Evaluating Land Use and Land Cover Change in the Gaborone Dam Catchment, Botswana, from 1984–2015 Using GIS and Remote Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Processing and Analysis
3. Results
3.1. LULC Categories for the Years 1984, 1995, 2005 and 2015
3.2. LULC Change Detection in the Gaborone Dam Catchment
3.3. LULC Losses and Gains from 1984 to 2015
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wondie, M.; Schneider, W.; Melesse, A.M.; Teketay, D. Spatial and temporal land cover changes in the Simen Mountains National Park, a world heritage site in Northwestern Ethiopia. Remote Sens. 2011, 3, 752–766. [Google Scholar] [CrossRef]
- Lambin, E.F.; Rounsevell, D.A.M.; Geist, H.J. Are Agricultural Land-Use Models Able to Predict Changes in Land-Use Intensity? Agric. Ecosyst. Environ. 2000, 82, 321–331. [Google Scholar] [CrossRef]
- Houghton, R.A. The worldwide extent of land-use change. BioScience 1994, 44, 305–313. [Google Scholar] [CrossRef]
- Lambin, E.F.; Ehrlich, D. Land Cover changes in Sub-Saharan Africa (1982–1991): Application of a Change Index Based on Remotely Sensed Surface Temperature and Vegetation Indices at a Continental Scale. Remote Sens. Environ. 1997, 61, 181–200. [Google Scholar] [CrossRef]
- Tian, P.; Li, J.; Gong, H.; Pu, R.; Cao, L.; Shao, S.; Shi, Z.; Feng, X.; Wang, L.; Liu, R. Research on Land Use Changes and Ecological Risk Assessment in Yongjiang River Basin in Zhejiang Province, China. Sustainability 2019, 11, 2817. [Google Scholar] [CrossRef]
- Lambin, E.F. Modelling and monitoring land-cover change processes in tropical regions. Prog. Phys. Geogr. Earth Environ. 1997, 21, 375–393. [Google Scholar] [CrossRef]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Veldkamp, A.; Lambin, E.F. Predicting land-use change. Agric. Ecosyst. Environ. 2001, 85, 1–6. [Google Scholar] [CrossRef]
- Sewnet, A. Land Use/Cover Change at Infraz Watershed, Northwestren Ethiopia. J. Landsc. Ecol. 2015, 8, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Verburg, P.H.; van Eck, J.R.R.; de Nijs, T.C.; Dijst, M.J.; Schot, P. Determinants of land-use change patterns in the Netherlands. Environ. Plan. B Plan. Des. 2004, 31, 125–150. [Google Scholar] [CrossRef]
- Ellis, J.; Galvin, K.A. Climate patterns and land-use practices in the dry zones of Africa. BioScience 1994, 44, 340–349. [Google Scholar] [CrossRef]
- Turner, B.L.; Meyer, W.B.; Skole, D.L. Global land-use/land-cover change: Towards an integrated study. Ambio. Stockholm 1994, 23, 91–95. [Google Scholar]
- Schneider, L.C.; Pontius, G.R. Modeling land-use change in the Ipswich watershed, Massachusetts, USA. Agric. Ecosyst. Environ. 2001, 85, 83–94. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human domination of Earth’s ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A meta-analysis of global urban land expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef] [PubMed]
- Ramankutty, N.; Foley, J.A.; Olejniczak, N.J. People on the land: Changes in global population and croplands during the 20th century. AMBIO A J. Hum. Environ. 2002, 31, 251–258. [Google Scholar] [CrossRef]
- Zubair, A.O. Change Detection in Land Use and Land Cover Using Remote Sensing Data and GIS; A Case Study of Ilorin and Its Environs in Kwara, State; University of Ibadan: Ibadan, Nigeria, 2006. [Google Scholar]
- Meyer, W.B.; Turner, B.L. Changes in Land Use and Land Cover: A Global Perspective; Cambridge University Press: Cambridge, UK, 1994; Volume 4. [Google Scholar]
- Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of land-use and land-cover change in tropical regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef]
- Chan, K.W. United Nations Expert Group Meeting on Population Distribution, Urbanization, Internal Migration and Development; Department of Economic and Social Affairs, United Nations Secretariat: New York, NY, USA, 2008. [Google Scholar]
- Levia, D. Farmland conversion and residential development in North Central Massachusetts. Land Degrad. Dev. 1998, 9, 123–130. [Google Scholar] [CrossRef]
- Seto, K.C.; Kaufmann, R.K.; Woodcock, C.E. Landsat reveals China’s farmland reserves, but they’re vanishing fast. Nature 2000, 406, 121. [Google Scholar] [CrossRef]
- Jamtsho, K.; Gyamtsho, T. Effective Watershed and Water Management at Local Level: Challenges and Opportunities; National Resources Training Institute: Lobyesa, Bhutan, 2003. [Google Scholar]
- Pandey, S.S.; Cockfield, G.; Maraseni, T.N. Major drivers of deforestation and forest degradation in developing countries and REDD+. Int. J. For. Usufructs Manag. 2013, 14, 99–107. [Google Scholar]
- Faostat, F. Agriculture Organisation of the United Nations: Online Statistical Service. 2004. Rome. Available online: http://faostat.fao.org, 17/01/2018 (accessed on 17 January 2018).
