Environmental Impact Assessment of Potentially Toxic Elements in Soils Near the Runway at the International Airport in Central Europe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Processing
2.3. Sample Processing and Analytical Methods
2.4. Soil Toxicity Bioassay
2.5. Data Treatment
2.5.1. Geoaccumulation Index (Igeo)
2.5.2. Nemerow Integrated Pollution Index (IPIN)
2.5.3. Potential Ecological Risk Index (RI)
2.6. Statistical Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brtnický, M.; Pecina, V.; Hladký, J.; Radziemska, M.; Koudelková, Z.; Klimánek, M.; Richtera, L.; Adamcová, D.; Elbl, J.; Galiová, M.V.; et al. Assessment of phytotoxicity, environmental and health risks of historical urban park soils. Chemosphere 2019, 220, 678–686. [Google Scholar] [CrossRef] [PubMed]
- Pollock, S.Z.; Clair, C.C.S. Railway-associated attractants as potential contaminants for wildlife. Environ. Manag. 2020, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, A.W.; Waitz, I.A. Air transportation and the environment. Transp. Pol. 2014, 34, 1–4. [Google Scholar] [CrossRef]
- Trojanek, R.; Huderek-Glapska, S. Measuring the noise cost of aviation–The association between the Limited Use Area around Warsaw Chopin Airport and property values. J. Air Transp. Manag. 2018, 67, 103–114. [Google Scholar] [CrossRef]
- Addepalli, S.; Pagalday, G.; Salonitis, K.; Roy, R. Socio-economic and demographic factors that contribute to the growth of the civil aviation industry. Proc. Manufactur. 2018, 19, 2–9. [Google Scholar] [CrossRef]
- Kamiński, M.; Pospolita, W.; Cholewiński, M.; Łagocka, A. Emisja zanieczyszczeń z sektora transportu lotniczego i jej wpływ na zdrowie człowieka. Kosmos 2016, 65, 487–493. (In Polish) [Google Scholar]
- Masiol, M.; Harrison, R.M. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review. Atmos. Environ. 2014, 95, 409–455. [Google Scholar] [CrossRef] [Green Version]
- IATA International. Air Transp. Assoc. Ann. Rev. 2019. Available online: https://www.iata.org/contentassets/c81222d96c9a4e0bb4ff6ced0126f0bb/iata-annual-review-2019.pdf (accessed on 17 February 2020).
- Donzelli, M. The effect of low-cost air transportation on the local economy: Evidence from Southern Italy. J. Air Transp. Manag. 2010, 16, 121–126. [Google Scholar] [CrossRef]
- Jones, S.; Richardson, N.; Bennett, M.; Hoon, S.R. The application of magnetic measurements for the characterization of atmospheric particulate pollution within the airport environment. Sci. Total Environ. 2015, 502, 385–390. [Google Scholar] [CrossRef]
- Hudda, N.; Fruin, S.A. International airport impacts to air quality: Size and related properties of large increases in ultrafine particle number concentrations. Environ. Sci. Technol. 2016, 50, 3362–3370. [Google Scholar] [CrossRef]
- Rahim, M.F.; Pal, D.; Ariya, P.A. Physicochemical studies of aerosols at Montreal Trudeau Airport: The importance of airborne nanoparticles containing metal contaminants. Enviton. Poll. 2019, 246, 734–744. [Google Scholar] [CrossRef] [PubMed]
- Massas, I.; Gasparatos, D.; Ioannou, D.; Kalivas, D. Signs for secondary build up of heavy metals in soils at the periphery of Athens International Airport, Greece. Environ. Sci. Poll. Res. 2018, 25, 658–671. [Google Scholar] [CrossRef] [PubMed]
- Ozkurt, N.; Sari, D.; Akdag, A.; Kutukoglu, M.; Gurarslan, A. Modeling of noise pollution and estimated human exposure around İstanbul Atatürk Airport in Turkey. Sci. Total Environ. 2014, 482, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Janić, M. Aviation and externalities: The accomplishments and problems. Transport. Res. D Trans. Environ. 1999, 4, 159–180. [Google Scholar] [CrossRef]
