Sustainable Urban Transport Planning Considering Different Stakeholder Groups by an Interval-AHP Decision Support Model
Abstract
:1. Introduction
1.1. Public Involvement in Urban Transport Development
1.2. Literature Review on MCDM for Transportation and Consultation Efforts
2. Methodology
2.1. Workflow for MCDA Applied to Public Transport Supply
- A consistency check is required (passengers and non-passengers are evaluators);
- The ranking of factors is both ordinal and cardinal;
- In the final decision, not only is the ranking itself important but also the scores assigned to each factor.
2.2. Conventional AHP
2.3. Interval-AHP
- For each we have .
- P and Q are reciprocal matrices.
- can be defined as an interval comparison reciprocal matrix for any .
3. Results
3.1. Results of Conventional AHP
3.2. Results of IAHP
4. Comparing Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Bank. World Development Report. Development and Climate Change; World Bank: Washington, DC, USA, 2010. [Google Scholar]
- Rashidi, K.; Stadelmann, M.; Patt, A. Valuing co-benefits to make low-carbon investments in cities bankable: The case of waste and transportation projects. Sustain. Cities Soc. 2017, 34, 69–78. [Google Scholar] [CrossRef]
- Kwan, S.C.; Sutan, R.; Hashim, J.H. Trip characteristics as the determinants of intention to shift to rail transport among private motor vehicle users in Kuala Lumpur, Malaysia. Sustain. Cities Soc. 2018, 36, 319–326. [Google Scholar] [CrossRef]
- Chiu Chuen, O.; Karim, M.R.; Yusoff, S. Mode choice between private and public transport in Klang valley, Malaysia. Sci. World J. 2014, 2014, 394587. [Google Scholar] [CrossRef]
- Corpuz, G. Public Transport or Private Vehicle: Factors That Impact on Mode Choice. Available online: https://trid.trb.org/view/855223 (accessed on 19 December 2018).
- Duleba, S.; Mishina, T.; Shimazaki, Y. A dynamic analysis on public bus transport’s supply quality by using AHP. Transport 2012, 27, 268–275. [Google Scholar] [CrossRef]
- Ioppolo, G.; Cucurachi, S.; Salomone, R.; Saija, G.; Shi, L. Sustainable local development and environmental governance: A strategic planning experience. Sustainability 2016, 8, 180. [Google Scholar] [CrossRef]
- Koryagin, A. Urban planning: A game theory application for the travel demand management. Period. Polytech. Transp. Eng. 2018, 46, 171–178. [Google Scholar] [CrossRef]
- Hrelja, R. Integrating transport and land-use planning? How steering cultures in local authorities affect implementation of integrated public transport and land-use planning. Transp. Res. Part A Policy Pract. 2015, 74, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Juan, Z.; Lu, W.; Xiao, G. Do the organizational forms affect passenger satisfaction? Evidence from chinese public transport service. Transp. Res. Part A Policy Pract. 2016, 94, 129–148. [Google Scholar] [CrossRef]
- Kylili, A.; Fokaides, P.A. European smart cities: The role of zero energy buildings. Sustain. Cities Soc. 2015, 15, 86–95. [Google Scholar] [CrossRef]
- Beierle, T.C.; Cayford, J.; Beierle, T.C. Democracy in Practice; Taylor & Francis: Didcot, UK, 2002. [Google Scholar]
- Van Lierop, D.; Badami, M.G.; El-Geneidy, A.M. What influences satisfaction and loyalty in public transport? A review of the literature. Transp. Rev. 2018, 38, 52–72. [Google Scholar] [CrossRef]
- Kinzer, K. How can we help? An exploration of the public’s role in overcoming barriers to urban sustainability plan implementation. Sustain. Cities Soc. 2018, 39, 719–728. [Google Scholar] [CrossRef]
