Analysis of Possibility to Apply Preharvest 1-Methylcyclopropene (1-MCP) Treatment to Delay Harvesting of Red Jonaprince Apples
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Procedures
2.2. Measurements
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eurostat. Two-thirds of the EU’s fruit plantation area is concentrated in Spain, Italy and Poland. In Eurostat Newsrelease; Eurostat: Brussels, Belgium, 2019; Volume 32, pp. 1–4. [Google Scholar]
- Niszczota, S. Horticultural production orchard survey in 2017. Inf. Syg. 2018, 30, 1–10. (In Polish) [Google Scholar]
- Adamczyk, M.; Rembiałkowska, E.; Wasiak-Zys, G. The comparison of sensory quality of apples from organic and conventional production and after storage. Zywn.-Nauka Technol. Jakosc 2006, 2, 11–19. (In Polish) [Google Scholar]
- European Union. No 543/2011 of 7 June 2011 Laying Down Detailed Rules for the Application of Council Regulation (EC) No 1234/2007 in Respect of the Fruit and Vegetables and Processed Fruit and Vegetables Sectors; Commission Implementing Regulation (EU): Brussels, Belgium, 2011. [Google Scholar]
- Krautgartner, R.; De Belder, T.; Lieberz, S.; Pinckaers, M.; Bettini, O.; The Group of FAS Fruit Specialists in the EU. Fresh Deciduous Fruit Annual. Report Number: E42019-0030. Available online: https://agfstorage.blob.core.windows.net/misc/FP_com/2019/11/04/EUApple2019.pdf (accessed on 17 April 2020).
- Poland Increases Red Jonaprince Apples Production. Available online: http://www.blackseagrain.net/novosti/poland-increases-red-jonaprince-apples-production. (accessed on 17 April 2020).
- Kviklysd, D.; Kviklienė, N.; Ūselis, N. Suitability of ‘Jonagold’ apple clones for commercial growing in Lithuania. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2013, 67, 215–218. [Google Scholar] [CrossRef]
- Csihon, Á.; Gonda, I. Fruit coloration of apple cultivars. Int. J. Hortic. Sci. 2016, 22, 11–14. [Google Scholar] [CrossRef]
- Podbielska, M.; Szpyrka, E.; Piechowicz, B.; Zwolak, A.; Sadło, S. Behavior of fluopyram and tebuconazole and some selected pesticides in ripe apples and consumer exposure assessment in the applied crop protection framework. Environ. Monit. Assess. 2017, 189, 350. [Google Scholar] [CrossRef] [PubMed]
- Skendrović Babojelić, M.; Keškić, J.; Vuković, D.T.; Mihaljević, I.; Šic Žlabur, J.; Antolković, A.M.; Silovski, Z. Influence of reflective groundcover on physico-chemical properties of ‘Wilton’s ®Red Jonaprince’ apples. Pomolog. Croat. 2019, 23, 25–40. [Google Scholar] [CrossRef]
- Błaszczyk, J.; Gasparski, K. Influence of 1-methylocyclopropene (1-MCP) on the quality and storability of ‘Red Jonaprince’ apples stored in different conditions. Acta Sci. Pol. Hortoru. 2019, 18, 7–15. [Google Scholar] [CrossRef]
- Yuan, R.; Carbaugh, D.H. Effects of NAA, AVG, and 1-MCP on ethylene biosynthesis, preharvest fruit drop, Fruit maturity, and quality of ‘Golden Supreme’ and ‘Golden Delicious’ apples. HortScience 2007, 42, 101–105. [Google Scholar] [CrossRef]