- Massas, I.; Ioannou, D.; Kalivas, D.; Gasparatos, D. Distribution of heavy metals concentrations in soils around the international Athens airport (Greece). An assessment on preliminary data. Bull. Geol. Soc. Greece 2016, 50, 2231–2240. [Google Scholar] [CrossRef] [Green Version]
- Brtnický, M.; Pecina, V.; Galiová, M.V.; Prokeš, L.; Zvěřina, O.; Juřička, D.; Klimánek, M.; Kynický, J. The impact of tourism on extremely visited volcanic island: Link between environmental pollution and transportation modes. Chemosphere 2020, 126118. [Google Scholar] [CrossRef]
- Xie, Y.; Fan, J.; Zhu, W.; Amombo, E.; Lou, Y.; Chen, L.; Fu, J. Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation. Front. Plant Sci. 2016, 7, 755. [Google Scholar] [CrossRef]
- Amari, T.; Ghnaya, T.; Abdelly, C. Nickel, cadmium and lead phytotoxicity and potential of halophytic plants in heavy metal extraction. S. Afr. J. Bot. 2017, 111, 99–110. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Q.; Deng, M.; Japenga, J.; Li, T.; Yang, X.; He, Z. Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. J. Environ. Manag. 2018, 207, 159–168. [Google Scholar] [CrossRef]
- Rao, P.; Zhu, A.; Yao, W.; Zhang, W.; Men, Y.; Ding, G. Sources and risk assessment of metal contamination in soils at the international airport of Shanghai, China. Tox. Environ. Chem. 2015, 96, 1153–1161. [Google Scholar] [CrossRef]
- Warsaw Chopin Airport, Historia Lotniska Chopina. Available online: https://www.lotnisko-chopina.pl/pl/historia.html (accessed on 13 February 2020).
- Ray, S.; Khillare, P.S.; Kim, K.H. The effect of aircraft traffic emissions on the soil surface contamination analysis around the international airport in Delhi, India. Asian J. Atmos. Environ. 2012, 6, 118–126. [Google Scholar] [CrossRef] [Green Version]
- ISO 10390 Soil Quality—Determination of pH, second ed. 2005. SO/TC 190/SC 3. Chemical Methods and Soil Characteristics. 2005. Available online: https://www.iso.org/standard/40879.html (accessed on 21 March 2020).
- Phytotoxkit. Seed Germination and Early Growth Microbiotest with Higher Plants. Standard Operation Procedure; MicroBioTests Inc.: Nazareth, Belgium, 2004; pp. 1–24. [Google Scholar]
- Voběrková, S.; Vaverková, M.D.; Burešová, A.; Adamcová, D.; Vršanská, M.; Kynický, J.; Brtnický, M.; Adam, V. Effect of inoculation with white-rot fungi and fungal consortium on the composting efficiency of municipal solid waste. Waste Manag. 2017, 61, 157–164. [Google Scholar] [CrossRef]
- Radziemska, M.; Vaverková, M.D.; Adamcová, D.; Brtnický, M.; Mazur, Z. Valorization of fish waste compost as a fertilizer for agricultural use. Waste. Biom. Valor. 2019, 10, 2537–2545. [Google Scholar] [CrossRef] [Green Version]
- Müller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Kowalska, J.B.; Mazurek, R.; Gąsiorek, M.; Zaleski, T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environ. Geochem.Health 2018, 40, 2395–2420. [Google Scholar] [CrossRef] [Green Version]
- Czarnowska, K.; Gworek, B.; Kozanecka, T.; Latuszek, B.; Szafranska, E. Heavy metals content in soils as indicator of urbanization. Pol. Ecol. Stud. 1983, 9, 63–79. [Google Scholar]
- Pichtel, J.; Sawyerr, H.T.; Czarnowska, K. Spatial and temporal distribution of metals in soils in Warsaw, Poland. Environ. Poll. 1997, 98, 169–174. [Google Scholar] [CrossRef]
- Lis, J.; Pasieczna, A. Geochemical Atlas of Poland (Atlas Geochemiczny Polski); The Polish Geological Institute: Warsaw, Poland, 1995. (In Polish) [Google Scholar]
- Gąsiorek, M.; Kowalska, J.; Mazurek, R.; Pająk, M. Comprehensive assessment of heavy metal pollution in topsoil of historical urban park on an example of the Planty Park in Krakow (Poland). Chemosphere 2017, 179, 148–158. [Google Scholar] [CrossRef]
- VROM. Circular on Target Values and Intervention Values for SOIL Remediation; Dutch Ministry of Housing Spatial Planning and Environment (VROM): The Hague, The Netherlands, 2013.
- Håkanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Qing, X.; Yutong, Z.; Shenggao, L. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotox. Environ. Safe. 2015, 120, 377–385. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: http://www.R-project.org/ (accessed on 26 March 2020).
- RStudio Team RStudio. Integrated Development for R; RStudio, Inc.: Boston, MA, USA, 2015; Available online: http://www.rstudio.com/ (accessed on 26 March 2020).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Peterson, B.G.; Carl, P. PerformanceAnalytics: Econometric Tools for Performance and Risk Analysis. R Package Version 2.0.4. Available online: https://CRAN.R-project.org/package=PerformanceAnalytics (accessed on 26 March 2020).
- Zar, J.H. Biostatistical Analysis, 2nd ed.; Prentice-Hall: London, UK, 1984. [Google Scholar]
- Beaujean, A.A. BaylorEdPsych: R Package for Baylor University Educational Psychology Quantitative Courses. R Package Version 0.5. Available online: https://CRAN.R-project.org/package=BaylorEdPsych (accessed on 26 March 2020).
- Faraway, J.J. Linear Models with R; Chapman & Hall/CRC: Boca Raton, FL, USA, 2005; 229p, ISBN 1-58488-425-8. [Google Scholar]
- Pekár, S.; Brabec, M. Modern Analysis of Biological Data. In Generalized Linear Models in R; Masaryk University Press: Brno, Czech Republic, 2016; p. 226. ISBN 978-80-210-8019-5. [Google Scholar]
- Grömping, U. Relative Importance for Linear Regression in R. The Package relaimpo. J. Stat. Softw. 2006, 17, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Jacoby, W.G. LOESS: A nonparametric, graphical tool for depicting relationships between variables. Electoral Stud. 2000, 19, 577–613. [Google Scholar] [CrossRef]
- Gross, J.; Ligges, U. Nortest: Tests for Normality. R package Version 1.0-4. Available online: http://CRAN.R-project.org/package=nortest (accessed on 26 March 2020).
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage Publications: Thousand Oaks, CA, USA, 2019; Available online: https://socialsciences.mcmaster.ca/jfox/Books/Companion/ (accessed on 26 March 2020).
- Komsta, L.; Novomestky, F. Moments: Moments, Cumulants, Skewness, Kurtosis and Related Tests. R package Version 0.14. Available online: https://CRAN.R-project.org/package=moments (accessed on 26 March 2020).
- Komsta, L. Outliers: Tests for Outliers. R Package Version 0.14. Available online: https://CRAN.R-project.org/package=outliers (accessed on 26 March 2020).
- Zeileis, A.; Hothorn, T. Diagnostic Checking in Regression Relationships. R News 2002, 2, 7–10. Available online: https://CRAN.R-project.org/doc/Rnew/ (accessed on 26 March 2020).
- Faraway, J. faraway: Functions and Datasets for Books by Julian Faraway. R Package Version 1.0.7. Available online: https://CRAN.R-project.org/package=faraway (accessed on 26 March 2020).
- Imdad, M.U.; Aslam, M. Mctest: Multicollinearity Diagnostic Measures. Available online: https://CRAN.R-project.org/package=mctest (accessed on 26 March 2020).