- FAO. The State of Food Insecurity in the World, in Monitoring Progress Towards the World Food Summit and Millenium Development Goals; Food and Agriculture of the United Nations: Rome, Italy, 2003. [Google Scholar]
- FAO. Africover Land Cover Classification. In Environment and Natural Resources Service; Sustainable Development Department S.D., Ed.; Food and Agriculture Organisation: Rome, Italy, 1997. [Google Scholar]
- FAO. The State of Food and Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 1997. [Google Scholar]
- Ramankutty, N.; Foley, J.A. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Glob. Biogeochem. Cycles 1999, 13, 997–1027. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment 2000: Main Report; Food and Agriculture Organization of the United Nations: Rome, Italy, 2001. [Google Scholar]
- Brink, A.B.; Eva, H.D. Monitoring 25 years of land cover change dynamics in Africa: A sample based remote sensing approach. Appl. Geogr. 2009, 29, 501–512. [Google Scholar] [CrossRef]
- Vanderpost, C.; Ringrose, S.; Kgathi, D.; Matheson, W. The nature and possible causes of land cover change (1984–1996) along a rainfall gradient in southeastern Botswana. Geocarto Int. 2007, 22, 161–183. [Google Scholar] [CrossRef]
- Bekure, S. Maasai Herding: An Analysis of the Livestock Production System of Maasai Pastoralists in Eastern Kajiado District, Kenya; ILRI (aka ILCA and ILRAD): Addis Ababa, Ethiopia, 1991; Volume 4. [Google Scholar]
- Dube, O.P.; Pickup, G. Effects of rainfall variability and communal and semi-commercial grazing on land cover in southern African rangelands. Clim. Res. 2001, 17, 195–208. [Google Scholar] [CrossRef]
- Ringrose, S.; Vanderpost, C.; Matheson, W. Use of image processing and GIS techniques to determine the extent and possible causes of land management/fenceline induced degradation problems in the Okavango area, Northern Botswana. Int. J. Remote Sens. 1997, 18, 2337–2364. [Google Scholar] [CrossRef]
- Dean, W.; Hoffinan, M.; Meadows, M.; Milton, S. Desertification in the semi-arid Karoo, South Africa: Review and reassessment. J. Arid Environ. 1995, 30, 247–264. [Google Scholar] [CrossRef]
- Rawat, J.; Kumar, M. Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. Egypt. J. Remote Sens. Space Sci. 2015, 18, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Goldewijk, K.K.; Ramankutty, N. Land cover change over the last three centuries due to human activities: The availability of new global data sets. GeoJournal 2004, 61, 335–344. [Google Scholar] [CrossRef]
- Lopez, E.; Bocco, G.; Mendoza, M.; Velázquez, A.; Aguirre-Rivera, J.R. Peasant emigration and land-use change at the watershed level: A GIS-based approach in Central Mexico. Agric. Syst. 2006, 90, 62–78. [Google Scholar] [CrossRef]
- Wu, Q.; Li, H.-q.; Wang, R.-s.; Paulussen, J.; He, Y.; Wang, M.; Wang, B.-h.; Wang, Z. Monitoring and predicting land use change in Beijing using remote sensing and GIS. Landsc. Urban Plan. 2006, 78, 322–333. [Google Scholar] [CrossRef]
- Xiao, J.; Shen, Y.; Ge, J.; Tateishi, R.; Tang, C.; Liang, Y.; Huang, Z. Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing. Landsc. Urban Plan. 2006, 75, 69–80. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, T.D.; Andrieu, H.; Hamel, P. Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art. Adv. Water Resour. 2013, 51, 261–279. [Google Scholar] [CrossRef]
- Kintz, D.B.; Young, K.R.; Crews-Meyer, K.A. Implications of land use/land cover change in the buffer zone of a national park in the tropical Andes. Environ. Manag. 2006, 38, 238–252. [Google Scholar] [CrossRef]
- Velázquez, A.; Durán, E.; Ramírez, I.; Mas, J.-F.; Bocco, G.; Ramírez, G.; Palacio, J.-L. Land use-cover change processes in highly biodiverse areas: The case of Oaxaca, Mexico. Glob. Environ. Chang. 2003, 13, 175–184. [Google Scholar] [CrossRef]
- Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531. [Google Scholar] [CrossRef]
- Pielke, R.A.; Marland, G.; Betts, R.A.; Chase, T.N.; Eastman, J.L.; Niles, J.O.; Running, S.W. The influence of land-use change and landscape dynamics on the climate system: Relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 2002, 360, 1705–1719. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.H.; Botta, A.; Cardille, J.A. Effects of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia. J. Hydrol. 2003, 283, 206–217. [Google Scholar] [CrossRef]
- Sahin, V.; Hall, M.J. The effects of afforestation and deforestation on water yields. J. Hydrol. 1996, 178, 293–309. [Google Scholar] [CrossRef]
- Aduah, M.; Jewitt, G.; Toucher, M. Assessing Impacts of Land Use Changes on the Hydrology of a Lowland Rainforest Catchment in Ghana, West Africa. Water 2017, 10, 9. [Google Scholar] [CrossRef]
- Jacobson, C.R. Identification and quantification of the hydrological impacts of imperviousness in urban catchments: A review. J. Environ. Manag. 2011, 92, 1438–1448. [Google Scholar] [CrossRef] [PubMed]
- Booth, D.B. Urbanization and the Natural Drainage System—Impacts, Solutions, and Prognoses; The Institute of Environmental Studies: Seattle, WA, USA, 1991. [Google Scholar]
- Parida, B.; Moalafhi, D.; Kenabatho, P. Effect of urbanization on runoff coefficient: A case of Notwane catchment in Botswana. In Proceedings of the International Conference on Water and Environment (WE-2003), ‘Watershed Hydrology’, Bhopal, India, 15–18 December 2003; Allied Publishers Pvt. Ltd.: Bhopal, India, 2003. [Google Scholar]
- Miller, J.D.; Hess, T. Urbanisation impacts on storm runoff along a rural-urban gradient. J. Hydrol. 2017, 552, 474–489. [Google Scholar] [CrossRef]
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. A J. R. Meteorol. Soc. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Rosenfeld, D. Suppression of rain and snow by urban and industrial air pollution. Science 2000, 287, 1793–1796. [Google Scholar] [CrossRef]
- Shepherd, J.M.; Pierce, H.; Negri, A.J. Rainfall modification by major urban areas: Observations from spaceborne rain radar on the TRMM satellite. J. Appl. Meteorol. 2002, 41, 689–701. [Google Scholar]
- Alexakis, D.; Grillakis, M.; Koutroulis, A.; Agapiou, A.; Themistocleous, K.; Tsanis, I.; Michaelides, S.; Pashiardis, S.; Demetriou, C.; Aristeidou, K. GIS and remote sensing techniques for the assessment of land use change impact on flood hydrology: The case study of Yialias basin in Cyprus. Nat. Hazards Earth Syst. Sci. 2014, 14, 413–426. [Google Scholar] [CrossRef]
- Turner, M.G. Landscape ecology in North America: Past, present, and future. Ecology 2005, 86, 1967–1974. [Google Scholar] [CrossRef]
- Hietel, E.; Waldhardt, R.; Otte, A. Analysing land-cover changes in relation to environmental variables in Hesse, Germany. Landsc. Ecol. 2004, 19, 473–489. [Google Scholar] [CrossRef]
- Murayama, Y.; Estoque, R.C.; Subasinghe, S.; Hou, H.; Gong, H. Land-Use/Land-Cover Changes in Major Asian and African Cities; Annual Report on the Multi-Use Social and Economy Data Bank; University of Tsukuba: Ibaraki, Japan, 2015; Volume 92. [Google Scholar]
- Hathout, S. The use of GIS for monitoring and predicting urban growth in East and West St Paul, Winnipeg, Manitoba, Canada. J. Environ. Manag. 2002, 66, 229–238. [Google Scholar] [CrossRef]
- Ringrose, S.; Vanderpost, C.; Matheson, W. The use of integrated remotely sensed and GIS data to determine causes of vegetation cover change in southern Botswana. Appl. Geogr. 1996, 16, 225–242. [Google Scholar] [CrossRef]