- Tomala, K.; Grzęda, M.; Guzek, D.; Głąbska, D.; Gutkowska, K. The effects of preharvest 1-methylcyclopropene (1-mcp) treatment on the fruit quality parameters of cold-stored ‘Szampion’ cultivar apples. Agriculture 2020, 10, 80. [Google Scholar] [CrossRef]
- Zucoloto, M.; Ku, K.-M.; Kim, M.J.; Kushad, M.M. Influence of 1-Methylcyclopropene treatment on postharvest quality of four scab (Venturia inaequalis)-Resistant apple cultivars. J. Food Qual. 2017, 2017, 1–12. [Google Scholar] [CrossRef]
- Watkins, C.B.; James, H.; Nock, J.F.; Reed, N.; Oakes, R.L. Preharvest application of 1-methylcyclopropene (1-mcp) to control fruit drop of apples, and its effects on postharvest quality. Acta Hortic. 2010, 877, 365–374. [Google Scholar] [CrossRef]
- DeLong, J.M.; Prange, R.K.; Leyte, J.C.; Harrison, P.A. A new technology that determines low-oxygen thresholds in controlled-atmosphere-stored apples. HortTechnology 2004, 14, 262–266. [Google Scholar] [CrossRef]
- Łysiak, G. Measurement of ethylene production as a method for determining the optimum harvest date of ‘Jonagored’ apples. Folia Hortic. 2014, 26, 117–124. [Google Scholar] [CrossRef]
- Brookfield, P.; Murphy, P.; Harker, R.; MacRae, E. Starch degradation and starch pattern indices; interpretation and relationship to maturity. Postharvest Biol. Technol. 1997, 11, 23–30. [Google Scholar] [CrossRef]
- Streif, J. Optimum harvest date for different apple cultivars in the ‘Bodensee’ area. In Determination and Prediction of Optimum Harvest Date of Apples and Pears: Proceedings of a Meeting of the Working Group on Optimum Harvest Date; de Jager, A., Johnson, D., Hohn, E., Eds.; European Commission: Brussels, Belgium, 1996; pp. 15–20. [Google Scholar]
- Sakhale, B.K.; Gaikwad, S.S.; Chavan, R.F. Application of 1-methylcyclopropene on mango fruit (Cv. Kesar): Potential for shelf life enhancement and retention of quality. J. Food Sci. Technol. 2017, 55, 776–781. [Google Scholar] [CrossRef]
- Hofman, P.J.; Jobin Décor, M.; Meiburg, G.F.; Macnish, A.J.; Joyce, D.C. Ripening and quality responses of avocado, custard apple, mango and papaya fruit to 1-methylcyclopropene. Aust. J. Exp. Agric. 2001, 41, 567–572. [Google Scholar] [CrossRef]
- Zhu, X.; Shen, L.; Fu, D.; Si, Z.; Wu, B.; Chen, W.; Li, X. Effects of the combination treatment of 1-MCP and ethylene on the ripening of harvested banana fruit. Postharvest Biol. Technol. 2015, 107, 23–32. [Google Scholar] [CrossRef]
- Leskovar, D.L.; Agehara, S.; Goreta Ban, S. 1-MCP preharvest spray application to synchronize harvest and improve fruit quality of cantaloupe. HortScience 2006, 41. [Google Scholar] [CrossRef]
- Villalobos-Acuna, M.G.; Biasi, W.V.; Flores, S.; Mitcham, E.J. Preharvest application of 1-Methylcyclopropene influences fruit drop and storage potential of ‘Bartlett’ pears. HortScience 2010, 45, 610–616. [Google Scholar] [CrossRef]
- Wrzodak, A.; Gajewski, M. Effect of 1-MCP treatment on storage potential of tomato fruit. J. Hortic. Res. 2015, 23, 121–126. [Google Scholar] [CrossRef]
- Watkins, C.B. Overview of 1-Methylcyclopropene trials and uses for edible horticultural crops. HortScience 2008, 43, 86–94. [Google Scholar] [CrossRef]
