Evaluation and Influencing Factors of Sustainable Development Capability of Agriculture in Countries along the Belt and Road Route
Abstract
:1. Introduction
2. Literature Review
2.1. Evaluation of Sustainable Development of Agriculture
2.2. Research Methods
2.3. Influencing Factors on Sustainable Development of Agriculture
3. Index System of Sustainable Development Capability of Agriculture
3.1. Study Area
3.2. Construction of Index System
4. Comprehensive Evaluation of Sustainable Development Capability of Agriculture
4.1. Data Sources
4.2. Evaluation Methods
4.2.1. Improved Entropy Weight Method
- (1)
- The standardized processing of raw data:
- (2)
- The translation processing of standardized data:
- (3)
- The calculation of index weight of :
- (4)
- The calculation of the entropy value of the index:
- (5)
- The calculation of the entropy weight of the index:
- (6)
- The calculation of the index weight included in each subsystem:
4.2.2. TOPSIS
4.3. Spatial and Temporal Analysis of Sustainable Development of Agriculture
4.3.1. Analysis Based on Time Dimension
4.3.2. Analysis Based on Spatial Dimension
5. Coordination Degree among Agricultural Subsystems
6. Influencing Factors of Sustainable Development Capability of Agriculture
6.1. Variable Selection
6.1.1. The Level of Economic Development
6.1.2. Financial Expenditure for Agriculture
6.1.3. Agricultural Foreign Direct Investment
6.1.4. Agricultural Labor Force
6.1.5. The Intensity of Agricultural R&D Investment
6.1.6. The Level of Agricultural Informatization
6.2. Construction of the Model
6.3. Model Operation Results
6.3.1. The Influence of PCGDP on Sustainable Development Capability in Agriculture
6.3.2. The Influence of FEA on Sustainable Development Capability in Agriculture
6.3.3. The Influence of AFDI on Sustainable Development Capability in Agriculture
6.3.4. The Influence of ALF on Sustainable Development Capability in Agriculture
6.3.5. The Influence of IARDI on Sustainable Development Capability in Agriculture
6.3.6. The Influence of LAI on Sustainable Development Capability in Agriculture
7. Conclusions and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Daemane, M.M.M.; Mot’soene, K.A.; Nyawo-Shava, V.Z. Agricultural marketing cooperatives in developing society in relation to poverty alleviation and sustainable development: The case of Lesotho. Ann. Humanit. Dev. Stud. 2010, 1, 436–476. [Google Scholar]
- Akin, U. Urban agriculture: An instrument for sustainable urban development in the metropolitan city of Istanbul. J. Environ. Prot. Ecol. 2011, 12, 2245–2254. [Google Scholar]
- Calicioglu, O.; Flammini, A.; Bracco, S.; Bellù, L.; Sims, R. The future challenges of food and agriculture: An integrated analysis of trends and solutions. Sustainability 2019, 11, 222. [Google Scholar] [CrossRef]
- Liu, N. Great agricultural potential for cooperation between China and Belt and Road countries. China’s Foreign Trade 2017, 23, 46–47. [Google Scholar]
- Harwood, R.R. A history of sustainable agriculture. In Sustainable Agricultural Systems; CRC Press: Boca Raton, FL, USA, 1990; pp. 3–19. [Google Scholar]
- Crews, T.E.; Mohler, C.L.; Power, A.G. Energetics and ecosystem integrity: The defining principles of sustainable agriculture. Am. J. Altern. Agric. 2009, 6, 146–149. [Google Scholar] [CrossRef]
- Spann, M. Politics of poverty: The post-2015 sustainable development goals and the business of agriculture. Globalizations 2017, 14, 1–19. [Google Scholar] [CrossRef]
- Koboević, Ž.; Kurtela, Ž.; Vujičić, S. The maritime Silk Road and China’s Belt and Road initiative. Naše More-Znanstveni Časopis Za More I Pomorstvo 2018, 65, 113–122. [Google Scholar]
- Kamel, M.S. China’s Belt and Road initiative: Implications for the Middle East. Camb. Rev. Int. Aff. 2018, 31, 1–20. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, C.; Bao, B.; Bo, X.U. Agricultural sustainable development ability evaluation and subsystem coordination degree analysis: Take the major grain-producing areas of China as an example. Econ. Geogr. 2018, 38, 157–163. (In Chinese) [Google Scholar]
- Wang, Q.; Yuan, X.; Cheng, X.; Mu, R.; Zuo, J. Coordinated development of energy, economy and environment subsystems—A case study. Ecol. Indic. 2014, 46, 514–523. [Google Scholar]
- Grundey, D. Semantics of sustainable agriculture development: Re-conceptualising content and definitions. Actual Probl. Econ. 2012, 131, 41–54. [Google Scholar]
- Shi, T.; Gill, R. Developing effective policies for the sustainable development of ecological agriculture in China: The case study of Jinshan County with a systems dynamics model. Ecol. Econ. 2005, 53, 223–246. [Google Scholar] [CrossRef]
- Wang, X.B.; Liu, W.N.; Wu, W.L. A holistic approach to the development of sustainable agriculture: Application of the ecosystem health model. Int. J. Sustain. Dev. World 2009, 16, 339–345. [Google Scholar] [CrossRef]
- Nhemachena, C.; Matchaya, G.; Nhemachena, C.R.; Karuaihe, S.; Muchara, B.; Nhlengethwa, S. Measuring baseline agriculture-related sustainable development goals index for Southern Africa. Sustainability 2018, 10, 849. [Google Scholar] [CrossRef]
- Palanisamy, K.; Parthasarathy, K. Urbanization, food insecurity and agriculture—Challenges for social sustainable development. Probl. Ekorozw. 2016, 11, 157–161. [Google Scholar]
- Zhao, Q.G.; Xu, M.J. Sustainable agriculture evaluation for red soil hill region of southeast China. Pedosphere 2004, 14, 313–321. [Google Scholar]
- Wang, Q.S.; Yuan, X.L.; Zhang, J.; Gao, Y.; Hong, J.L.; Zuo, J.; Liu, W. Assessment of the sustainable development capacity with the entropy weight coefficient method. Sustainability 2015, 7, 13542–13563. [Google Scholar] [CrossRef]
