Evaluation of Silage Corn Yield Gap: An Approach for Sustainable Production in the Semi-Arid Region of USA
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Experiments
2.2. Modeling Component
2.3. Statistical Analysis
3. Results and Discussion
3.1. Observed Data
3.2. Model Calibration
3.3. Long-Term Simulation of Silage Maize Growth and Development
3.4. Potential Yield, Yield Gap, and Opportunities for Increasing Silage Corn Yield
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Karamouz, M.; Ahmadi, B.; Zahmatkesh, Z. Developing an agricultural planning model in a watershed considering climate change impacts. J. Water Resour. Plan. Manag. 2013, 10, 349–363. [Google Scholar] [CrossRef]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Lett. Res. Nat. 2012, 490, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Howell, T.A. Irrigation scheduling research and its impact on water use. In Evapotranspiration and Irrigation Scheduling, Proceedings of the International Conference, San Antonio, TX, USA, 3–6 November 1996; Camp, C.R., Sadler, E.J., Yoder, R.E., Eds.; American Society of Agricultural Engineers: St. Joseph, MI, USA, 1996; pp. 21–33. [Google Scholar]
- Geerts, S.; Raes, D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric. Water Manag. 2009, 96, 1275–1284. [Google Scholar] [CrossRef]
- Al-Karaki, G.N.; Al-Hashimi, M. Green fodder production and water use efficiency of some forage crops under hydroponic conditions. Int. Sch. Res. Not. Agron. 2012, 2012, 924672. [Google Scholar] [CrossRef]
- Pandy, R.K.; Maranville, J.W.; Admou, A. Deficit irrigation and nitrogen effects on maize in a Sahelian environment. I. Grain yield and yield components. Agric. Water Manag. 2000, 46, 1–13. [Google Scholar] [CrossRef]
- Koenig, R.; Nelson, M.; Barnhill, J.; Miner, D. Fertilizer Management for Grass and Grass-Legume Mixtures; AG-FG-03; Utah State University Cooperative Extension: Logan, UT, USA, 2002. [Google Scholar]
- Tucker, M.R. Essential Plant Nutrients: Their Presence in North Carolina Soils and Role in Plant Nutrition; Department of Agriculture and Consumer Services: Agronomic Division, NC, USA, 1999; p. 9. [Google Scholar]
- Rana, G.; Katerji, N. Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: A review. Eur. J. Agron. 2000, 13, 125–153. [Google Scholar] [CrossRef]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. DSSAT Cropping System Model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- López-Cedrón, F.X.; Boote, K.J.; Pineirob, C.J.; Sau, F. Improving the CERES Maize model ability to simulate water deficit impact on maize production and yield components. Agron. J. 2008, 100, 296–307. [Google Scholar] [CrossRef]
- Staggenborg, S.A.; Vanderlip, R.L. Crop Simulation Models can be used as dry-land cropping systems research tools. Agron. J. 2005, 97, 378–384. [Google Scholar] [CrossRef]
- Kaur, G.; Garcia y Garcia, A.; Norton, U.; Persson, T.; Kelleners, T. Effects of cropping practices on water-use and water productivity of dryland winter wheat in the high plains ecoregion of Wyoming. J. Crop Improv. 2015, 29, 491–517. [Google Scholar] [CrossRef]
- Monteith, J.L. The quest for balance in crop modelling. Agron. J. 1996, 88, 695–697. [Google Scholar] [CrossRef]
- Hoogenboom, G.; Jones, J.W.; Wilkens, P.W.; Porter, C.H.; Boote, K.J.; Hunt, L.A.; Singh, U.; Lizaso, J.I.; White, J.W.; Uryasev, O.; et al. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.6 (www.DSSAT.net); DSSAT Foundation: Prosser, Washington, DC, USA, 2015. [Google Scholar]