- Sabban-Amin, R.; Feygenberg, O.; Belausov, E.; Pesis, E. Low oxygen and 1-MCP pretreatments delay superficial scald development by reducing reactive oxygen species (ROS) accumulation in stored ‘Granny Smith’ apples. Postharvest Biol. Technol. 2011, 62, 295–304. [Google Scholar] [CrossRef]
- Ozkaya, O.; Dündar, Ö. Influence of 1-methylcyclopropene (1-MCP) on ‘Fuji’ apple quality during long-term storage. J. Food Agric. Environ. 2009, 7, 146–148. [Google Scholar]
- Elfving, D.C.; Drake, S.R.; Reed, A.; Visser, D.B. Preharvest applications of sprayable 1-methylcyclopropene in the orchard for management of apple harvest and postharvest condition. HortScience 2007, 42, 1192–1199. [Google Scholar] [CrossRef]
- Lee, J.; Kang, I.-K.; Nock, J.F.; Watkins, C.B. Effects of preharvest and postharvest applications of 1-Methylcyclopropene on fruit quality and physiological disorders of ‘Fuji’ apples during storage at warm and cold Temperatures. HortScience 2019, 54, 1375–1383. [Google Scholar] [CrossRef]
- Yoo, J.; Kim, D.H.; Lee, J.; Choi, D.G.; Han, J.S.; Kwon, S.I.; Kweon, H.J.; Kang, I.K. Effect of preharvest sprayable 1-Methylcyclopropene (1-MCP) treatment on fruit quality attributes in cold stored ‘Gamhong’ apples. Prot. Hortic. Plant Fact. 2013, 22, 279–283. [Google Scholar] [CrossRef]
- Rutkowski, K.P.; Michalczuk, B.; Konopacki, P. Nondestructive determination of ‘Golden Delicious’ apple quality and harvest maturity. J. Fruit Orn. Plant. Res. 2008, 16, 39–52. [Google Scholar]
- Watkins, C.B.; Nock, J.F. The effects of ReTain, Harvista, and NAA on the quality of ‘Mcintosh’ apples. In Proceeding of the 2013 ASHS Annual Conference, Palm Desert, CA, USA, 22–25 July 2013. [Google Scholar]
- Doerflinger, F.C.; Sutanto, G.; Nock, J.F.; Shoffe, Y.A.; Zhang, Y.; Watkins, C.B. Stem-end flesh browning of ‘Gala’ apples is decreased by preharvest 1-MCP (Harvista) and conditioning treatments. Fruit Quar. 2017, 25, 9–14. [Google Scholar]
- Nicola, M.; Alsafi, Z.; Sohrabi, C.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, M.; Agha, R. The socio-economic implications of the coronavirus and COVID-19 pandemic: A review. Int. J. Surg. 2020, 16. [Google Scholar] [CrossRef]
- Abu-Goukh, A.B. 1-Methylcyclopropene (1-MCP) a breakthrough to delay ripening and extend shelf-life of horticultural crops. Univ. Khartoum J. Agric. Sci. 2013, 21, 170–196. [Google Scholar]
Assessment | No preharvest 1-MCP Treatment | Preharvest 1-MCP Treatment | p-Value | ||
---|---|---|---|---|---|
Mean ± SD | Median (Range) | Mean ± SD | Median (Range) | ||
First preharvest | 69.2 ± 1.0 | 69.5 (67.8–70.0) | 69.8 ± 1.2 | 69.4 (68.9–71.4) | 0.4631 |
Second preharvest | 70.5 ± 2.2 | 70.2 (68.2–73.4) | 67.8 ± 2.3 | 67.8 (65.7–69.9) | 0.1368 |
Third preharvest | 66.5 ± 0.6 | 66.6 (65.7–67.2) | 67.2 ± 2.4 | 67.8 (63.8–69.2) | 0.6275 |
Fourth preharvest | 67.8 ± 2.3 | 67.0 (66.3–71.1) | 67.9 ± 0.8 | 67.8 (67.1–69.1) | 0.9363 |
Fifth preharvest | 63.4 ± 0.3 | 63.4 (63.0–63.8) | 65.9 ± 0.4 | 65.8 (65.5–66.4) | <0.0001 |
Harvesting in optimum harvesting window | |||||
First postharvest | 67.5 ± 2.7 | 67.3 * (64.4–71.0) | 69.4 ± 2.1 | 69.4 (67.5–71.2) | 0.0833 |