- Lindblom, J.; Lundstrom, C.; Ljung, M.; Jonsson, A. Promoting sustainable intensification in precision agriculture: review of decision support systems development and strategies. Precis. Agric. 2017, 18, 309–331. [Google Scholar] [CrossRef]
- Mahanty, T.; Bhattacharjee, S.; Goswami, M.; Bhattacharyya, P.; Das, B.; Ghosh, A.; Tribedi, P. Biofertilizers: A potential approach for sustainable agriculture development. Environ. Sci. Pollut. R. 2017, 24, 3315–3335. [Google Scholar] [CrossRef] [PubMed]
- Kasem, S.; Thapa, G.B. Sustainable development policies and achievements in the context of the agriculture sector in Thailand. Sustain. Dev. 2012, 20, 98–114. [Google Scholar] [CrossRef]
- Malschi, D.; Tritean, N.; Serbanescu, R. Protective agroforestry belts and their environmental importance for sustainable agriculture development in Transylvania. Rom. Agric. Res. 2010, 27, 103–114. [Google Scholar]
- Fleury, P.; Petit, S.; Dobremez, L.; Schermer, M.; Kirchengast, C.; De Ros, G.; Magnani, N.; Struffi, L.; Mieville-Ott, V.; Roque, O. Implementing sustainable agriculture and rural development in the European alps assets and limitations of local projects based on multi-stakeholder participation. Mt. Res. Dev. 2008, 28, 226–232. [Google Scholar] [CrossRef]
- Granvik, M.; Lindberg, G.; Stigzelius, K.A.; Fahlbeck, E.; Surry, Y. Prospects of multifunctional agriculture as a facilitator of sustainable rural development: Swedish experience of Pillar 2 of the Common Agricultural Policy (CAP). Nor. Geogr. Tidsskr.-Nor. J. Geogr. 2012, 66, 155–166. [Google Scholar] [CrossRef]
- Yi, T.; Xiang, P.A. Emergy analysis of paddy farming in Hunan Province, China: A new perspective on sustainable development of agriculture. J. Integr. Agr. 2016, 15, 2426–2436. [Google Scholar] [CrossRef]
- Galt, R.E.; Parr, D.; Jagannath, J. Facilitating competency development in sustainable agriculture and food systems education: A self-assessment approach. Int. J. Agr. Sustain. 2013, 11, 69–88. [Google Scholar] [CrossRef]
- George, D.; Clewett, J.; Birch, C.; Wright, A.; Allen, W. A professional development climate course for sustainable agriculture in Australia. Environ. Educ. Res. 2009, 15, 417–441. [Google Scholar] [CrossRef]
- Migliorini, P.; Lieblein, G. Facilitating transformation and competence development in sustainable agriculture nniversity education: An experiential and action oriented approach. Sustainability 2016, 8, 1243. [Google Scholar] [CrossRef]
- Li, G.P. Thought and practice of sustainable development in Chinese traditional agriculture. China Agr. Econ. Rev. 2009, 1, 97–109. [Google Scholar]
- Brown, T. Civil society organizations for sustainable agriculture: Negotiating power relations for pro-poor development in India. Agroecol. Sustain. Food 2016, 40, 381–404. [Google Scholar] [CrossRef]
- Yang, S.Q.; Mei, X.R. A sustainable agricultural development assessment method and a case study in China based on Euclidean distance theory. J. Clean Prod. 2017, 168, 551–557. [Google Scholar] [CrossRef]
- Sattler, C.; Nagel, U.J.; Werner, A.; Zander, P. Integrated assessment of agricultural production practices to enhance sustainable development in agricultural landscapes. Ecol. Indic. 2010, 10, 49–61. [Google Scholar]
- Bastan, M.; Khorshid-Doust, R.R.; Sisi, S.D.; Ahmadvand, A. Sustainable development of agriculture: A system dynamics model. Kybernetes 2018, 47, 142–162. [Google Scholar] [CrossRef]
- Sun, L.Y.; Miao, C.L.; Yang, L. Ecological-economic efficiency evaluation of green technology innovation in strategic emerging industries based on entropy weighted TOPSIS method. Ecol. Indic. 2017, 73, 554–558. [Google Scholar] [CrossRef]
- Dos Santos, B.M.; Godoy, L.P.; Campos, L. Performance evaluation of green suppliers using entropy-TOPSIS-F. J. Clean Prod. 2019, 207, 498–509. [Google Scholar] [CrossRef]
- Liu, D.J.; Li, L. Application study of comprehensive forecasting model based on entropy weighting method on trend of PM2.5 concentration in Guangzhou, China. Int. J. Env. Res. Pub. He 2015, 12, 7085–7099. [Google Scholar] [CrossRef]
- Delgado, A.; Romero, I. Environmental conflict analysis using an integrated grey clustering and entropy-weight method: A case study of a mining project in Peru. Environ. Modell Softw 2016, 77, 108–121. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Feng, P.; Jin, J.L.; Liu, L. Water resources carrying capacity evaluation and diagnosis based on set pair analysis and improved the entropy weight method. Entropy-Switz 2018, 20, 359. [Google Scholar] [CrossRef]
- Meleg, I.N.; Naparus, M.; Fiers, F.; Meleg, I.H.; Vlaicu, M.; Moldovan, O.T. The relationships between land cover, climate and cave copepod spatial distribution and suitability along the Carpathians. Environ. Conserv. 2014, 41, 206–216. [Google Scholar] [CrossRef]
- Song, W.; Jia, H.; Huang, J.; Zhang, Y. A satellite-based geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China. Remote Sens. Environ. 2014, 154, 1–7. [Google Scholar]
- Su, S.L.; Xiao, R.; Zhang, Y. Multi-scale analysis of spatially varying relationships between agricultural landscape patterns and urbanization using geographically weighted regression. Appl. Geogr. 2012, 32, 360–375. [Google Scholar] [CrossRef]
- Huang, J.; Huang, Y.; Pontius, R.G.; Zhang, Z. Geographically weighted regression to measure spatial variations in correlations between water pollution versus land use in a coastal watershed. Ocean Coast. Manag. 2014, 103, 14–24. [Google Scholar]
- Maimaitijiang, M.; Ghulam, A.; Sandoval, J.; Maimaitiyiming, M. Drivers of land cover and land use changes in St. Louis metropolitan area over the past 40 years characterized by remote sensing and census population data. Int. J. Appl. Earth Obs. 2015, 35, 161–174. [Google Scholar] [CrossRef]