- Imdad, M.U.; Aslam, M.; Altaf, S.; Ahmed, M. Some New Diagnostics of Multicollinearity in Linear Regression Model. Sains Malays. 2019, 48, 2051–2060. [Google Scholar] [CrossRef]
- Imdadullah, M.; Aslam, M.; Altaf, S. Mctest: An R Package for detection of collinearity among regressors. R J. 2016, 8, 499–509. Available online: https://journal.r-project.org/archive/2016/RJ-2016-062/index.html (accessed on 26 March 2020). [CrossRef]
- Unal, A.; Hu, Y.; Chang, M.E.; Odman, M.T.; Russell, A.G. Airport related emissions and impacts on air quality: Application to the Atlanta International Airport. Atm. Environ. 2005, 39, 5787–5798. [Google Scholar] [CrossRef]
- Regulation of the Minister of the Environment. Regulation of the Minister of the Environment Dated 1 September 2016 on Procedures of Pollution Assessment for the Land Surface; (Republic of Poland, Journal of Laws of 2016, No. 1, Item 1395); The Minister of the Environment: Wawelska, Poland, 2016.
- Mazaheri, M.; Bostrom, T.E.; Johnson, G.R.; Morawska, L. Composition and morphology of particle emissions from in-use aircraft during takeoff and landing. Environ. Sci. Technol. 2013, 47, 5235–5242. [Google Scholar] [CrossRef] [Green Version]
- Turgut, E.T.; Gaga, E.O.; Jovanović, G.; Odabasi, M.; Artun, G.; Ari, A.; Urošević, M.A. Elemental characterization of general aviation aircraft emissions using moss bags. Environ. Sci. Poll. Res. 2019, 26, 26925–26938. [Google Scholar] [CrossRef]
- Kesgin, U. Aircraft emissions at Turkish airports. Energy 2006, 31, 372–384. [Google Scholar] [CrossRef]
- Skorupski, J. Airport operations safety assessment with the use of colored Petri nets. In Safety and Reliability of Complex Engineered Systems, Proceedings of the 25th European Safety and Reliability Conference, Zürich, Switzerland, 7–10 September 2015; CRC Press: Boca Raton, FL, USA; Taylor & Francis: Abingdon, UK, 2015. [Google Scholar]
- Boeing Okecie (Warsaw Frederic Chopin) Airport. The Boeing Company. 2020. Available online: http://www.boeing.com/resources/boeingdotcom/commercial/noise/okecie.html (accessed on 18 May 2020).
- Zhu, Y.; Fanning, E.; Yu, R.C.; Zhang, Q.; Froines, J.R. Aircraft emissions and local air quality impacts from takeoff activities at a large International Airport. Atm. Environ. 2011, 45, 6526–6533. [Google Scholar] [CrossRef]
- He, R.W.; Shirmohammadi, F.; Gerlofs-Nijland, M.E.; Sioutas, C.; Cassee, F.R. Pro-inflammatory responses to PM0.25 from airport and urban traffic emissions. Sci. Total Environ. 2018, 640, 997–1003. [Google Scholar] [CrossRef]
- Amato, F.; Moreno, T.; Pandolfi, M.; Querol, X.; Alastuey, A.; Delgado, A.; Pedrero, M.; Cots, N. Concentrations, sources and geochemistry of airborne particulate matter at a major European airport. J. Environ. Monit. 2010, 12, 854–862. [Google Scholar] [CrossRef] [Green Version]
- Bennett, M.; Christie, S.M.; Graham, A.; Thomas, B.S.; Vishnyakov, V.; Morris, K.; Peters, D.M.; Jones, R.; Ansell, C. Composition of smoke generated by landing aircraft. Environ. Sci. Technol. 2011, 45, 3533–3538. [Google Scholar] [CrossRef]
- Valotto, G.; Zannoni, D.; Rampazzo, G.; Visin, F.; Formenton, G.; Gasparello, A. Characterization and preliminary risk assessment of road dust collected in Venice airport (Italy). J. Geochem. Exp. 2018, 190, 142–153. [Google Scholar] [CrossRef]