- Soma, K.; Nielsen, J.; Papadopoulou, N.; Polet, H.; Zengin, M.; Smith, C.; Eigaard, O.; Sala, A.; Bonanomi, S.; Van Den Burg, S. Stakeholder perceptions in fisheries management-sectors with benthic impacts. Mar. Policy 2018, 92, 73–85. [Google Scholar] [CrossRef]
- Redman, L.; Friman, M.; Gärling, T.; Hartig, T. Quality attributes of public transport that attract car users: A research review. Transp. Policy 2013, 25, 119–127. [Google Scholar] [CrossRef]
- Garrido-Jurado, S.; Muñoz-Salinas, R.; Madrid-Cuevas, F.J.; Marín-Jiménez, M.J. Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognit. 2014, 47, 2280–2292. [Google Scholar] [CrossRef]
- Nassereddine, M.; Eskandari, H. An integrated mcdm approach to evaluate public transportation systems in tehran. Transp. Res. Part A Policy Pract. 2017, 106, 427–439. [Google Scholar] [CrossRef]
- Duleba, S.; Shimazaki, Y.; Mishina, T. An analysis on the connections of factors in a public transport system by AHP-ISM. Transport 2013, 28, 404–412. [Google Scholar] [CrossRef]
- Moslem, S.; Duleba, S. Application of ahp for evaluating passenger demand for public transport improvements in Mersin, Turkey. Pollack Period. 2018, 13, 67–76. [Google Scholar] [CrossRef]
- Duleba, S.; Moslem, S. Examining pareto optimality in analytic hierarchy process on real data: An application in public transport service development. Expert Syst. Appl. 2019, 116, 21–30. [Google Scholar] [CrossRef]
- Macharis, C.; De Witte, A.; Ampe, J. The Multi-Actor, Multi-Criteria Analysis Methodology (MAMCA) for the Evaluation of Transport Projects: Theory and Practice. J. Adv. Transp. 2008, 43, 183–202. [Google Scholar] [CrossRef]
- De Brucker, K.; Macharis, C.; Verbeke, A. Multi-citeria analysis and the resolution of sustainable development dilemmas: A stakeholder management approach. Eur. J. Oper. Res. 2013, 224, 122–131. [Google Scholar] [CrossRef]
- Janiak, M.K.; Jacek, Ż. Multiple criteria evaluation of different redesign variants of the public tram system. Transp. Res. Procedia 2014, 3, 690–699. [Google Scholar] [CrossRef]
- Suganthi, L. Multi expert and multi criteria evaluation of sectoral investments for sustainable development: An integrated fuzzy ahp, vikor/dea methodology. Sustain. Cities Soc. 2018, 43, 144–156. [Google Scholar] [CrossRef]
- Mardani, A.; Zavadskas, E.K.; Khalifah, Z.; Jusoh, A.; Nor, K.M. Multiple criteria decision-making techniques in transportation systems: A systematic review of the state of the art literature. Transport 2016, 31, 359–385. [Google Scholar] [CrossRef]
- Saaty, T.L. The analytic network process. In Decision Making with the Analytic Network Process; Springer: Berlin, Germany, 2006; pp. 1–26. [Google Scholar]
- Pedroso, G.; Bermann, C.; Sanches-Pereira, A. Combining the functional unit concept and the analytic hierarchy process method for performance assessment of public transport options. Case Stud. Transp. Policy 2018, 6, 722–736. [Google Scholar] [CrossRef]
- Fu, S.; Yan, X.; Zhang, D.; Zhang, M. Risk influencing factors analysis of arctic maritime transportation systems: A Chinese perspective. Marit. Policy Manag. 2018, 45, 439–455. [Google Scholar] [CrossRef]
- Boujelbene, Y.; Derbel, A. The performance analysis of public transport operators in Tunisia using AHP method. Procedia Comput. Sci. 2015, 73, 498–508. [Google Scholar] [CrossRef]
- Vaidya, O.S. Evaluating the performance of public urban transportation systems in India. J. Public Transp. 2014, 17, 11. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Ghorbanzadeh, O. GIS-based interval pairwise comparison matrices as a novel approach for optimizing an analytical hierarchy process and multiple criteria weighting. GI_Forum 2017, 1, 27–35. [Google Scholar] [CrossRef]