- Wu, C.Y.; Wei, Y.; Huang, X.J.; Chen, B.W. Economic transition, spatial development and urban land use efficiency in the Yangtze River Delta, China. Habitat Int. 2017, 63, 67–78. [Google Scholar] [CrossRef]
- Manca, G.; Attaway, D.F.; Waters, N. Program assessment and the EU’s agrienvironmental Measure 214: An investigation of the spatial dynamics of agrienvironmental policies in Sardinia, Italy. Appl. Geogr. 2014, 50, 24–30. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Crespo, R.; Yao, J. Geographical and temporal weighted regression (GTWR). Geogr. Anal. 2015, 47, 431–452. [Google Scholar] [CrossRef]
- Seok, J.H.; Moon, H.; Kim, G.; Reed, M.R. Is aging the important factor for sustainable agricultural development in Korea? Evidence from the relationship between aging and farm technical efficiency. Sustainability 2018, 10, 2137. [Google Scholar] [CrossRef]
- Bacior, S.; Prus, B. Infrastructure development and its influence on agricultural land and regional sustainable development. Ecol. Inform. 2018, 44, 82–93. [Google Scholar] [CrossRef]
- Ramos, T.B.; Caeiro, S. Meta-performance evaluation of sustainability indicators. Ecol. Indic. 2010, 10, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Mili, S.; Martínez-Vega, J. Accounting for regional heterogeneity of agricultural sustainability in Spain. Sustainability 2019, 11, 299. [Google Scholar] [CrossRef]
- Olsson, J.A.; Bockstaller, C.; Stapleton, L.M.; Ewert, F.; Knapen, R.; Therond, O.; Geniaux, G.; Bellon, S.; Correira, T.P.; Turpin, N.; Bezlepkina, I. A goal oriented indicator framework to support integrated assessment of new policies for agri-environmental systems. Environ. Sci. Policy 2009, 12, 562–572. [Google Scholar] [CrossRef]
- Roy, R.; Chan, N.W. An assessment of agricultural sustainability indicators in Bangladesh: Review and synthesis. Environmentalist 2012, 32, 99–110. [Google Scholar] [CrossRef]
- Mauerhofer, V. 3-D sustainability: An approach for priority setting in situation of conflicting interests towards a sustainable development. Ecol. Econ. 2008, 64, 496–506. [Google Scholar] [CrossRef]
- Rasure, K.A. Sustainable agricultural development; Oxford Books Company: New Delhi, India, 2010. [Google Scholar]
- Seghezzo, L. The five dimensions of sustainability. Environ. Politics 2009, 18, 539–556. [Google Scholar] [CrossRef] [Green Version]
- Kelly, E.; Latruffe, L.; Desjeux, Y.; Ryan, M.; Uthes, S.; Diazabakana, A.; Dillon, E.; Finn, J.A. Sustainability indicators for improved assessment of the effects of agricultural policy across the EU: Is FADN the answer? Ecol. Indic. 2018, 89, 903–911. [Google Scholar] [CrossRef]
- Imran, S.; Alam, K.; Beaumont, N. Reinterpreting the definition of sustainable development for a more ecocentric reorientation. Sustain. Dev. 2014, 22, 134–144. [Google Scholar] [CrossRef]
- Yuan, J.H.; Qi, C.J. Dynamic assessment of regional agricultural sustainability of Hunan Province based on entropy method. Resour. Environ. Yangtze Basin 2013, 22, 152–157. (In Chinese) [Google Scholar]
- Zhang, X.; Wang, C.; Li, E.; Xu, C. Assessment model of ecoenvironmental vulnerability based on improved entropy weight method. Sci. World J. 2014, 2014, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Azimifard, A.; Moosavirad, S.H.; Ariafar, S. Selecting sustainable supplier countries for Iran’s steel industry at three levels by using AHP and TOPSIS methods. Resour. Policy 2018, 57, 30–44. [Google Scholar] [CrossRef]
- Nan, J.; Chao, W.U.; Zhou, Q.L.; Xie, C.Y. Comprehensive Discrimination on Mined-out Area Through ITOPSIS Coupled with PSF. J. Northeast. Univ. 2016, 37, 24–29. (In Chinese) [Google Scholar]
- Yue, Z. A method for group decision-making based on determining weights of decision makers using TOPSIS. Appl. Math. Model. 2011, 35, 1926–1936. [Google Scholar] [CrossRef] [Green Version]
- Krzanowski, W.J. The Mahalanobis distance and Elliptic distributions. Biometrika 1985, 72, 464–467. [Google Scholar]
- Klein, D.; Orsborn, A. Concatenate coordination and mutual coordination. J. Econ. Behav. Organ. 2009, 72, 176–187. [Google Scholar] [CrossRef] [Green Version]
- Noe, E.; Alroe, H.F. Sustainable agriculture issues explained by differentiation and structural coupling using social systems analysis. Agron Sustain. Dev. 2015, 35, 133–144. [Google Scholar] [CrossRef]
- Song, B.; Zhao, T.; Chen, Y. Household water consumption and its influence factors in the agricultural and pastoral area, Tibet. Geogr. Res. 2016, 35, 1879–1886. (In Chinese) [Google Scholar]
- Schaible, G.D.; Mishra, A.K.; Lambert, D.M.; Panterov, G. Factors influencing environmental stewardship in US agriculture: Conservation program participants vs. non-participants. Land Use Policy 2015, 46, 125–141. [Google Scholar] [CrossRef]
- Ebrahimi, M.S.; Amini, A.M.; Bahrami, B. Factors affecting the ability of agricultural higher education graduates in Iran. Sci. J. Crop. Sci. 2013, 2, 159–163. [Google Scholar]
- Mamat, T.; Jumaway, M.; Zhang, X.; Hassan, M. Research on impact factors of agricultural mechanization development level based on BP neural network. J. Agric. Mech. Res. 2018, 40, 21–25. (In Chinese) [Google Scholar]
- Bosshaq, M.R.; Afzalinia, F.; Moradi, H. Measuring indicators and determining factors affecting sustainable agricultural development in rural areas—A case study of Ravansar, Iran. Int. J. Agrisci. 2012, 2, 477–495. [Google Scholar]
- Ramakrishnan, S.; Hishan, S.S.; Nabi, A.A.; Arshad, Z.; Kanjanapathy, M.; Zaman, K.; Khan, F. An interactive environmental model for economic growth: evidence from a panel of countries. Environ. Sci. Pollut. R 2016, 23, 14567–14579. [Google Scholar] [CrossRef]