- Moleele, N.M.; Ringrose, S.; Matheson, W.; Vanderpost, C. More woody plants? The status of bush encroachment in Botswana’s grazing areas. J. Environ. Manag. 2002, 64, 3–11. [Google Scholar]
- Ringrose, S.; Matheson, W. An update on the use of remotely sensed data for range monitoring in south-east Botswana—1984–1994. Botsw. Notes Rec. 1995, 27, 257–270. [Google Scholar]
- Keiner, M.; Cavric, B.I. Managing the Development of a Fast Growing City: A Case of Gaborone, Botswana; ETH Zurich: Zürich, Switzerland, 2004. [Google Scholar]
- Nkambwe, M.; Arnberg, W. Monitoring land use change in an African tribal village on the rural-urban fringe. Appl. Geogr. 1996, 16, 305–317. [Google Scholar] [CrossRef]
- Rankokwane, B.; Gwebu, T.D. Characteristics, threats and opportunities of landfill scavenging: The case of Gaborone-Botswana. GeoJournal 2006, 65, 151–163. [Google Scholar] [CrossRef]
- Cavric, B.; Mosha, A. Incorporating urban agriculture in Gaborone city planning. Urban Agric. Mag. 2001, 4, 25–27. [Google Scholar]
- Sebego, R.J.; Gwebu, T.D. Patterns, determinants, impacts and policy implications of the spatial expansion of an African capital city: The greater gaborone example. Int. J. Sustain. Built Environ. 2013, 2, 193–208. [Google Scholar] [CrossRef]
- Dougill, A.J.; Akanyang, L.; Perkins, J.S.; Eckardt, F.D.; Stringer, L.C.; Favretto, N.; Atlhopheng, J.; Mulale, K. Land use, rangeland degradation and ecological changes in the southern Kalahari, Botswana. Afr. J. Ecol. 2016, 54, 59–67. [Google Scholar] [CrossRef]
- Akinyemi, F.O.; Mashame, G. Analysis of land change in the dryland agricultural landscapes of eastern Botswana. Land Use Policy 2018, 76, 798–811. [Google Scholar] [CrossRef]
- Statistics Botswana (Ed.) Botswana Population Projections 2011–2026; Government Printers: Gaborone, Botswana, 2015. [Google Scholar]
- Senseman, G.M.; Bagley, C.F.; Tweddale, S.A. Accuracy Assessment of the Discrete Classification of Remotely-Sensed Digital Data for Landcover Mapping; Construction Engineering Research Lab (ARMY): Champaign, IL, USA, 1995. [Google Scholar]
- Muttitanon, W.; Tripathi, N. Land use/land cover changes in the coastal zone of Ban Don Bay, Thailand using Landsat 5 TM data. Int. J. Remote Sens. 2005, 26, 2311–2323. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Brondizio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2004, 25, 2365–2401. [Google Scholar] [CrossRef]
- Shalaby, A.; Tateishi, R. Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Appl. Geogr. 2007, 27, 28–41. [Google Scholar] [CrossRef]
- Yuan, F.; Sawaya, K.E.; Loeffelholz, B.C.; Bauer, M.E. Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Remote Sens. Environ. 2005, 98, 317–328. [Google Scholar] [CrossRef]
- Long, H.; Tang, G.; Li, X.; Heilig, G.K. Socio-economic driving forces of land-use change in Kunshan, the Yangtze River Delta economic area of China. J. Environ. Manag. 2007, 83, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Mango, L.M. Modeling the Effect of Land Use and Climate Change Scenarios on the Water Flux of the Upper Mara River Flow, Kenya; FIU: Miami, FL, USA, 2010. [Google Scholar]
- Lucas, I.; Janssen, F.; van der Wel, F. Accuracy assessment ofsatellite derived landcover data: A review. Photogramm. Eng. Remote Sens. 1994, 60, 419–426. [Google Scholar]
- López, E.; Bocco, G.; Mendoza, M.; Duhau, E. Predicting land-cover and land-use change in the urban fringe: A case in Morelia city, Mexico. Landsc. Urban Plan. 2001, 55, 271–285. [Google Scholar] [CrossRef]
- Silitshena, R.M.K.; McLeod, G. Botswana: A Physical, Social, and Economic Geography; Longman Botswana: Gaborone, Botswana, 1998. [Google Scholar]