- Chun, L.W.; Anlauf, R.; Ma, Y. Application of the DSSAT model to simulate wheat growth in Eastern China. J. Agric. Sci. 2013, 5, 198–208. [Google Scholar]
- Iglesias, A. Use of DSSAT models for climate change impact assessment, calibration and validation of CERES-Wheat and CERES-Maize in Spain. In Proceedings of the CGE Hands-on Training Workshop on V&A Assessment of the Asia and the Pacific Region, Jakarta, Indonesia, 20–24 March 2006. [Google Scholar]
- Ritchie, J.T. Soil water balance and plant water stress. In Understanding Options for Agricultural Production; Tsugi, G.Y., Hoogenboom, G., Thornton, P.K., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998; pp. 41–54. [Google Scholar]
- Uehara, G.; Tsuji, G.Y. Overview of IBSNAT. In Understanding Options for Agricultural Production; Tsuji, G.Y., Hoogenboom, G., Thornton, P.K., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998; pp. 1–7. [Google Scholar]
- Doorenbos, J.; Pruitt, W. Guidelines for Predicting Crop Water Requirements, Irrigation and Drainage Paper 24; FAO: Rome, Italy, 1977. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements, Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Walter, I.; Allen, R.; Elliott, R.; Jensen, M.; Itenfisu, D.; Mecham, B.; Howell, T.; Snyder, R.; Brown, P.; Echings, S.; et al. ASCE’s Standardized Reference Evapotranspiration Equation (ASCE). In Proceedings of the Watershed Management and Operations Management Conferences 2000, Fort Collins, CO, USA, 20–24 June 2000; pp. 1–11. [Google Scholar]
- Ritchie, S.W.; Hanway, J.J.; Benson, G.O. How a Corn Plant Develops; Iowa State University of Science and Technology, Cooperative Extension Service: Ames, IA, USA, 1993. [Google Scholar]
- Pickering, N.B.; Hansen, J.W.; Jones, J.W.; Wells, C.M.; Chan, V.K.; Godwin, D.C. WeatherMan: A utility for managing and generating daily weather data. Agron. J. 1994, 86, 332–337. [Google Scholar] [CrossRef]
- USDA-NRCS. Irrigation Water Management. Program Act No. 449 (2012). Available online: http://www.nrcs.usda.gov (accessed on 14 October 2016).
- Hunt, L.A.; Pararajasingham, S.; Jones, J.W.; Hoogenboom, G.; Imamura, D.T.; Ogoshi, R.M. GENCALC: Software to facilitate the use of crop models for analyzing field experiments. Agron. J. 1993, 85, 1090–1094. [Google Scholar] [CrossRef]
- Liu, H.L.; Yang, J.Y.; Drury, C.F.; Reynolds, W.D.; Tan, C.S.; Bai, Y.L.; He, P.; Jin, J.; Hoogenboom, G. Using the DSSAT-CERES-Maize model to simulate crop yield and nitrogen cycling in fields under long-term continuous maize production. Nutr. Cycl. Agroecosyst. 2011, 89, 313–328. [Google Scholar] [CrossRef]
- Abritta, M.; Garcia y Garcia, A. Subsurface and Sprinkler Irrigated Corn; University of Wyoming, Agricultural Experiment Station, Field Days Bull: Laramie, WY, USA, 2012; pp. 129–130. [Google Scholar]
- NOAA-NCDC-National Climatic Data Center. 2016. Available online: http://www.ncdc.noaa.gov (accessed on 14 October 2016).
- Evans, L.T.; Fischer, R.A. Yield potential: Its definition, measurement and significance. Crop Sci. 1999, 39, 1544–1551. [Google Scholar] [CrossRef]
- Lobell, D.B.; Cassman, K.G.; Field, C.B. Crop yield gaps: Their importance, magnitudes, and causes. Annu. Rev. Environ. Resour. 2009, 34, 179–204. [Google Scholar] [CrossRef]
- Willmott, C.J.; Akleson, G.S.; Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; Odonnell, J.; Rowe, C.M. Statistics for the evaluation and comparison of models. J. Geophys. Res. 1985, 90, 8995–9005. [Google Scholar] [CrossRef]