- Weng, Z.X.; Dai, H.C.; Ma, Z.Y.; Xie, Y.; Wang, P. A general equilibrium assessment of economic impacts of provincial unbalanced carbon intensity targets in China. Resour. Conserv. Recy. 2018, 133, 157–168. [Google Scholar] [CrossRef]
- Gallego-Alvarez, I.; Fernandez-Gomez, M.J. Governance, environmental and economic factors: An international analysis. Environ. Policy Gov. 2016, 26, 29–44. [Google Scholar] [CrossRef]
- Tian, J.X.; Yang, H.L.; Xiang, P.A.; Liu, D.W.; Li, L. Drivers of agricultural carbon emissions in Hunan Province, China. Environ. Earth Sci. 2016, 75, 121. [Google Scholar] [CrossRef]
- Yao, S. Cointegration analysis of agriculture and non-agricultural sectors in the Chinese economy 1952-92. Appl. Econ. Lett. 2010, 1, 227–229. [Google Scholar] [CrossRef]
- Meng, Z.X.; Meng, H.S. The empirical analysis of the relationship between financial expenditure on agriculture and GDP growth in Shanxi Province. Chin. J. Agric. Resour. Reg. Plan. 2012, 479, 136–140. (In Chinese) [Google Scholar]
- Li, J.J. An analysis of the optimal-scale of expenditure on financial support to agriculture. Sci. Mosaic 2007, 100, 519–524. (In Chinese) [Google Scholar]
- Shah, A. Exploring sustainable production systems for agriculture: Implications for employment and investment under north-south trade scenario. Ecol. Econ. 2006, 59, 237–241. [Google Scholar] [CrossRef]
- Lay, J.; Nolte, K. Determinants of foreign land acquisitions in low- and middle-income countries. J. Econ. Geogr. 2018, 18, 59–86. [Google Scholar] [CrossRef]
- Bastiaens, I. Investing in agriculture: A preference for democracy or dictatorship? Br. J. Politics Int. Relat. 2016, 18, 946–965. [Google Scholar] [CrossRef]
- Dorward, A. Agricultural labour productivity, food prices and sustainable development impacts and indicators. Food Policy 2013, 39, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Barnes, A.P. Publicly-funded UK agricultural R&D and ‘social’ total factor productivity. Agr. Econ.-Blackwell 2002, 27, 65–74. [Google Scholar]
- Tokgoz, S. Private agricultural R&D in the United States. J. Agr. Resour. Econ. 2006, 31, 212–238. [Google Scholar]
- Lee, J.; Koh, M.; Jeong, G. Analysis of the impact of agricultural R&D investment on food security. Appl. Econ. Lett. 2017, 24, 49–53. [Google Scholar]
- Xiao, Z.H.; Fulton, M. Underinvestment in producer-funded agricultural R&D: The role of the horizon problem. Can. J. Agr. Econ. 2018, 66, 55–86. [Google Scholar]
- Moon, J.; Hossain, M.D.; Kang, H.G.; Shin, J. An analysis of agricultural informatization in Korea: the government’s role in bridging the digital gap. Inf. Dev. 2012, 28, 102–116. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Z.R. An application of DEA model to measure the efficiency of ecological agricultural informatization in Heilong Jiang Province. Cust Agronegocio 2015, 11, 2–12. [Google Scholar]
- Deng, R.; Ran, G.H.; Zheng, Q.; Wu, X.J. The nonlinear effect of agricultural informatization on agricultural total factor productivity in China: A threshold test approach. Cust. Agronegocio 2018, 14, 213–236. [Google Scholar]
- Ma, C.; Li, J.; Wang, D.Y. Optimal evaluation index system and benefit evaluation model for agricultural informatization in Beijing. Int. J. Robot. Autom. 2018, 33, 89–96. [Google Scholar] [CrossRef]
- Liu, C. The myth of informatization in rural areas: The case of China’s Sichuan Province. Gov. Inf. Q. 2012, 29, 85–97. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M. Some notes on parametric significance tests for geographically weighted regression. J. Reg. Sci. 1999, 39, 497–524. [Google Scholar] [CrossRef]
- Huang, B.; Wu, B.; Barry, M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. Int. J. Geogr. Inf. Sci. 2010, 24, 383–401. [Google Scholar] [CrossRef]
- He, Q.; Bo, H. Satellite-based high-resolution PM 2.5 estimation over the Beijing-Tianjin-Hebei region of China using an improved geographically and temporally weighted regression model. Environ. Pollut. 2018, 236, 1027–1037. [Google Scholar] [CrossRef] [PubMed]
- Berresaw, M.K.; Zikhali, P.; Manjur, K.; Edwards, S. Adoption of sustainable agriculture practices: Evidence from a semi-arid region of Ethiopi. Nat. Resour. Forum 2010, 33, 189–198. [Google Scholar]
- Pretty, J.; Hine, R. The promising spread of sustainable agriculture in Asia. Nat. Resour. Forum 2010, 24, 107–121. [Google Scholar] [CrossRef]
- Peters, G.H.; Stanton, B.F.; Tyler, G.J. Sustainable agricultural development: The role of international cooperation. In Proceedings of the Twenty-First International Conference of Agricultural Economists, Tokyo, Japan, 22–29 August 1991. [Google Scholar]
- Witcover, J.; Rosegrant, M.W. Conference on agricultural sustainability, growth, and poverty alleviation in East and Southeast Asia. EPTD Workshop Summ. Pap. 1995, 1, 1–31. [Google Scholar]
- Selvaraju, R. Implications of climate change for agriculture and food security in the Western Asia and Northern Africa region. In Climate Change & Food Security in West. Asia & North. Africa; Springer: Dordrecht, The Netherlands, 2013; pp. 27–51. [Google Scholar]
- Geng, S.; Hess, C.E.; Auburn, J. Sustainable agricultural systems: Concepts and definitions. J. Agron. Crop Sci. 1990, 165, 73–85. [Google Scholar]
- Madau, F.A.; Furesi, R.; Pulina, P. An analysis of sustainability policies in European agriculture in the long term: Methods and materials using the FEEM indicators. Agroecol. Sustain. Food Syst. 2014, 38, 485–501. [Google Scholar] [CrossRef]
- European Commission. A Framework for Indicators for the Economic and Social Dimensions of Sustainable Agriculture and Rural Development; European Commission: Brussels, Belgium, 2001; Available online: https://ec.europa.eu/agriculture/publi/reports/sustain/index_en.pdf (accessed on 3 April 2019).