- Bessah, E.; Bala, A.; Agodzo, S.K.; Okhimamhe, A.A.; Boakye, E.A.; Ibrahim, S.U. The impact of crop farmers’ decisions on future land use, land cover changes in Kintampo North Municipality of Ghana. Int. J. Clim. Chang. Strateg. Manag. 2019, 11, 72–87. [Google Scholar] [CrossRef]
- Hulme, P.E. Adapting to climate change: Is there scope for ecological management in the face of a global threat? J. Appl. Ecol. 2005, 42, 784–794. [Google Scholar] [CrossRef]
- Memarian, H.; Balasundram, S.K.; Talib, J.B.; Sung, C.T.B.; Sood, A.M.; Abbaspour, K. Validation of CA-Markov for simulation of land use and cover change in the Langat Basin, Malaysia. J. Geogr. Inf. Syst. 2012, 4, 542–554. [Google Scholar] [CrossRef]
- Worku, G.; Bantider, A.; Temesgen, H. Land use and land cover change in Ameleke Watershed, South Ethiopia. J. Nat. Sci. Res. 2014, 4, 42–47. [Google Scholar]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- Song, X.; Yan, C.; Li, S.; Xie, J. Assessment of sandy desertification trends in the Shule River Basin from 1978 to 2010. Sci. Cold Arid Reg. 2014, 6, 52–58. [Google Scholar]
- Lubowski, R.N.; Bucholtz, S.; Claassen, R.; Roberts, M.J.; Cooper, J.C.; Gueorguieva, A.; Johansson, R.C. Environmental Effects of Agricultural Land-Use Change: The Role of Economics and Policy; Economic Research Service: Washington, DC, USA, 2006. [Google Scholar]
- Nkambwe, M.; Totolo, O. Customary land tenure saves the best arable agricultural land in the peri-urban zones of an African city: Gaborone, Botswana. Appl. Geogr. 2005, 25, 29–46. [Google Scholar] [CrossRef]
- Kamwi, J.; Cho, M.; Kaetsch, C.; Manda, S.; Graz, F.; Chirwa, P. Assessing the Spatial Drivers of Land Use and Land Cover Change in the Protected and Communal Areas of the Zambezi Region, Namibia. Land 2018, 7, 131. [Google Scholar] [CrossRef]
- Chipasula, J.; Miti, K. Botswana in Southern Africa; Ajantu Publications: Dehli, India, 1989. [Google Scholar]
- WorldBank. Agriculture Public Expenditure Review, 2000–2013, Botswana; Bill and Melinda Gates Foundation: Gaborone, Botswana, 2014. [Google Scholar]
- Zewdu, S.; Suryabhagavan, K.; Balakrishnan, M. Land-use/land-cover dynamics in Sego Irrigation Farm, southern Ethiopia: A comparison of temporal soil salinization using geospatial tools. J. Saudi Soc. Agric. Sci. 2016, 15, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Li, X. Global understanding of farmland abandonment: A review and prospects. J. Geogr. Sci. 2017, 27, 1123–1150. [Google Scholar] [CrossRef]
- Shackleton, R.; Shackleton, C.; Shackleton, S.; Gambiza, J. Deagrarianisation and forest revegetation in a biodiversity hotspot on the Wild Coast, South Africa. PLoS ONE 2013, 8, e76939. [Google Scholar] [CrossRef]
- Blair, D.; Shackleton, C.; Mograbi, P. Cropland abandonment in South African smallholder communal lands: Land cover change (1950–2010) and farmer perceptions of contributing factors. Land 2018, 7, 121. [Google Scholar] [CrossRef]
- Gidey, E.; Dikinya, O.; Sebego, R.; Segosebe, E.; Zenebe, A. Modeling the Spatio-temporal dynamics and evolution of land use and land cover (1984–2015) using remote sensing and GIS in Raya, Northern Ethiopia. Model. Earth Syst. Environ. 2017, 3, 1285–1301. [Google Scholar] [CrossRef]
- Batisani, N.; Yarnal, B. Rainfall variability and trends in semi-arid Botswana: Implications for climate change adaptation policy. Appl. Geogr. 2010, 30, 483–489. [Google Scholar] [CrossRef]
- Byakatonda, J.; Parida, B.; Kenabatho, P.K.; Moalafhi, D. Analysis of rainfall and temperature time series to detect long-term climatic trends and variability over semi-arid Botswana. J. Earth Syst. Sci. 2018, 127, 25. [Google Scholar] [CrossRef] [Green Version]
- Sefe, F.; Ringrose, S.; Matheson, W. Desertification in north-central Botswana: Causes, processes, and impacts. J. Soil Water Conserv. 1996, 51, 241–248. [Google Scholar]