- Loague, K.; Green, R.E. Statistical and graphical methods for evaluating solute transport models: Overview and application. J. Contam. Hydrol. 1991, 7, 51–73. [Google Scholar] [CrossRef]
- SAS Institute. SAS Proprietary Software Version 9.4; SAS Institute Inc.: Cary, NC, USA, 2012. [Google Scholar]
- Bartlett, M.S. Properties of sufficiency and statistical tests. Proc. R. Soc. Lond. Ser. A 1937, 160, 268–282. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Ma, B.L.; Morrison, M.G.; Dwyer, L.D. Canopy light reflectance and field greenness to assess nitrogen fertilization and yield of maize. Agron. J. 1996, 88, 915–920. [Google Scholar] [CrossRef]
- Valero, J.A.; Juan, M.; Maturano, A.A.; Ramírez, J.M.T.; Benito, M.; Alvarez, J.F.O. Growth and nitrogen use efficiency of irrigated maize in a semiarid region as affected by nitrogen fertilization. Span. J. Agric. Res. 2005, 3, 134–144. [Google Scholar] [CrossRef]
- Kaiser, W.M. Effect of water deficit on photosynthetic capacity. Physiol. Plant. 1987, 71, 142–149. [Google Scholar] [CrossRef]
- Hugh, J.E.; Richard, F.D. Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agron. J. 2003, 95, 688–696. [Google Scholar]
- Lindquist, J.L.; Arkebauer, T.J.; Walters, D.T.; Gassman, K.G.; Dobermann, A. Maize radiation use efficiency under optimal growth conditions. Agron. J. 2005, 97, 72–78. [Google Scholar] [CrossRef]
- Hammad, H.M.; Ahmad, A.; Azhar, F.; Khaliq, T.; Wajid, A.; Nasim, W.; Farhad, W. Optimizing water and nitrogen requirement in maize (Zea Mays L.) under semi-arid conditions of Pakistan. Pak. J. Bot. 2011, 43, 2919–2923. [Google Scholar]
- Yang, J.C.; Zhang, J.H. Grain filling of cereals under soil drying. New Phytol. 2006, 169, 223–236. [Google Scholar] [CrossRef] [PubMed]
- Muchow, R.C.; Davis, R. Effect of nitrogen supply on the comparative productivity of maize and sorghum in a semi-arid tropical environment: II. Radiation interception and biomass accumulation. Field Crops Res. 1988, 18, 17–30. [Google Scholar] [CrossRef]
- He, J.; Dukes, M.D.; Hochmuth, G.J.; Jones, J.W.; Graham, W.D. Identifying irrigation and nitrogen best management practices for sweet corn production on sandy soils using CERES-Maize model. Agric. Water Manag. 2012, 109, 61–70. [Google Scholar] [CrossRef]
Depth (cm) | Master Horizon | Lower Limit (cm3 cm−3) | Upper Limit, Drained (cm3 cm−3) | Upper Limit, Saturated (cm3 cm−3) | Sat. Hydraulic Conductivity (cm h−1) | Bulk Density (g cm−3) | Organic Carbon (%) | Clay (%) | Silt (%) | Coarse Fraction (%) | pH in Water | CEC § (cmol kg−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | A1 | 0.208 | 0.390 | 0.410 | 1.32 | 0.82 | 8.34 | 15.4 | 37.0 | 37.0 | 4.9 | 28.4 |
13 | A2 | 0.153 | 0.303 | 0.353 | 1.32 | 0.98 | 5.37 | 14.9 | 35.1 | 38.0 | 4.8 | 23.6 |
25 | A3 | 0.078 | 0.171 | 0.293 | 1.32 | 1.23 | 1.84 | 11.3 | 36.9 | 41.0 | 5.0 | 16.0 |
46 | Bs1 | 0.051 | 0.123 | 0.258 | 2.59 | 1.35 | 0.61 | 9.60 | 38.1 | 44.0 | 4.9 | 14.5 |
66 | Bs2 | 0.050 | 0.114 | 0.241 | 2.59 | 1.42 | 0.38 | 10.9 | 34.2 | 45.0 | 4.8 | 14.9 |
107 | Bt | 0.051 | 0.116 | 0.240 | 1.32 | 1.43 | 0.22 | 12.2 | 36.4 | 45.0 | 5.2 | 16.3 |
178 | 2C | 0.041 | 0.092 | 0.323 | 6.11 | 1.55 | 0.05 | 4.50 | 13.2 | 18.0 | 6.8 | 13.2 |
Code | Definition | Default | Calibrated |
---|---|---|---|
P1 | Thermal time from seedling emergence to the end of juvenile period (>8 °C degree days) | 200 | 153.6 |
P2 | Extent to which development is delayed for each hour when the photoperiod is greater than 12.5 h | 0.7 | 0.51 |