Primary Index | Secondary Index | Calculation Formula | Unit | Attribute | Source |
---|---|---|---|---|---|
economic subsystem | gross agricultural production per capita | gross agricultural production/total population | USD per capita | positive | UNFAO |
rural incomes per capita | total family income/rural population | USD per capita | positive | USDA & WBOD | |
agricultural productivity | agricultural value added/agricultural land area | USD per km2 | positive | UNFAO | |
the proportion of gross fixed capital formation in agriculture | gross fixed capital formation in agriculture/gross fixed capital formation | % | positive | UNFAO | |
agricultural commodity rate | agricultural commodity production/gross agricultural production | % | positive | EUROSTAT & WTO | |
export rate of agricultural products | exports of agricultural products/value of agricultural products | % | positive | OECD & UNFAO | |
social subsystem | rural electricity consumption per capita | rural electricity consumption/rural population | kW⋅h per capita | positive | IEA |
political stability | political stability and the elimination of violence/terrorism | index | positive | UNFAO | |
population subsystem | the proportion of rural population | rural population/total population | % | negative | WBOD |
population density | total population/territory area | km2 per capita | negative | WBOD | |
the proportion of agricultural employees | agricultural employees/total employees | % | positive | WBOD | |
growth rate of rural population | birth rate minus mortality rate of rural population | % | negative | OBOR | |
the proportion of poor population | the proportion of the poor in the total population measured by the rural poverty line | % | negative | ILO & WBOD | |
resource subsystem | the proportion of agricultural land | agricultural land/land area | % | positive | WBOD |
the proportion of cultivated land | arable land/land area | % | positive | UNFAO & GLASOD | |
hectares of arable land per capita | arable land area/total rural population | hectare | positive | UNFAO | |
the proportion of harvestable area | harvestable area/land area | % | positive | UNFAO | |
cultivation area of organic soil | area of organic soil | hectare | positive | UNFAO | |
effective irrigated rate | effective irrigation area/cultivated land area | % | positive | UNFAO | |
environmental subsystem | use intensity of chemical fertilizer | amount of fertilizer application/fertilizer application area | tonnes per m2 | negative | UNFAO |
PM2.5 | particulate matter smaller than or equal to 2.5 microns in diameter/1 m3 | 10−6 per m3 | negative | WBOD | |
total carbon emissions | total emissions from different agricultural subfields | 106 kg | negative | UNFAO | |
the proportion of energy use | terminal consumption of agricultural energy/value of agricultural products | % | negative | IEA | |
use intensity of pesticide | amount of pesticide application/pesticide dosage application area | % | negative | UNFAO | |
forest coverage | forest area/land area | % | positive | WDPA & UNFAO |
Country | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
---|---|---|---|---|---|---|---|---|---|---|
Albania | 0.3880 | 0.3888 | 0.3893 | 0.3900 | 0.3864 | 0.3901 | 0.3911 | 0.3913 | 0.3887 | 0.3874 |
Armenia | 0.3852 | 0.3847 | 0.3853 | 0.3871 | 0.3863 | 0.3874 | 0.3883 | 0.3887 | 0.3887 | 0.3883 |
Azerbaijan | 0.3821 | 0.3859 | 0.3840 | 0.3871 | 0.3888 | 0.3880 | 0.3887 | 0.3895 | 0.3871 | 0.3851 |
Bangladesh | 0.3836 | 0.3836 | 0.3880 | 0.3852 | 0.3859 | 0.3836 | 0.3831 | 0.3798 | 0.3790 | 0.3772 |
Bulgaria | 0.3956 | 0.3956 | 0.3984 | 0.3974 | 0.3987 | 0.3992 | 0.4001 | 0.4003 | 0.4010 | 0.4015 |
Bosnia and Herzegovina | 0.3813 | 0.3822 | 0.3840 | 0.3864 | 0.3865 | 0.3873 | 0.3868 | 0.3862 | 0.3882 | 0.3859 |
Belarus | 0.4259 | 0.4266 | 0.4289 | 0.4296 | 0.4283 | 0.4224 | 0.4234 | 0.4235 | 0.4221 | 0.4217 |