- De Brito, M.M.; Evers, M.; Almoradie, A.D.S. Participatory flood vulnerability assessment: A multi-criteria approach. Hydrol. Earth Syst. Sci. 2018, 22, 373. [Google Scholar] [CrossRef]
- Lehner, A.; Erlacher, C.; Schlögl, M.; Wegerer, J.; Blaschke, T.; Steinnocher, K. Can iso-defined urban sustainability indicators be derived from remote sensing: An expert weighting approach. Sustainability 2018, 10, 1268. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Feizizadeh, B.; Blaschke, T. An interval matrix method used to optimize the decision matrix in AHP technique for land subsidence susceptibility mapping. Environ. Earth Sci. 2018, 77, 584. [Google Scholar] [CrossRef]
- Mendoza, G.A.; Martins, H. Multi-criteria decision analysis in natural resource management: A critical review of methods and new modelling paradigms. For. Ecol. Manag. 2006, 230, 1–22. [Google Scholar] [CrossRef]
- Cabrera-Barona, P.; Ghorbanzadeh, O. Comparing classic and interval analytical hierarchy process methodologies for measuring area-level deprivation to analyze health inequalities. Int. J. Environ. Res. Public Health 2018, 15, 140. [Google Scholar] [CrossRef] [PubMed]
- Feizizadeh, B. A novel approach of fuzzy dempster–shafer theory for spatial uncertainty analysis and accuracy assessment of object-based image classification. IEEE Geosci. Remote Sens. Lett. 2018, 15, 18–22. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Feizizadeh, B.; Blaschke, T. Multi-criteria risk evaluation by integrating an analytical network process approach into GIS-based sensitivity and uncertainty analyses. Geomat. Nat. Hazards Risk 2018, 9, 127–151. [Google Scholar] [CrossRef]
- Larimian, T.; Zarabadi, Z.S.S.; Sadeghi, A. Developing a fuzzy AHP model to evaluate environmental sustainability from the perspective of secured by design scheme—A case study. Sustain. Cities Soc. 2013, 7, 25–36. [Google Scholar] [CrossRef]
- Massami, E.P.; Myamba, B.M. Application of vague analytical hierarchy process to prioritize the challenges facing public transportation in dar es salaam city—Tanzania. Int. J. Adv. Res. Artif. Intell. 2016, 5, 46–53. [Google Scholar]
- Entani, T.; Sugihara, K. Uncertainty index based interval assignment by interval AHP. Eur. J. Oper. Res. 2012, 219, 379–385. [Google Scholar] [CrossRef]
- Chen, J.; Yang, Y. A fuzzy ANP-based approach to evaluate region agricultural drought risk. Procedia Eng. 2011, 23, 822–827. [Google Scholar] [CrossRef]
- Saaty, T.L.; Vargas, L.G. Inconsistency and rank preservation. J. Math. Psychol. 1984, 28, 205–214. [Google Scholar] [CrossRef]
- Tumpach, C.; Dwivedi, P.; Izlar, R.; Cook, C. Understanding perceptions of stakeholder groups about forestry best management practices in Georgia. J. Environ. Manag. 2018, 213, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Solomon, M. Groupthink versus the wisdom of crowds: The social epistemology of deliberation and dissent. South. J. Philos. 2006, 44, 28–42. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Beheshtirad, M.; Pradhan, B. A comparative assessment of prediction capabilities of modified analytical hierarchy process (M-AHP) and Mamdani fuzzy logic models using Netcad-GIS for forest fire susceptibility mapping. Geomat. Nat. Hazards Risk 2016, 7, 861–885. [Google Scholar] [CrossRef]
- Vidal, L.-A.; Marle, F.; Bocquet, J.-C. Using a Delphi process and the analytic hierarchy process (AHP) to evaluate the complexity of projects. Expert Syst. Appl. 2011, 38, 5388–5405. [Google Scholar] [CrossRef]