Second postharvest | 60.1 ± 3.8 | 61.4 (54.5–63.1) | 70.1 ± 1.7 | 70.3 (68.2–71.8) | 0.0029 |
Third postharvest | 62.5 ± 2.4 | 62.8 (59.4–65.2) | 70.4 ± 2.4 | 70.4 (67.6–73.4) | 0.0034 |
Delayed harvesting | |||||
First postharvest | 54.5 ± 1.0 | 54.5 (53.4–55.4) | 61.9 ± 1.4 | 61.5 (60.6–63.9) | 0.0001 |
Second postharvest | 56.6 ± 4.8 | 55.8 (51.7–63.3) | 61.9 ± 5.0 | 61.9 (57.2–66.5) | 0.1828 |
Third postharvest | 45.5 ± 4.4 | 45.1 (41.3–50.6) | 63.1 ± 0.6 | 63.4 (62.3–63.5) | 0.0002 |
Assessment | No preharvest 1-MCP Treatment | Preharvest 1-MCP Treatment | p-Value | ||
---|---|---|---|---|---|
Mean ± SD | Median (Range) | Mean ± SD | Median (Range) | ||
First preharvest | 12.8 ± 0.5 | 12.8 (12.2–13.4) | 12.9 ± 0.2 | 12.9 * (12.7–13.1) | 1.0000 |
Second preharvest | 13.7 ± 0.2 | 13.7 (13.4–13.9) | 13.4 ± 0.2 | 13.4 (13.2–13.6) | 0.0871 |
Third preharvest | 13.3 ± 0.3 | 13.3 (12.9–13.5) | 13.2 ± 0.3 | 13.1 (13.0–13.7) | 0.0293 |
Fourth preharvest | 13.6 ± 0.2 | 13.5 (13.4–13.8) | 13.1 ± 0.4 | 13.1 (12.7–13.5) | 0.0659 |
Fifth preharvest | 14.2 ± 0.3 | 14.1 (13.9–14.5) | 13.7 ± 0.4 | 13.8 * (13.2–14.1) | 0.1123 |
Harvesting in optimum harvesting window | |||||
First postharvest | 13.7 ± 0.4 | 13.6 (13.3–14.2) | 13.2 ± 1.1 | 13.1 (12.0–14.5) | 0.4447 |
Second postharvest | 12.9 ± 0.2 | 12.9 (12.6–13.1) | 12.9 ± 0.4 | 12.8 (12.6–13.5) | 0.9190 |
Third postharvest | 13.7 ± 1.0 | 13.6 (12.7–14.7) | 13.5 ± 0.6 | 13.5 (12.7–14.1) | 0.7437 |
Delayed harvesting | |||||
First postharvest | 13.2 ± 0.5 | 13.4 (12.5–13.7) | 13.6 ± 0.6 | 13.6 (12.9–14.2) | 0.3809 |
Second postharvest | 13.4 ± 0.5 | 13.2 (13.1–14.1) | 13.7 ± 0.2 | 13.7 * (13.5–14.0) | 0.2454 |
Third postharvest | 13.0 ± 0.5 | 13.0 (12.4–13.5) | 12.9 ± 0.3 | 12.8 (12.6–13.3) | 0.7985 |
Assessment | No preharvest 1-MCP Treatment | Preharvest 1-MCP Treatment | p-Value | ||
---|---|---|---|---|---|
Mean ± SD | Median (Range) | Mean ± SD | Median (Range) | ||
First preharvest | 0.608 ± 0.058 | 0.622 (0.528–0.663) | 0.616 ± 0.026 | 0.614 (0.591–0.644) | 0.8262 |
Second preharvest | 0.556 ± 0.009 | 0.552 (0.549–0.569) | 0.602 ± 0.025 | 0.595 (0.579–0.638) | 0.0133 |
Third preharvest | 0.581 ± 0.020 | 0.586 (0.555–0.596) | 0.642 ± 0.040 | 0.637 (0.607–0.688) | 0.0340 |
Fourth preharvest | 0.518 ± 0.054 | 0.507 (0.467–0.589) | 0.610 ± 0.017 | 0.611 (0.591–0.627) | 0.0170 |
Fifth preharvest | 0.568 ± 0.016 | 0.566 (0.552–0.590) | 0.555 ± 0.032 | 0.542 (0.534–0.603) | 0.4957 |
Harvesting in optimum harvesting window | |||||
First postharvest | 0.548 ± 0.033 | 0.539 (0.520–0.596) | 0.527 ± 0.061 | 0.542 (0.441–0.582) | 0.5616 |
Second postharvest | 0.465 ± 0.014 | 0.463 (0.451–0.483) | 0.485 ± 0.066 | 0.498 (0.395–0.549) | 0.5752 |
Third postharvest | 0.387 ± 0.019 | 0.392 (0.362–0.403) | 0.429 ± 0.012 | 0.432 (0.413–0.440) | 0.0100 |
Delayed harvesting | |||||
First postharvest | 0.400 ± 0.051 | 0.399 (0.353–0.450) | 0.477 ± 0.058 | 0.475 (0.416–0.541) | 0.0960 |
Second postharvest | 0.380 ± 0.053 | 0.397 (0.302–0.423) | 0.408 ± 0.017 | 0.411 (0.386–0.425) | 0.3426 |
Third postharvest | 0.283 ± 0.024 | 0.291 (0.248–0.301) | 0.372 ± 0.014 | 0.374 (0.354–0.387) | 0.0007 |