Brunei | 0.3592 | 0.3623 | 0.3612 | 0.3627 | 0.3604 | 0.3618 | 0.3610 | 0.3616 | 0.3622 | 0.3589 |
Bhutan | 0.3834 | 0.3844 | 0.3835 | 0.3848 | 0.3869 | 0.3876 | 0.3883 | 0.3893 | 0.3901 | 0.3926 |
China (mainland) | 0.3920 | 0.3929 | 0.3943 | 0.3953 | 0.3953 | 0.3952 | 0.3964 | 0.3954 | 0.3959 | 0.3944 |
Cyprus | 0.3847 | 0.3841 | 0.3808 | 0.3784 | 0.3798 | 0.3797 | 0.3776 | 0.3783 | 0.3762 | 0.3761 |
Czech | 0.4037 | 0.4035 | 0.4009 | 0.4009 | 0.4018 | 0.4036 | 0.4042 | 0.4043 | 0.4035 | 0.4054 |
Egypt | 0.3674 | 0.3686 | 0.3698 | 0.3700 | 0.3703 | 0.3726 | 0.3738 | 0.3724 | 0.3744 | 0.3724 |
Estonia | 0.4223 | 0.4230 | 0.4210 | 0.4209 | 0.4231 | 0.4247 | 0.4245 | 0.4257 | 0.4249 | 0.4266 |
Georgia | 0.3845 | 0.3840 | 0.3822 | 0.3830 | 0.3839 | 0.3846 | 0.3837 | 0.3825 | 0.3797 | 0.3829 |
Greece | 0.4152 | 0.4154 | 0.4152 | 0.4145 | 0.4126 | 0.4132 | 0.4131 | 0.4132 | 0.4128 | 0.4147 |
Croatia | 0.3868 | 0.3870 | 0.3871 | 0.3839 | 0.3809 | 0.3775 | 0.3766 | 0.3761 | 0.3752 | 0.3735 |
Hungary | 0.4132 | 0.4117 | 0.4109 | 0.4099 | 0.4090 | 0.4070 | 0.4068 | 0.4067 | 0.4060 | 0.4059 |
Indonesia | 0.3982 | 0.3981 | 0.3960 | 0.3953 | 0.3953 | 0.3943 | 0.3964 | 0.3942 | 0.3935 | 0.3954 |
India | 0.3912 | 0.3914 | 0.3938 | 0.3943 | 0.3950 | 0.3950 | 0.3945 | 0.3943 | 0.3957 | 0.3930 |
Iran | 0.3746 | 0.3760 | 0.3746 | 0.3760 | 0.3759 | 0.3760 | 0.3757 | 0.3788 | 0.3783 | 0.3782 |
Israel | 0.3950 | 0.3968 | 0.3957 | 0.3943 | 0.3961 | 0.3972 | 0.3966 | 0.3967 | 0.3970 | 0.3984 |
Jordan | 0.3646 | 0.3652 | 0.3666 | 0.3664 | 0.3646 | 0.3594 | 0.3567 | 0.3585 | 0.3602 | 0.3560 |
Kazakhstan | 0.3925 | 0.3952 | 0.3942 | 0.3927 | 0.3939 | 0.3979 | 0.3964 | 0.3990 | 0.3966 | 0.3976 |
Kyrgyz | 0.3789 | 0.3820 | 0.3812 | 0.3834 | 0.3810 | 0.3784 | 0.3765 | 0.3784 | 0.3785 | 0.3802 |
Cambodia | 0.3941 | 0.3947 | 0.3961 | 0.3955 | 0.3973 | 0.3978 | 0.3949 | 0.3949 | 0.3954 | 0.3941 |
Lebanon | 0.3823 | 0.3791 | 0.3783 | 0.3790 | 0.3788 | 0.3799 | 0.3809 | 0.3783 | 0.3783 | 0.3781 |
Sri Lanka | 0.3774 | 0.3760 | 0.3789 | 0.3808 | 0.3830 | 0.3836 | 0.3837 | 0.3830 | 0.3837 | 0.3821 |
Lithuania | 0.4203 | 0.4191 | 0.4170 | 0.4193 | 0.4247 | 0.4251 | 0.4265 | 0.4285 | 0.4291 | 0.4295 |
Latvia | 0.3861 | 0.3841 | 0.3771 | 0.3764 | 0.3768 | 0.3758 | 0.3758 | 0.3792 | 0.3777 | 0.3746 |
Moldova | 0.3703 | 0.3690 | 0.3683 | 0.3692 | 0.3682 | 0.3679 | 0.3696 | 0.3706 | 0.3726 | 0.3667 |
Maldives | 0.3581 | 0.3573 | 0.3557 | 0.3535 | 0.3555 | 0.3550 | 0.3553 | 0.3510 | 0.3504 | 0.3509 |
Macedonia | 0.3903 | 0.3919 | 0.3935 | 0.3950 | 0.3923 | 0.3919 | 0.3904 | 0.3945 | 0.3958 | 0.3951 |
Myanmar | 0.3869 | 0.3879 | 0.3865 | 0.3863 | 0.3881 | 0.3886 | 0.3910 | 0.3922 | 0.3911 | 0.3884 |
Mongolia | 0.3767 | 0.3767 | 0.3741 | 0.3753 | 0.3661 | 0.3649 | 0.3650 | 0.3687 | 0.3707 | 0.3765 |
Malaysia | 0.3939 | 0.3941 | 0.3945 | 0.3939 | 0.3981 | 0.3977 | 0.3953 | 0.3939 | 0.3987 | 0.3978 |
Nepal | 0.3704 | 0.3697 | 0.3701 | 0.3710 | 0.3707 | 0.3692 | 0.3692 | 0.3695 | 0.3686 | 0.3708 |
Oman | 0.3703 | 0.3711 | 0.3718 | 0.3721 | 0.3717 | 0.3703 | 0.3699 | 0.3688 | 0.3696 | 0.3670 |
Pakistan | 0.3799 | 0.3824 | 0.3835 | 0.3867 | 0.3868 | 0.3883 | 0.3871 | 0.3885 | 0.3894 | 0.3814 |
Philippines | 0.3639 | 0.3665 | 0.3673 | 0.3669 | 0.3658 | 0.3683 | 0.3653 | 0.3709 | 0.3692 | 0.3675 |
Poland | 0.4017 | 0.4027 | 0.4017 | 0.4017 | 0.4010 | 0.4020 | 0.4027 | 0.4028 | 0.4022 | 0.4036 |
Romania | 0.4097 | 0.4101 | 0.4121 | 0.4147 | 0.4162 | 0.4167 | 0.4172 | 0.4151 | 0.4184 | 0.4161 |
Russia | 0.3849 | 0.3873 | 0.3880 | 0.3871 | 0.3851 | 0.3888 | 0.3880 | 0.3899 | 0.3875 | 0.3890 |
Saudi Arabia | 0.3777 | 0.3781 | 0.3805 | 0.3817 | 0.3812 | 0.3796 | 0.3807 | 0.3821 | 0.3846 | 0.3867 |
Serbia | 0.3977 | 0.3982 | 0.4002 | 0.4028 | 0.4043 | 0.4048 | 0.4053 | 0.4031 | 0.4064 | 0.4042 |
Slovakia | 0.3949 | 0.3952 | 0.3951 | 0.3941 | 0.3944 | 0.3960 | 0.3978 | 0.3957 | 0.3943 | 0.3946 |