- Goodwin, P.; Wright, G. Decision Analysis for Management Judgment, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Si, J.; Marjanovic-Halburd, L.; Nasiri, F.; Bell, S. Assessment of building-integrated green technologies: A review and case study on applications of multi-criteria decision making (MCDM) method. Sustain. Cities Soc. 2016, 27, 106–115. [Google Scholar] [CrossRef]
- Malczewski, J.; Rinner, C. Introduction to GIS-MCDA. In Multicriteria Decision Analysis in Geographic Information Science; Springer: Berlin, Germany, 2015; pp. 23–54. [Google Scholar]
- Chen, N.; Xu, Z.; Xia, M. Interval-valued hesitant preference relations and their applications to group decision making. Knowl.-Based Syst. 2013, 37, 528–540. [Google Scholar] [CrossRef]
- Liu, F. Acceptable consistency analysis of interval reciprocal comparison matrices. Fuzzy Sets Syst. 2009, 160, 2686–2700. [Google Scholar] [CrossRef]
- Pourtaghi, Z.S.; Pourghasemi, H.R.; Rossi, M. Forest fire susceptibility mapping in the Minudasht forests, Golestan province, Iran. Environ. Earth Sci. 2015, 73, 1515–1533. [Google Scholar] [CrossRef]
- Mikhailov, L. Group prioritization in the AHP by fuzzy preference programming method. Comput. Oper. Res. 2004, 31, 293–301. [Google Scholar] [CrossRef]
- Pirnazar, M.; Karimi, A.Z.; Feizizadeh, B.; Ostad-Ali-Askari, K.; Eslamian, S.; Hasheminasab, H.; Ghorbanzadeh, O.; Hamedani, M.H. Assessing flood hazard using GIS based multi-criteria decision making approach; study area: East-Azerbaijan province (Kaleybar Chay Basin). J. Flood Eng. 2017, 8, 203–223. [Google Scholar]
- Kritikos, T.R.; Davies, T.R. Gis-based multi-criteria decision analysis for landslide susceptibility mapping at northern Evia, Greece [gis-basierte multikriterielle entscheidungsanalysen zur kartierung von massenverlagerungspotenzialen im nördlichen evia, griechenland.]. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 2011, 162, 421–434. [Google Scholar] [CrossRef]
Numerical Values | Verbal Scale | Explanation |
---|---|---|
1 | Equal importance of both elements | Two elements contribute equally |
3 | Moderate importance of one element over another | Experience and judgment favour one element over another |
5 | Strong importance of one element over another | An element is strongly favoured |
7 | Very strong importance of one element over another | An element is very strongly dominant |
9 | Extreme importance of one element over another | An element is favoured by at least an order of magnitude |
2, 4, 6, 8 | Intermediate values | Used to compromise between two judgments |
n | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
RI | 0 | 0.58 | 0.9 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghorbanzadeh, O.; Moslem, S.; Blaschke, T.; Duleba, S. Sustainable Urban Transport Planning Considering Different Stakeholder Groups by an Interval-AHP Decision Support Model. Sustainability 2019, 11, 9. https://doi.org/10.3390/su11010009
Ghorbanzadeh O, Moslem S, Blaschke T, Duleba S. Sustainable Urban Transport Planning Considering Different Stakeholder Groups by an Interval-AHP Decision Support Model. Sustainability. 2019; 11(1):9. https://doi.org/10.3390/su11010009
Chicago/Turabian StyleGhorbanzadeh, Omid, Sarbast Moslem, Thomas Blaschke, and Szabolcs Duleba. 2019. "Sustainable Urban Transport Planning Considering Different Stakeholder Groups by an Interval-AHP Decision Support Model" Sustainability 11, no. 1: 9. https://doi.org/10.3390/su11010009
APA StyleGhorbanzadeh, O., Moslem, S., Blaschke, T., & Duleba, S. (2019). Sustainable Urban Transport Planning Considering Different Stakeholder Groups by an Interval-AHP Decision Support Model. Sustainability, 11(1), 9. https://doi.org/10.3390/su11010009