- DWA. A Study of the Impact of Small Dam Construction on Downstream Water Resources; Department of Water Affairs D.o.W., Ed.; DWA: Gaborone, Botswana, 1992. [Google Scholar]
- Meigh, J. The impact of small farm reservoirs on urban water supplies in Botswana. In Natural Resources Forum; Wiley Online Library: Hoboken, NJ, USA, 1995. [Google Scholar]
- Fox, J.; Vandewalle, M.; Alexander, K. Land Cover Change in Northern Botswana: The Influence of Climate, Fire, and Elephants on Semi-Arid Savanna Woodlands. Land 2017, 6, 73. [Google Scholar] [CrossRef]
- DWA. A Study of Small Dam Construction on Downstream Water Resources (Updated); Department of Water Affairs D.o.W., Ed.; DWA: Gaborone, Botswana, 2014. [Google Scholar]
- Manthe-Tsuaneng, M. Drought Conditions and Management Strategies in Botswana; Ministry of Environment, Wildlife and Tourism: Gaborone, Botswana, 2014. [Google Scholar]
- FAO. Delayed Onset of Seasonal Rains in Parts of Southern Africa Raises Seasons Concern for Crop and Livestock Production in 2016; FAO: Rome, Italy, 2015. [Google Scholar]
- McGill, B.M.; Altchenko, Y.; Hamilton, S.K.; Kenabatho, P.K.; Sylvester, S.R.; Villholth, K.G. Complex interactions between climate change, sanitation, and groundwater quality: A case study from Ramotswa, Botswana. Hydrogeol. J. 2019, 27, 997–1015. [Google Scholar] [CrossRef]
- Hulme, M. Climate Change and Southern Africa: An Exploration of Some Potential Impacts and Implications in the SADC (Southern African Development Community) Region; Food and Agriculture Organization: Norwich, UK, 1996. [Google Scholar]
- Ju, H.; Zhang, Z.; Zhao, X.; Wang, X.; Wu, W.; Yi, L.; Wen, Q.; Liu, F.; Xu, J.; Hu, S. The changing patterns of cropland conversion to built-up land in China from 1987 to 2010. J. Geogr. Sci. 2018, 28, 1595–1610. [Google Scholar] [CrossRef] [Green Version]
- D’Amour, C.B.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.-H.; Haberl, H.; Creutzig, F.; Seto, K.C. Future urban land expansion and implications for global croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939–8944. [Google Scholar] [CrossRef]
- Islam, M. Causes and consequences of agricultural land losses of Rajshahi District, Bangladesh. IOSR J. Environ. Sci. Toxicol. Food Technol. 2013, 5, 58–65. [Google Scholar] [CrossRef]
- Yu, D.; Shi, P.; Liu, Y.; Xun, B. Detecting land use-water quality relationships from the viewpoint of ecological restoration in an urban area. Ecolog. Eng. 2013, 53, 205–216. [Google Scholar] [CrossRef]
- Campbell, B.; Du Toit, R. Vegetation patterns and the influence of small-scale farmers in a semi-arid savanna area in Zimbabwe. Kirkia 1994, 15, 10–32. [Google Scholar]
- Rutherford, M. Annual plant production-precipitation relations in arid and semi-arid regions. S. Afr. J. Sci. 1980, 76, 53–57. [Google Scholar]
- Le Houérou, H.; Bingham, R.; Skerbek, W. Relationship between the variability of primary production and the variability of annual precipitation in world arid lands. J. Arid Environ. 1988, 15, 1–18. [Google Scholar] [CrossRef]
- Vanderpost, C.; Ringrose, S.; Matheson, W.; Arntzen, J. Satellite based long-term assessment of rangeland condition in semi-arid areas: An example from Botswana. J. Arid Environ. 2011, 75, 383–389. [Google Scholar] [CrossRef]
- Hoffman, M.T.; Cowling, R. Vegetation change in the semi-arid eastern Karoo over the last 200 years: An expanding Karoo-fact or fiction? S. Afr. J. Sci. 1990, 86, 286–294. [Google Scholar]
- Dube, O.; Kwerepe, R. Human induced change in the Kgalagadi sands: Beyond the year 2000. In Towards Sustainable Management in the Kalahari Region—Some Essential Background and Critical Issues; University of Botswana: Gaborone, Botswana, 2000. [Google Scholar]