Slovenia | 0.3829 | 0.3827 | 0.3831 | 0.3855 | 0.3871 | 0.3897 | 0.3896 | 0.3909 | 0.3890 | 0.3901 |
Thailand | 0.3936 | 0.3956 | 0.3965 | 0.3974 | 0.3978 | 0.3981 | 0.3988 | 0.3976 | 0.3968 | 0.3958 |
Tajikistan | 0.3650 | 0.3648 | 0.3657 | 0.3678 | 0.3704 | 0.3722 | 0.3728 | 0.3721 | 0.3742 | 0.3660 |
Turkmenistan | 0.4102 | 0.4097 | 0.4088 | 0.4106 | 0.4129 | 0.4119 | 0.4150 | 0.4135 | 0.4122 | 0.4148 |
Ukraine | 0.4157 | 0.4121 | 0.4066 | 0.4006 | 0.3985 | 0.3981 | 0.3991 | 0.3995 | 0.3981 | 0.4008 |
Vietnam | 0.3916 | 0.3901 | 0.3912 | 0.3918 | 0.3927 | 0.3934 | 0.3937 | 0.3936 | 0.3941 | 0.3938 |
Yemen | 0.3535 | 0.3543 | 0.3533 | 0.3551 | 0.3528 | 0.3565 | 0.3543 | 0.3539 | 0.3536 | 0.3629 |
Country | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
---|---|---|---|---|---|---|---|---|---|---|
Albania | 0.5105 | 0.5292 | 0.5159 | 0.5178 | 0.5045 | 0.5265 | 0.5123 | 0.5678 | 0.5296 | 0.5255 |
Armenia | 0.4720 | 0.4691 | 0.4139 | 0.4726 | 0.4691 | 0.5007 | 0.5032 | 0.5156 | 0.5514 | 0.5229 |
Azerbaijan | 0.4654 | 0.4573 | 0.4326 | 0.4933 | 0.4699 | 0.5037 | 0.5015 | 0.5155 | 0.5442 | 0.4732 |
Bangladesh | 0.4599 | 0.4637 | 0.4870 | 0.4644 | 0.4591 | 0.4797 | 0.4781 | 0.4780 | 0.4702 | 0.4957 |
Bulgaria | 0.5333 | 0.5423 | 0.5128 | 0.5412 | 0.5362 | 0.5724 | 0.5875 | 0.5517 | 0.5726 | 0.5602 |
Bosnia and Herzegovina | 0.4481 | 0.4323 | 0.4304 | 0.4573 | 0.4526 | 0.4716 | 0.4812 | 0.4932 | 0.4910 | 0.4793 |
Belarus | 0.7206 | 0.7196 | 0.6952 | 0.7199 | 0.7343 | 0.7232 | 0.7331 | 0.7429 | 0.7384 | 0.7381 |
Brunei | 0.2798 | 0.2826 | 0.2653 | 0.3098 | 0.3275 | 0.3442 | 0.3834 | 0.3907 | 0.3349 | 0.3764 |
Bhutan | 0.4710 | 0.4639 | 0.4522 | 0.4894 | 0.4933 | 0.4937 | 0.4819 | 0.5034 | 0.5613 | 0.5614 |
China (mainland) | 0.5872 | 0.5879 | 0.5978 | 0.5857 | 0.5985 | 0.5923 | 0.6079 | 0.6084 | 0.5830 | 0.6186 |
Cyprus | 0.4560 | 0.4721 | 0.4447 | 0.4485 | 0.4607 | 0.4610 | 0.4702 | 0.4322 | 0.4600 | 0.4725 |
Czech | 0.5872 | 0.5730 | 0.5824 | 0.5952 | 0.6156 | 0.6080 | 0.6383 | 0.6040 | 0.6295 | 0.6211 |
Egypt | 0.3635 | 0.3695 | 0.3298 | 0.3799 | 0.3594 | 0.4128 | 0.4270 | 0.4351 | 0.4687 | 0.4736 |
Estonia | 0.6996 | 0.6704 | 0.6686 | 0.6836 | 0.7069 | 0.6477 | 0.6486 | 0.6112 | 0.6557 | 0.6785 |
Georgia | 0.5105 | 0.5214 | 0.4743 | 0.4494 | 0.5344 | 0.4565 | 0.4875 | 0.4416 | 0.4539 | 0.4674 |
Greece | 0.5966 | 0.6105 | 0.5792 | 0.6432 | 0.6060 | 0.6800 | 0.6634 | 0.6993 | 0.6884 | 0.6943 |
Croatia | 0.4860 | 0.4375 | 0.4271 | 0.4778 | 0.4396 | 0.4338 | 0.4694 | 0.4446 | 0.4588 | 0.4459 |
Hungary | 0.5753 | 0.5790 | 0.5725 | 0.5839 | 0.6161 | 0.6100 | 0.6295 | 0.6585 | 0.6432 | 0.6465 |
Indonesia | 0.5294 | 0.5110 | 0.5111 | 0.5625 | 0.5545 | 0.5766 | 0.5808 | 0.5832 | 0.5893 | 0.5922 |
India | 0.4754 | 0.4814 | 0.4809 | 0.5064 | 0.5112 | 0.5346 | 0.5188 | 0.5374 | 0.5534 | 0.5524 |
Iran | 0.3807 | 0.3798 | 0.4020 | 0.3831 | 0.4002 | 0.3813 | 0.3883 | 0.4475 | 0.4304 | 0.4001 |
Israel | 0.5638 | 0.5657 | 0.5551 | 0.5522 | 0.5763 | 0.5751 | 0.6174 | 0.6189 | 0.6019 | 0.6219 |
Jordan | 0.2865 | 0.3251 | 0.3253 | 0.2804 | 0.3048 | 0.2901 | 0.2832 | 0.3110 | 0.2997 | 0.3082 |
Kazakhstan | 0.5842 | 0.5738 | 0.5711 | 0.5864 | 0.5804 | 0.5936 | 0.6013 | 0.5468 | 0.5657 | 0.5968 |
Kyrgyz | 0.4477 | 0.4488 | 0.4369 | 0.3664 | 0.4426 | 0.4044 | 0.4153 | 0.4070 | 0.5090 | 0.4802 |
Cambodia | 0.4583 | 0.5033 | 0.4734 | 0.4815 | 0.4696 | 0.5023 | 0.4701 | 0.6230 | 0.6056 | 0.6306 |
Lebanon | 0.3944 | 0.3497 | 0.3034 | 0.3993 | 0.3794 | 0.4287 | 0.4173 | 0.4275 | 0.4428 | 0.4349 |
Sri Lanka | 0.4363 | 0.4437 | 0.4439 | 0.4553 | 0.4478 | 0.4539 | 0.4620 | 0.4600 | 0.4405 | 0.4597 |
Lithuania | 0.7482 | 0.6544 | 0.6734 | 0.7344 | 0.6845 | 0.7473 | 0.7404 | 0.7400 | 0.7470 | 0.7370 |
Latvia | 0.3863 | 0.3977 | 0.4055 | 0.3896 | 0.3694 | 0.3952 | 0.4129 | 0.4119 | 0.4137 | 0.4287 |
Moldova | 0.3778 | 0.3714 | 0.3504 | 0.3533 | 0.3707 | 0.3379 | 0.3528 | 0.3083 | 0.3805 | 0.3547 |