Assessment | No Preharvest 1-MCP Treatment | Preharvest 1-MCP Treatment | p-Value | ||
---|---|---|---|---|---|
Mean ± SD | Median (Range) | Mean ± SD | Median (Range) | ||
First preharvest | 0.165 ± 0.156 | 0.115 * (0.052–0.861) | 0.153 ± 0.161 | 0.105 * (0.050–0.842) | 0.1744 |
Second preharvest | 0.281 ± 0.444 | 0.109 * (0.061–2.030) | 0.236 ± 0.337 | 0.123 * (0.020–1.420) | 0.9440 |
Third preharvest | 0.138 ± 0.112 | 0.113 * (0.053–0.710) | 0.142 ± 0.046 | 0.135 (0.055–0.287) | 0.0431 |
Fourth preharvest | 1.563 ± 3.596 | 0.309 * (0.020–20.200) | 0.114 ± 0.155 | 0.063 * (0.010–0.898) | <0.0001 |
Fifth preharvest | 5.751 ± 12.343 | 0.710 * (0.051–68.400) | 0.759 ± 1.800 | 0.201 * (0.065–8.180) | <0.0001 |
Assessment | No preharvest 1-MCP Treatment | Preharvest 1-MCP Treatment | p-Value | ||
---|---|---|---|---|---|
Mean ± SD | Median (Range) | Mean ± SD | Median (Range) | ||
First preharvest | 6.9 ± 1.7 | 7 * (3–9) | 6.8 ± 1.8 | 7 * (4–9) | 0.8286 |
Second preharvest | 9.1 ± 1.3 | 9.5 * (5–10) | 9.1 ± 1.1 | 9 * (6–10) | 0.8367 |
Third preharvest | 9.5 ± 1.5 | 10 * (1–10) | 9.7 ± 0.6 | 10 * (8–10) | 0.9578 |
Fourth preharvest | 10 ± 0.0 | 10 * (10–10) | 9.4 ± 1.5 | 10 * (1–10) | 0.0146 |
Fifth preharvest | 10 ± 0.0 | 10 * (10–10) | 9.9 ± 0.3 | 10 * (9–10) | 0.5637 |
Assessment | No Preharvest 1-MCP Treatment | Preharvest 1-MCP Treatment | p-Value | ||
---|---|---|---|---|---|
Mean ± SD | Median (Range) | Mean ± SD | Median (Range) | ||
First preharvest | 0.079 ± 0.003 | 0.079 (0.076–0.082) | 0.080 ± 0.006 | 0.079 (0.075–0.088) | 0.6913 |
Second preharvest | 0.057 ± 0.004 | 0.058 (0.052–0.060) | 0.056 ± 0.002 | 0.056 (0.053–0.057) | 0.4939 |
Third preharvest | 0.053 ± 0.003 | 0.052 (0.050–0.058) | 0.052 ± 0.002 | 0.053 (0.050–0.054) | 0.8103 |
Fourth preharvest | 0.050 ± 0.002 | 0.050 (0.048–0.053) | 0.055 ± 0.002 | 0.054 (0.053–0.059) | 0.0144 |
Fifth preharvest | 0.045 ± 0.001 | 0.045 (0.044–0.046) | 0.048 ± 0.001 | 0.048 (0.047–0.050) | 0.0140 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomala, K.; Grzęda, M.; Guzek, D.; Głąbska, D.; Gutkowska, K. Analysis of Possibility to Apply Preharvest 1-Methylcyclopropene (1-MCP) Treatment to Delay Harvesting of Red Jonaprince Apples. Sustainability 2020, 12, 4575. https://doi.org/10.3390/su12114575
Tomala K, Grzęda M, Guzek D, Głąbska D, Gutkowska K. Analysis of Possibility to Apply Preharvest 1-Methylcyclopropene (1-MCP) Treatment to Delay Harvesting of Red Jonaprince Apples. Sustainability. 2020; 12(11):4575. https://doi.org/10.3390/su12114575
Chicago/Turabian StyleTomala, Kazimierz, Marek Grzęda, Dominika Guzek, Dominika Głąbska, and Krystyna Gutkowska. 2020. "Analysis of Possibility to Apply Preharvest 1-Methylcyclopropene (1-MCP) Treatment to Delay Harvesting of Red Jonaprince Apples" Sustainability 12, no. 11: 4575. https://doi.org/10.3390/su12114575
APA StyleTomala, K., Grzęda, M., Guzek, D., Głąbska, D., & Gutkowska, K. (2020). Analysis of Possibility to Apply Preharvest 1-Methylcyclopropene (1-MCP) Treatment to Delay Harvesting of Red Jonaprince Apples. Sustainability, 12(11), 4575. https://doi.org/10.3390/su12114575