- Enaruvbe, G.O.; Pontius, R.G., Jr. Influence of classification errors on Intensity Analysis of land changes in southern Nigeria. Int. J. Remote Sens. 2015, 36, 244–261. [Google Scholar] [CrossRef]
Year | Sensor | Spatial Resolution | No. of Bands | Date of Acquisition | Sources |
---|---|---|---|---|---|
1984, 1995 & 2005 | TM | 30m | 7 | 6 July 1984 5 July 19951 4 June 2005 | USGS |
2015 | OLI | 30m | 11 | 12 July 2015 | USGS |
Land Use and Land Cover Type | Description |
---|---|
Built-up | Residential, commercial, industrial, transportation, communication and urban areas |
Cropland | Cropland, forage, orchards, nurseries, horticultural land, fallow land, intensively, moderately and sparsely cultivated lands |
Shrub land | Woody plant, less than 5 m in height, no defined crown, a mixture of trees with grasses |
Water Body | Streams, canals, lakes, dams or reservoirs, ponds |
Bare land | Exposed soils, sand, bare rocks, with less than 10% vegetation cover, floodplain, quarries, sparse vegetation |
Tree Savanna | Woody plant more than 5 m in height with a somehow definite crown |
LULC Category | 1984 | 1995 | 2005 | 2015 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UA (%) | PA % | OA % | KC % | UA % | PA % | OA % | KC % | UA % | PA % | OA % | KC % | UA % | PA % | OA % | KC % | |
Cropland | 73 | 58 | 97 | 84 | 85 | 95 | 86 | 89 | ||||||||
Bareland | 86 | 86 | 65 | 65 | 87 | 83 | 85 | 69 | ||||||||
Shrubland | 70 | 90 | 81 | 0.75 | 97 | 76 | 81 | 0.76 | 82 | 88 | 85 | 0.81 | 83 | 91 | 86 | 0.82 |
Built-up | 93 | 67 | 73 | 87 | 88 | 78 | 97 | 90 | ||||||||
Tree Savanna | 95 | 83 | 82 | 84 | 83 | 80 | 83 | 79 | ||||||||
Water body | 80 | 67 | 57 | 73 | 100 | 71 | 86 | 80 |
1984 | 1995 | LULC Dynamics between 1984–1995 | ||||||
LULC Type | Area (km2) | Area (%) | Area (km2) | Area (%) | Area (km2) | Area (%) | Annual Change Rate in km2 | % |
CPL | 635.5 | 15.0 | 745.5 | 17.1 | 92.0 | 14.1 | 8.4 | 1.3 |
BL | 122.4 | 2.8 | 31.2 | 0.7 | −91.2 | −74.5 | −8.3 | −6.8 |
SB | 2597.3 | 59.7 | 2524.0 | 58.0 | −73.3 | −2.8 | −6.7 | −0.3 |
BU | 26.4 | 0.6 | 55.2 | 1.3 | 28.8 | 109.1 | 2.6 | 9.9 |
TS | 945.3 | 21.7 | 975.1 | 22.4 | 29.8 | 3.2 | 2.7 | 0.3 |
WB | 5.7 | 0.1 | 19.6 | 0.5 | 13.9 | 244.0 | 1.3 | 22.2 |
Total | 4350.5 | 100.0 | 4350.5 | 100.0 | - | - | - | - |
1995 | 2005 | LULC Dynamics between 1995–2005 | ||||||
LULC Type | Area (km2) | Area (%) | Area (km2) | Area (%) | Area (km2) | Area (%) | Annual Change Rate in km2 | % |
CPL | 745.5 | 17.1 | 747.5 | 17.2 | 2.0 | 0.3 | 0.2 | 0.0 |
BL | 31.2 | 0.7 | 81.5 | 1.9 | 50.3 | 161.1 | 5.0 | 16.1 |
SB | 2524.0 | 58.0 | 2631.6 | 60.5 | 107.6 | 4.3 | 10.8 | 0.4 |
BU | 55.2 | 1.3 | 115.0 | 2.6 | 59.8 | 108.3 | 6.0 | 10.8 |
TS | 975.1 | 22.4 | 762.8 | 17.5 | −212.3 | −21.8 | −21.2 | −2.2 |
WB | 19.6 | 0.5 | 12.3 | 0.3 | −7.3 | −37.4 | −0.7 | −3.7 |
Total | 4350.5 | 100.0 | 4350.5 | 100.0 | - | - | - | - |
2005 | 2015 | LULC Dynamics between 2005–2015 | ||||||
LULC Type | Area (km2) | Area (%) | Area (km2) | Area (%) | Area (km2) | Area (%) | Annual Change Rate in km2 | % |
CPL | 747.5 | 17.2 | 1011.4 | 23.3 | 263.9 | 35.3 | 26.4 | 0.4 |
BL | 81.5 | 1.9 | 180.6 | 4.2 | 99.1 | 121.5 | 9.9 | 1.2 |
SB | 2631.6 | 60.5 | 2591.8 | 59.6 | −39.8 | −1.5 | −4.0 | 0.0 |
BU | 114.9 | 2.6 | 228.2 | 5.2 | 113.2 | 98.5 | 11.3 | 1.0 |
TS | 762.8 | 17.5 | 331.8 | 7.6 | −430.9 | −56.5 | −43.1 | −0.6 |
WB | 12.3 | 0.3 | 6.9 | 0.2 | −5.4 | −44.1 | −0.5 | −0.4 |
Total | 4350.5 | 100.0 | 4350.5 | 100.0 | - | - | - | - |
1984 | 2015 | LULC Dynamics between 1984–2015 | ||||||
LULC Type | Area (km2) | Area (%) | Area(km2) | Area (%) | Area (km2) | Area (%) | Annual Change Rate in km2 | % |
CPL | 635.5 | 15.0 | 1011.4 | 23.3 | 357.9 | 54.8 | 11.5 | 0.1 |
BL | 122.4 | 2.8 | 180.6 | 4.2 | 58.2 | 47.5 | 1.9 | 0.0 |