- Mander, Ü.; Kull, A.; Frey, J. Residual Cadmium and Lead Pollution at a Former Soviet Military Airfield in Tartu, Estonia. In Biogeochemical Investigations of Terrestrial, Freshwater, and Wetland Ecosystems across the Globe; Wieder, R.K., Novák, M., Vile, M.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Calijuri, M.L.; da Fonseca Santiago, A.; Neto, R.F.M.; de Castro Carvalho, I. Evaluation of the ability of a natural wetland to remove heavy metals generated by runways and other paved areas from an airport complex in Brazil. Water Air Soil Poll. 2011, 219, 319–327. [Google Scholar] [CrossRef]
- Shahzad, B.; Tanveer, M.; Rehman, A.; Cheema, S.A.; Fahad, S.; Rehman, S.; Sharma, A. Nickel; whether toxic or essential for plants and environment—A review. Plant Phys. Biochem. 2018, 132, 641–651. [Google Scholar] [CrossRef]
- Sreekanth, T.V.M.; Nagajyothi, P.C.; Lee, K.D.; Prasad, T.N.V.K.V. Occurrence, physiological responses and toxicity of nickel in plants. Int. J. Environ. Sci. Technol. 2013, 10, 1129–1140. [Google Scholar] [CrossRef] [Green Version]
- Lawton, R.N.; Fujiwara, D. Living with aircraft noise: Airport proximity, aviation noise and subjective wellbeing in England. Transport. Res. D Trans. Environ. 2016, 42, 104–118. [Google Scholar] [CrossRef]
- Postorino, M.N.; Mantecchini, L.A. systematic approach to assess the effectiveness of airport noise mitigation strategies. J. Air Trans. Manag. 2016, 50, 71–82. [Google Scholar] [CrossRef]
Cu | Ni | Pb | Zn | IPIN | |||||
---|---|---|---|---|---|---|---|---|---|
C | Igeo | C | Igeo | C | Igeo | C | Igeo | ||
Mean | 14.0 | 0.23 | 8.83 | 0.08 | 64.2 | 0.79 | 152 | 1.16 | 1.04 |
SEM a | 1.33 | 0.13 | 0.69 | 0.09 | 9.65 | 0.12 | 34.5 | 0.23 | 0.19 |
S.D. b | 9.19 | 0.88 | 4.77 | 0.65 | 66.9 | 0.82 | 239 | 1.58 | 1.29 |
Minimum | 2.58 | −1.89 | 3.67 | −1.03 | 22.3 | −0.43 | 3.96 | −3.24 | 0.24 |
Lower Quartile (25%) | 7.47 | −0.36 | 5.83 | −0.36 | 36.3 | 0.28 | 48.3 | 0.37 | 0.42 |
Median (50%) | 10.3 | 0.05 | 8.35 | 0.15 | 45.6 | 0.60 | 87.1 | 1.22 | 0.62 |
Upper Quartile (75%) | 18.3 | 0.90 | 10.9 | 0.53 | 75.6 | 1.33 | 186 | 2.31 | 1.10 |
Maximum | 41.3 | 2.10 | 32.6 | 2.12 | 473 | 3.98 | 1581 | 5.40 | 8.27 |
Background | 6.4 c | 5 d | 20 c | 25 a | |||||
Limit PL e | 200 | 150 | 200 | 500 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brtnický, M.; Pecina, V.; Baltazár, T.; Vašinová Galiová, M.; Baláková, L.; Bęś, A.; Radziemska, M. Environmental Impact Assessment of Potentially Toxic Elements in Soils Near the Runway at the International Airport in Central Europe. Sustainability 2020, 12, 7224. https://doi.org/10.3390/su12177224
Brtnický M, Pecina V, Baltazár T, Vašinová Galiová M, Baláková L, Bęś A, Radziemska M. Environmental Impact Assessment of Potentially Toxic Elements in Soils Near the Runway at the International Airport in Central Europe. Sustainability. 2020; 12(17):7224. https://doi.org/10.3390/su12177224
Chicago/Turabian StyleBrtnický, Martin, Václav Pecina, Tivadar Baltazár, Michaela Vašinová Galiová, Ludmila Baláková, Agnieszka Bęś, and Maja Radziemska. 2020. "Environmental Impact Assessment of Potentially Toxic Elements in Soils Near the Runway at the International Airport in Central Europe" Sustainability 12, no. 17: 7224. https://doi.org/10.3390/su12177224
APA StyleBrtnický, M., Pecina, V., Baltazár, T., Vašinová Galiová, M., Baláková, L., Bęś, A., & Radziemska, M. (2020). Environmental Impact Assessment of Potentially Toxic Elements in Soils Near the Runway at the International Airport in Central Europe. Sustainability, 12(17), 7224. https://doi.org/10.3390/su12177224