Maldives | 0.3002 | 0.3316 | 0.3033 | 0.3073 | 0.2953 | 0.3012 | 0.3438 | 0.3387 | 0.2819 | 0.3259 |
Macedonia | 0.5416 | 0.5443 | 0.4848 | 0.5443 | 0.5555 | 0.4996 | 0.5280 | 0.5301 | 0.5227 | 0.5564 |
Myanmar | 0.4770 | 0.4706 | 0.4578 | 0.4961 | 0.4756 | 0.5180 | 0.5180 | 0.5680 | 0.5587 | 0.5457 |
Mongolia | 0.3787 | 0.4066 | 0.4450 | 0.3936 | 0.3882 | 0.3900 | 0.3972 | 0.3795 | 0.3983 | 0.3971 |
Malaysia | 0.5450 | 0.5495 | 0.5701 | 0.5566 | 0.5325 | 0.5471 | 0.5589 | 0.5545 | 0.5688 | 0.5740 |
Nepal | 0.2944 | 0.2951 | 0.2720 | 0.2755 | 0.3073 | 0.3017 | 0.3211 | 0.3398 | 0.3312 | 0.3407 |
Oman | 0.3387 | 0.2664 | 0.2909 | 0.3821 | 0.2945 | 0.3982 | 0.4088 | 0.4446 | 0.4233 | 0.4064 |
Pakistan | 0.4375 | 0.4646 | 0.4438 | 0.4371 | 0.4531 | 0.4535 | 0.4576 | 0.4732 | 0.4917 | 0.4878 |
Philippines | 0.3270 | 0.3140 | 0.3140 | 0.3525 | 0.3173 | 0.3425 | 0.3495 | 0.3868 | 0.3634 | 0.3631 |
Poland | 0.6170 | 0.6171 | 0.6028 | 0.6062 | 0.6094 | 0.6110 | 0.6444 | 0.6610 | 0.6721 | 0.6997 |
Romania | 0.6510 | 0.6734 | 0.6846 | 0.6521 | 0.6693 | 0.6440 | 0.6628 | 0.6299 | 0.6355 | 0.6487 |
Russia | 0.4867 | 0.5078 | 0.4703 | 0.5171 | 0.4908 | 0.5297 | 0.5121 | 0.5764 | 0.5440 | 0.5403 |
Saudi Arabia | 0.4810 | 0.4537 | 0.3542 | 0.4761 | 0.4773 | 0.4465 | 0.4644 | 0.4343 | 0.4713 | 0.4500 |
Serbia | 0.5722 | 0.5643 | 0.5834 | 0.5889 | 0.5949 | 0.5710 | 0.6171 | 0.5963 | 0.5954 | 0.6193 |
Slovakia | 0.5152 | 0.5245 | 0.5035 | 0.5389 | 0.5247 | 0.5795 | 0.5437 | 0.5834 | 0.5510 | 0.5744 |
Slovenia | 0.4752 | 0.4795 | 0.4802 | 0.4989 | 0.4669 | 0.4975 | 0.4918 | 0.4907 | 0.5023 | 0.5053 |
Thailand | 0.5365 | 0.5555 | 0.5490 | 0.5468 | 0.5705 | 0.5435 | 0.5447 | 0.5560 | 0.5658 | 0.5505 |
Tajikistan | 0.3118 | 0.2749 | 0.2353 | 0.3197 | 0.2920 | 0.3211 | 0.3342 | 0.3504 | 0.3787 | 0.3419 |
Turkmenistan | 0.5895 | 0.5803 | 0.5866 | 0.6100 | 0.6136 | 0.6410 | 0.6471 | 0.6167 | 0.6333 | 0.6559 |
Ukraine | 0.6008 | 0.6136 | 0.5922 | 0.6039 | 0.6146 | 0.6031 | 0.6154 | 0.6232 | 0.6158 | 0.6188 |
Vietnam | 0.5485 | 0.5662 | 0.5556 | 0.5127 | 0.5578 | 0.5563 | 0.5501 | 0.5165 | 0.5281 | 0.5620 |
Yemen | 0.2637 | 0.2510 | 0.2150 | 0.2505 | 0.2518 | 0.2787 | 0.3048 | 0.3141 | 0.3232 | 0.3212 |
Variables | Mean | Minimum | Q1 | Median | Q3 | Maximum | SE | t | p-Value |
---|---|---|---|---|---|---|---|---|---|
Intercept | −1.2086 | −2.2143 | −1.3897 | −1.1945 | −1.0375 | −0.2630 | 7.0070 | −91.418 | 0.000 |
PCGDP | 0.0485 | −0.0768 | 0.0212 | 0.0485 | 0.0760 | 0.2005 | 1.0858 | 23.695 | 0.000 |
FEA | 0.0336 | −0.0307 | 0.0093 | 0.0199 | 0.0386 | 0.1933 | 0.9965 | 17.868 | 0.000 |
AFDI | 0.0031 | −0.0099 | −0.0003 | 0.0015 | 0.0037 | 0.0500 | 0.1663 | 9.747 | 0.000 |
ALF | −0.0591 | −0.7143 | −0.1620 | −0.0617 | 0.0480 | 0.7279 | 4.8253 | −6.489 | 0.000 |
IARDI | 0.0919 | −0.5037 | 0.0178 | 0.0883 | 0.1925 | 0.7126 | 4.3053 | 11.315 | 0.000 |
LAI | 0.0190 | −0.4613 | −0.0782 | 0.0266 | 0.1136 | 0.7713 | 3.1703 | 3.179 | 0.002 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Wang, J.; Chen, Y. Evaluation and Influencing Factors of Sustainable Development Capability of Agriculture in Countries along the Belt and Road Route. Sustainability 2019, 11, 2004. https://doi.org/10.3390/su11072004
Li M, Wang J, Chen Y. Evaluation and Influencing Factors of Sustainable Development Capability of Agriculture in Countries along the Belt and Road Route. Sustainability. 2019; 11(7):2004. https://doi.org/10.3390/su11072004
Chicago/Turabian StyleLi, Minjie, Jian Wang, and Yihui Chen. 2019. "Evaluation and Influencing Factors of Sustainable Development Capability of Agriculture in Countries along the Belt and Road Route" Sustainability 11, no. 7: 2004. https://doi.org/10.3390/su11072004
APA StyleLi, M., Wang, J., & Chen, Y. (2019). Evaluation and Influencing Factors of Sustainable Development Capability of Agriculture in Countries along the Belt and Road Route. Sustainability, 11(7), 2004. https://doi.org/10.3390/su11072004