SB | 2597.3 | 59.7 | 2591.8 | 59.6 | −5.5 | −0.2 | −0.2 | 0.0 |
BU | 26.4 | 0.6 | 228.2 | 5.2 | 201.8 | 764.5 | 6.5 | 0.8 |
TS | 945.3 | 21.7 | 331.8 | 7.6 | −613.4 | −64.9 | −19.8 | −0.1 |
WB | 5.7 | 0.1 | 6.9 | 0.2 | 1.2 | 20.3 | 0.0 | 0.0 |
Total | 4350.5 | 100.0 | 4350.5 | 100.0 | - | - | - | - |
Periods | LULC Type | Cropland | Bare Land | Built-Up | Shrub Land | Tree Savanna | Water Body | Losses (km2) | % Losses |
---|---|---|---|---|---|---|---|---|---|
1984–1995 | Cropland | 502.4 | 2.3 | 2.0 | 133.1 | 13.7 | 0.1 | 151.2 | 23.1 |
Bare land | 16.1 | 7.8 | 3.5 | 85.1 | 2.1 | 7.9 | 114.7 | 93.6 | |
Built-up | 0.7 | 0.1 | 21.5 | 3.9 | 0.1 | 0.0 | 4.8 | 18.3 | |
Shrub land | 219.3 | 20.5 | 27.2 | 2042.3 | 283.0 | 4.9 | 554.9 | 21.4 | |
Tree savanna | 7.0 | 0.5 | 1.0 | 259.3 | 675.9 | 1.4 | 269.2 | 28.5 | |
Water body | 0.0 | 0.0 | 0.0 | 0.2 | 0.1 | 5.3 | 0.3 | 5.4 | |
Gains (km2) | 243.1 | 23.4 | 33.7 | 481.6 | 299 | 14.3 | 1095.1 | ||
% Gains | 32.6 | 75.0 | 61.1 | 19.1 | 30.7 | 73.0 | |||
1995–2005 | Cropland | 547.2 | 5.1 | 7.5 | 176.4 | 9.3 | 0.0 | 198.3 | 26.6 |
Bare land | 3.6 | 8.5 | 1.2 | 17.4 | 0.4 | 0.0 | 22.6 | 72.7 | |
Built-up | 1.8 | 0.1 | 48.6 | 4.5 | 0.2 | 0.0 | 6.6 | 12.0 | |
Shrub land | 188.2 | 62.8 | 54.9 | 2036.6 | 180.9 | 0.5 | 487.3 | 19.3 | |
Tree savanna | 6.5 | 3.6 | 2.7 | 390.6 | 571.4 | 0.2 | 403.6 | 41.4 | |
Water body | 0.1 | 1.4 | 0.0 | 5.9 | 0.5 | 11.6 | 7.9 | 40.5 | |
Gains | 200.2 | 73 | 66.3 | 594.8 | 191.3 | 0.7 | 1126.3 | ||
% Gains | 26.8 | 89.6 | 57.7 | 22.6 | 25.1 | 5.7 | |||
2005–2015 | Cropland | 623.1 | 17.1 | 27.5 | 77.8 | 1.7 | 0.3 | 124.4 | 16.6 |
Bare land | 7.6 | 24.2 | 3.7 | 41.5 | 4.1 | 0.4 | 57.3 | 70.3 | |
Built-up | 2.2 | 1.1 | 110.2 | 1.2 | 0.2 | 0.0 | 4.7 | 4.1 | |
Shrub land | 359.0 | 126.2 | 81.0 | 1967.1 | 97.1 | 0.9 | 664.2 | 25.2 | |
Tree savanna | 19.3 | 5.3 | 5.7 | 503.6 | 228.6 | 0.2 | 534.1 | 70.0 | |
Water body | 0.1 | 6.6 | 0.0 | 0.4 | 0.1 | 5.1 | 7.2 | 58.5 | |
Gains | 388.2 | 156.3 | 117.9 | 624.5 | 103.2 | 1.8 | 1391.9 | ||
% Gains | 38.4 | 86.6 | 51.7 | 24.1 | 31.1 | 26.1 | |||
1984–2015 | Cropland | 527.7 | 11.8 | 18.6 | 92.7 | 2.5 | 0.3 | 125.9 | 19.3 |
Bare land | 26.2 | 42.2 | 17.0 | 35.6 | 0.7 | 0.7 | 80.2 | 65.5 | |
Built-up | 0.3 | 0.1 | 25.8 | 0.1 | 0.0 | 0.0 | 0.5 | 1.9 | |
Shrub land | 443.5 | 111.8 | 148.8 | 1833.9 | 57.4 | 1.7 | 763.2 | 29.4 | |
Tree savanna | 13.5 | 13.2 | 18.0 | 628.9 | 271.2 | 0.4 | 674 | 71.3 | |
Water body | 0.0 | 15 | 0.0 | 0.3 | 0.0 | 3.7 | 15.3 | 33.9 | |
Gains | 483.5 | 151.9 | 202.4 | 757.6 | 60.6 | 3.1 | 1659.1 | ||
% Gains | 47.8 | 84.1 | 88.7 | 29.2 | 18.3 | 44.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matlhodi, B.; Kenabatho, P.K.; Parida, B.P.; Maphanyane, J.G. Evaluating Land Use and Land Cover Change in the Gaborone Dam Catchment, Botswana, from 1984–2015 Using GIS and Remote Sensing. Sustainability 2019, 11, 5174. https://doi.org/10.3390/su11195174
Matlhodi B, Kenabatho PK, Parida BP, Maphanyane JG. Evaluating Land Use and Land Cover Change in the Gaborone Dam Catchment, Botswana, from 1984–2015 Using GIS and Remote Sensing. Sustainability. 2019; 11(19):5174. https://doi.org/10.3390/su11195174
Chicago/Turabian StyleMatlhodi, Botlhe, Piet K. Kenabatho, Bhagabat P. Parida, and Joyce G. Maphanyane. 2019. "Evaluating Land Use and Land Cover Change in the Gaborone Dam Catchment, Botswana, from 1984–2015 Using GIS and Remote Sensing" Sustainability 11, no. 19: 5174. https://doi.org/10.3390/su11195174
APA StyleMatlhodi, B., Kenabatho, P. K., Parida, B. P., & Maphanyane, J. G. (2019). Evaluating Land Use and Land Cover Change in the Gaborone Dam Catchment, Botswana, from 1984–2015 Using GIS and Remote Sensing. Sustainability, 11(19), 5174. https://doi.org/10.3390/su11195174