P5 | Thermal time from silking to physiological maturity (degree days) | 800 | 950 |
G2 | Maximum possible number of kernels per plant | 715 | 810 |
G3 | Kernel optimum filling rate during the linear grain filling stage (mg d−1) | 8.5 | 8.6 |
PHINT | Phylochron interval between successive leaf tip appearances (degree days) | 38.9 | 46.17 |
Year | Treatment | LAI (m2 m−2) | Aboveground biomass (kg DM ha−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Observed | Simulated | R2 | RMSE | d-Stat | Observed | Simulated | R2 | RMSE | d-Stat | ||
2014 | 100ETc 0 N | 1.99 | 2.26 | 0.92 | 0.58 | 0.94 | 6433 | 6404 | 0.74 | 3197 | 0.92 |
100ETc 90 N | 2.05 | 2.28 | 0.93 | 0.60 | 0.93 | 6118 | 6384 | 0.84 | 2374 | 0.96 | |
100ETc 180 N | 2.31 | 2.27 | 0.92 | 0.66 | 0.93 | 7092 | 6395 | 0.90 | 2332 | 0.97 | |
100ETc 270 N | 2.40 | 2.82 | 0.99 | 0.45 | 0.98 | 7503 | 7170 | 0.91 | 2199 | 0.98 | |
100ETc 360 N | 2.19 | 2.3 | 0.93 | 0.66 | 0.93 | 7350 | 6397 | 0.92 | 2534 | 0.96 | |
2015 | 100ETc 0 N | 1.63 | 1.70 | 0.92 | 0.28 | 0.97 | 7246 | 5508 | 0.98 | 2117 | 0.96 |
100ETc 90 N | 1.91 | 2.59 | 0.67 | 0.99 | 0.85 | 8610 | 6788 | 0.95 | 2355 | 0.97 | |
100ETc 180 N | 1.85 | 2.00 | 0.59 | 0.72 | 0.88 | 8959 | 6788 | 0.95 | 2599 | 0.96 | |
100ETc 270 N | 1.99 | 2.60 | 0.70 | 0.92 | 0.86 | 8050 | 5354 | 0.98 | 3172 | 0.94 | |
100ETc 360 N | 1.88 | 2.00 | 0.69 | 0.62 | 0.91 | 8142 | 5354 | 0.98 | 3239 | 0.94 |
DOY | Measured | Simulated | |||
---|---|---|---|---|---|
Powell | Sheridan | Lingle | Pooled Average | ||
170 | 6 | 0 | 3 | 0 | 1 |
173 | 7 | 2 | 1 | 2 | 2 |
175 | 4 | 2 | 1 | 4 | 2 |
180 | 10 | 10 | 6 | 18 | 11 |
186 | 17 | 16 | 14 | 18 | 16 |
191 | 18 | 14 | 16 | 22 | 17 |
199 | 25 | 31 | 30 | 31 | 31 |
203 | 10 | 14 | 19 | 17 | 17 |
206 | 28 | 13 | 12 | 19 | 15 |
213 | 28 | 30 | 32 | 27 | 30 |
220 | 23 | 27 | 26 | 29 | 27 |
227 | 28 | 28 | 28 | 26 | 27 |
240 | 25 | 29 | 38 | 35 | 34 |
250 | 28 | 32 | 36 | 34 | 34 |
Total | 257 | 249 | 262 | 280 | 263 |
Treatment | Powell | Sheridan | Lingle | Pooled Average |
---|---|---|---|---|
IN 0 N | 173 | 271 | 139 | 194 |
IN 30 N | 90 | 117 | 68 | 92 |
IN 60 N | 49 | 53 | 33 | 45 |
IN 90 N | 27 | 23 | 14 | 22 |
IN 120 N | 13 | 9 | 6 | 10 |
IN 150 N | 5 | 4 | 3 | 4 |
IN 180 N | 1 | 2 | 1 | 2 |
IN 210 N | 0 | 1 | 1 | 1 |
IN 240 N | 0 | 1 | 0 | 1 |
IN 270 N | 0 | 1 | 0 | 0 |
IN 300 N | 0 | 1 | 0 | 0 |
IN 330 N | 0 | 1 | 0 | 0 |
IN 360 N | 0 | 1 | 0 | 0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nilahyane, A.; Islam, M.A.; O. Mesbah, A.; Garcia y Garcia, A. Evaluation of Silage Corn Yield Gap: An Approach for Sustainable Production in the Semi-Arid Region of USA. Sustainability 2018, 10, 2523. https://doi.org/10.3390/su10072523
Nilahyane A, Islam MA, O. Mesbah A, Garcia y Garcia A. Evaluation of Silage Corn Yield Gap: An Approach for Sustainable Production in the Semi-Arid Region of USA. Sustainability. 2018; 10(7):2523. https://doi.org/10.3390/su10072523
Chicago/Turabian StyleNilahyane, Abdelaziz, M. Anowarul Islam, Abdel O. Mesbah, and Axel Garcia y Garcia. 2018. "Evaluation of Silage Corn Yield Gap: An Approach for Sustainable Production in the Semi-Arid Region of USA" Sustainability 10, no. 7: 2523. https://doi.org/10.3390/su10072523
APA StyleNilahyane, A., Islam, M. A., O. Mesbah, A., & Garcia y Garcia, A. (2018). Evaluation of Silage Corn Yield Gap: An Approach for Sustainable Production in the Semi-Arid Region of USA. Sustainability, 10(7), 2523. https://doi.org/10.3390/su10072523