension services using the contingent valuation method (CVM): The case of Oyo State, Nigeria. J. Agric. Educ. Ext. 2006, 12, 97–108. [Google Scholar] [CrossRef]
- Mutungi, C.; Muthoni, F.; Bekunda, M.; Gaspar, A.; Kabula, E.; Abass, A. Physical quality of maize grain harvested and stored by smallholder farmers in the Northern highlands of Tanzania: Effects of harvesting and pre-storage handling practices in two marginally contrasting agro-locations. J. Stored Prod. Res. 2019, 84, 101517. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
Variable | Definition | Mean | SD |
---|---|---|---|
Male | =1 if respondent is a male, 0 otherwise | 0.65 | 0.48 |
Age | Age in groups * | 2.93 | 1.12 |
Literacy level | =1 if respondent is literate, 0 otherwise | 0.95 | 0.22 |
Education level | Highest level of education ** | 3.32 | 1.19 |
Polygamist marriage | =1 if respondent is polygamist, 0 otherwise | 0.11 | 0.32 |
Household size | Number of household members | 5.44 | 2.40 |
Farming experience | Years of farming experience | 17.82 | 11.65 |
Land ownership | Number of hectares of land owned | 1.60 | 1.90 |
Frequency of visit | Frequency of extension agent’s visit *** | 2.19 | 1.14 |
NAFAKA II PO | =1 if respondent belongs to a Producer Organization that works with NAFAKA, 0 otherwise | 0.39 | 0.49 |
Access to technology | =1 if respondent has access to technology, 0 otherwise | 0.92 | 0.28 |
Agricultural revenues | Revenues from maize and rice sales in thousands of Tanzanian shillings | 1233.48 | 1571.67 |
Off-farm income | Off-farm income in thousands of Tanzanian shillings | 463.37 | 1055.27 |
Kilolo | =1 if respondent is from Kilolo district, 0 otherwise | 0.24 | 0.43 |
Kilombero | =1 if respondent is from Kilombero district, 0 otherwise | 0.25 | 0.43 |
Mbozi | =1 if respondent is from Mbozi district, 0 otherwise | 0.24 | 0.43 |
Mbarali | =1 if respondent is from Mbarali district, 0 otherwise | 0.28 | 0.45 |
Variables | Integrated Pest Management | Postharvest Handling | Business Skills | Land Management | ||||
---|---|---|---|---|---|---|---|---|
(1) Alpha | (2) Sigma | (3) Alpha | (4) Sigma | (5) Alpha | (6) Sigma | (7) Alpha | (8) Sigma | |
Male | 2.923 | 3.674 * | 2.788 * | 4.176 ** | ||||
(1.901) | (1.896) | (1.677) | (1.976) | |||||
Age | −2.448 ** | −1.679 * | −0.586 | −1.348 | ||||
(1.028) | (1.007) | (0.902) | (1.087) | |||||
Literacy level | 5.974 | 4.997 | 5.571 | 6.374 | ||||
(4.193) | (4.109) | (3.692) | (4.261) | |||||
Education level | 0.487 | 1.002 | 1.289 | −0.270 | ||||
(0.869) | (0.865) | (0.786) | (0.922) | |||||
Household size | −1.230 *** | 0.398 | 0.322 | −0.220 | ||||
(0.438) | (0.432) | (0.386) | (0.454) | |||||
Polygamist | −1.503 | −3.602 | −3.798 | −2.616 | ||||
(2.920) | (2.950) | (2.641) | (3.145) | |||||
Farming experience | 0.160 | 0.0614 | −0.0358 | 0.0439 | ||||
(0.098) | (0.096) | (0.087) | (0.104) | |||||
Land ownership | 1.485 ** | 1.093 * | 1.088 * | 2.220 *** | ||||
(0.625) | (0.622) | (0.618) | (0.713) | |||||
Frequency of visit | −1.042 | −0.352 | 0.594 | 0.221 | ||||
(0.814) | (0.819) | (0.712) | (0.851) | |||||
NAFAKA II PO a | 4.101 ** | 1.150 | 3.869 ** | 3.885 * | ||||
(1.998) | (2.027) | (1.748) | (2.081) | |||||
Access to technology | 7.802 ** | 4.675 | 6.893 ** | 5.519 | ||||
(3.272) | (3.281) | (2.934) | (3.512) | |||||
Agricultural revenues b | 0.00115 | 0.00160 ** | 0.00151 ** | 0.00145 * | ||||
(0.000745) | (0.000702) | (0.000649) | (0.000761) | |||||
Off-farm income b | 0.00179* | 0.000285 | 0.000247 | 0.000320 | ||||
(0.000988) | (0.000868) | (0.000784) | (0.00102) | |||||
Kilombero | 2.042 | 6.507 ** | 0.399 | 5.564 * | ||||
(2.887) | (2.907) | (2.525) | (2.968) | |||||
Mbozi | 5.222 ** | 7.633 *** | 3.164 | 10.74 *** | ||||
(2.506) | (2.596) | (2.244) | (2.662) | |||||
Mbarali | 4.509 | 5.129* | 1.368 | 4.876 | ||||
(3.054) | (3.031) | (2.709) | (3.120) | |||||
Constant | 11.73 * | 16.50 *** | −1.255 | 16.35 *** | −3.558 | 14.45 *** | 0.360 | 16.78 *** |
(6.320) | (0.849) | (6.474) | (0.907) | (5.715) | (0.762) | (6.576) | (0.998) | |
Willingness to pay b | 23.68 | 19.71 | 20.88 | 21.58 | ||||
Observations | 475 | 475 | 482 | 482 | 481 | 481 | 478 | 478 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abed, R.; Sseguya, H.; Flock, J.; Mruma, S.; Mwango, H. An Evolving Agricultural Extension Model for Lasting Impact: How Willing Are Tanzanian Farmers to Pay for Extension Services? Sustainability 2020, 12, 8473. https://doi.org/10.3390/su12208473
Abed R, Sseguya H, Flock J, Mruma S, Mwango H. An Evolving Agricultural Extension Model for Lasting Impact: How Willing Are Tanzanian Farmers to Pay for Extension Services? Sustainability. 2020; 12(20):8473. https://doi.org/10.3390/su12208473
Chicago/Turabian StyleAbed, Rodrigo, Haroon Sseguya, James Flock, Silvanus Mruma, and Hamisi Mwango. 2020. "An Evolving Agricultural Extension Model for Lasting Impact: How Willing Are Tanzanian Farmers to Pay for Extension Services?" Sustainability 12, no. 20: 8473. https://doi.org/10.3390/su12208473
APA StyleAbed, R., Sseguya, H., Flock, J., Mruma, S., & Mwango, H. (2020). An Evolving Agricultural Extension Model for Lasting Impact: How Willing Are Tanzanian Farmers to Pay for Extension Services? Sustainability, 12(20), 8473. https://doi.org/10.3390/su12208473