Network Analysis on Green Technology in National Research and Development Projects in Korea
Abstract
:1. Introduction
2. Literature Review of Green Technology
3. Research Method
3.1. Data
3.2. Social Network Analysis
4. Results and Policy Implications
4.1. Keyword Trends in GT R&D
4.2. Technical Cluster Trends in GT R&D
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhu, J.; Hua, W. Visualizing the knowledge domain of sustainable development research between 1987 and 2015: A bibliometric analysis. Scientometrics 2017, 110, 893–914. [Google Scholar] [CrossRef]
- Jang, E.K.; Park, M.S.; Roh, T.W.; Han, K.J. Policy Instruments for Eco-Innovation in Asian Countries. Sustainability 2015, 7, 12586–12614. [Google Scholar] [CrossRef]
- Christen, M.; Schmidt, S. A formal framework for conceptions of sustainability—A theoretical contribution to the discourse in sustainable development. Sustain. Dev. 2012, 20, 400–410. [Google Scholar] [CrossRef]
- Smith, A.; Voß, J.; Grin, J. Innovation studies and sustainability transitions: The allure of the multi-level perspective and its challenges. Res. Policy 2010, 39, 435–448. [Google Scholar] [CrossRef]
- Yun, S. The Ideological Basis and the Reality of Low Carbon Green Growth. ECO 2009, 13, 219–266. [Google Scholar]
- Harris, J. Sustainability and sustainable development. Int. Soc. Ecol. Econ. 2003, 1, 1–12. [Google Scholar]
- Calza, F.; Parmentola, A.; Tutore, I. Types of Green Innovations: Ways of Implementation in a Non-Green Industry. Sustainability 2017, 9, 1301. [Google Scholar] [CrossRef]
- Ma, Y.; Hou, G.; Xin, B. Green Process Innovation and Innovation Benefit: The Mediating Effect of Firm Image. Sustainability 2017, 9, 1778. [Google Scholar] [CrossRef]
- Albort-Morant, G.; Henseler, J.; Leal-Millán, A.; Cepeda-Carrión, G. Mapping the Field: A Bibliometric Analysis of Green Innovation. Sustainability 2017, 9, 1011. [Google Scholar] [CrossRef]
- Schiederig, T.; Tietze, F.; Herstatt, C. Green innovation in technology and innovation management—An exploratory literature review. R&D Manag. 2012, 42, 180–192. [Google Scholar]
- Oltra, V.; Saint Jean, M. Sectoral systems of environmental innovation: An application to the French automotive industry. Technol. Forecast. Soc. Chang. 2009, 76, 567–583. [Google Scholar] [CrossRef]
- Horbach, J. Determinants of environmental innovation—New evidence from German panel data sources. Res. Policy 2008, 37, 163–173. [Google Scholar] [CrossRef]
- Driessen, P.; Hillebrand, B. Adoption and Diffusion of Green Innovations. In Marketing for Sustainability: Towards Transactional Policy-Making; Bartels, G., Nelissen, W., Eds.; IOS Press: Amsterdam, The Netherland, 2002; pp. 343–355. [Google Scholar]
- Hermanns, H. Green Growth-Ecological Modernization Korean-Style? J. 21 Century Political Sci. Assoc. 2015, 25, 263–286. [Google Scholar] [CrossRef]
- Lee, S.; Go, I.; Jeong, S. Issue Paper: Concept of Green Technology and Direction of Policy Development; KISTEP: Seoul, Korea, 2012. [Google Scholar]
- Han, S. Green Tech Review: The Role of Green Technology in Creative Economy; Green Technology Center: Seoul, Korea, 2013. [Google Scholar]
- Heng, X.; Zou, C. How Can Green Technology Be Possible? Asian Soc. Sci. 2010, 6, 110–114. [Google Scholar] [CrossRef]
- Leenders, M.; Chandra, Y. Antecedents and consequences of green innovation in the wine industry: The role of channel structure. Technol. Anal. Strateg. Manag. 2013, 25, 203–218. [Google Scholar] [CrossRef]
- Marra, A.; Antonelli, P.; Pozzi, C. Emerging green-tech specializations and clusters—A network analysis on technological innovation at the metropolitan level. Renew. Sustain. Energy Rev. 2017, 67, 1037–1046. [Google Scholar] [CrossRef]
- Marra, A.; Antonelli, P.; Dell’Anna, L.; Pozzi, C. A network analysis using metadata to investigate innovation in clean-tech–Implications for energy policy. Energy Policy 2015, 86, 17–26. [Google Scholar] [CrossRef]
- Cooke, P. Clean tech and an analysis of the platform nature of life sciences: Further reflections upon platform policies. Eur. Plan. Stud. 2008, 16, 375–393. [Google Scholar] [CrossRef]
- Schumacher, E.F. Small Is Beautiful: Economics as If People Mattered; Harper and Row: New York, NY, USA, 1973. [Google Scholar]
- Mittlefehldt, S. From appropriate technology to the clean energy economy: Renewable energy and environmental politics since the 1970s. J. Environ. Stud. Sci. 2018, 1–8. [Google Scholar] [CrossRef]
- Bulavskaya, T.; Reynès, F. Job creation and economic impact of renewable energy in the Netherlands. Renew. Energy 2018, 119, 528–538. [Google Scholar] [CrossRef]
- Pehnt, M. Dynamic life cycle assessment (LCA) of renewable energy technologies. Renew. Energy 2006, 31, 55–71. [Google Scholar] [CrossRef]
- Reddy, S.; Painuly, J. Diffusion of renewable energy technologies—Barriers and stakeholders’ perspectives. Renew. Energy 2004, 29, 1431–1447. [Google Scholar] [CrossRef]
- Rand, B.P.; Ekins-Daukes, N.; Haug, F. Editorial for ‘Special Issue on Advanced Solar Cell Technology’. Available online: http://iopscience.iop.org/article/10.1088/2040-8986/aa98b7/pdf (accessed on 30 March 2018).
- Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H.; et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2017, 2, 17032. [Google Scholar] [CrossRef]
- Han, G.; Zhang, S.; Boix, P.; Wong, L.; Sun, L.; Lien, S. Towards high efficiency thin film solar cells. Prog. Mater. Sci. 2017, 87, 246–291. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, S. Prospects of fuel cell technologies. Natl. Sci. Rev. 2017, 4, 163–166. [Google Scholar] [CrossRef]
- Sharaf, O.; Orhan, M. An overview of fuel cell technology: Fundamentals and applications. Renew. Sustain. Energy Rev. 2014, 32, 810–853. [Google Scholar] [CrossRef]
- Eggimann, S.; Mutzner, L.; Wani, O.; Schneider, M.; Spuhler, D.; Moy de Vitry, M.; Beutler, P.; Maurer, M. The Potential of Knowing More: A Review of Data-Driven Urban Water Management. Environ. Sci. Technol. 2017, 51, 2538–2553. [Google Scholar] [CrossRef] [PubMed]
- Richter, B.; Mathews, R.; Harrison, D.; Wigington, R. Ecologically sustainable water management: Managing river flows for ecological integrity. Ecol. Appl. 2003, 13, 206–224. [Google Scholar] [CrossRef]
- Park, J.; Kim, S. An Analysis on the Costs and Outcomes of Green Technology Innovation: Focusing on Production Innovation Activities in Manufacturing SMEs in Korea. J. Technol. Innov. 2010, 18, 199–218. [Google Scholar]
- Krass, D.; Nedorezov, T.; Ovchinnikov, A. Environmental taxes and the choice of green technology. Prod. Oper. Manag. 2013, 22, 1035–1055. [Google Scholar] [CrossRef]
- Porter, M.; van der Linde, C. Green and Competitiveness: Ending the Stalemate. Harvard Business Review, September–October 1995; 120–134. [Google Scholar]
- Ambec, S.; Cohen, M.; Elgie, S.; Lanoie, P. The Porter hypothesis at 20: Can environmental regulation enhance innovation and competitiveness? Rev. Environ. Econ. Policy 2013, 7, 2–22. [Google Scholar] [CrossRef]
- Eyraud, L.; Clements, B.; Wane, A. Green investment: Trends and determinants. Energy Policy 2013, 60, 852–865. [Google Scholar] [CrossRef]
- Jaffe, A.; Newell, R.; Stavins, R. A tale of two market failures: Technology and environmental policy. Ecol. Econ. 2005, 54, 164–174. [Google Scholar] [CrossRef]
- Rennings, K. Redefining innovation—Eco-innovation research and the contribution from ecological economics. Ecol. Econ. 2000, 32, 319–332. [Google Scholar] [CrossRef]
- NTIS. Available online: http://www.ntis.go.kr/en/GpIntroduction.do (accessed on 18 September 2017).
- Jeong, D.; Koo, Y. Analysis of Research Trends in Water Resource Management Using Network Analysis. Appl. Mech. Mater. 2015, 752, 1430–1440. [Google Scholar] [CrossRef]
- Lee, S. Network Analysis Methodology; Nonhyung: Seoul, Korea, 2012. [Google Scholar]
- Borgatti, S.; Mehra, A.; Brass, D.; Labianca, G. Network analysis in the social sciences. Science 2009, 323, 892–895. [Google Scholar] [CrossRef] [PubMed]
- Freeman, L. Centrality in social networks conceptual clarification. Soc. Netw. 1979, 1, 215–239. [Google Scholar] [CrossRef]
- Jeong, D.; Kwon, O.; Kwon, Y. Network Analysis of Green Technology using Keyword of Green Field. Korean J. Contents 2012, 12, 511–518. [Google Scholar] [CrossRef]
- He, Q. Knowledge discovery through co-word analysis. Libr. Trends 1999, 48, 133–159. [Google Scholar]
- Butts, C. Social network analysis: A methodological introduction. Asian J. Soc. Psychol. 2008, 11, 13–41. [Google Scholar] [CrossRef]
- Hong, M.; Hwang, K.; Hong, J.; Lee, K. The Survey and Analysis of Technology Level on Korea’s Key Green Technologies and its Implications. J. Korea Technol. Innov. Soc. 2013, 16, 476–505. [Google Scholar]
- Seo, L. A study on the Development Directions and Situations of the Green Growth Policy in Korea. Korean Bus. Rev. 2012, 5, 93–113. [Google Scholar]
- Zehner, O. Unintended Consequences of Green Technologies. In Green Technology; Robbins, P., Mulvaney, D., Golson, J., Eds.; Sage: London, UK, 2011; pp. 427–432. [Google Scholar]
2011–2012 | 2013–2014 | 2015–2016 | |
---|---|---|---|
GT R&D projects | 13,430 | 24,901 | 15,565 |
Standardized keywords | 31,754 | 62,925 | 40,830 |
Rank | Degree Centrality | Closeness Centrality | Betweenness Centrality | |||
---|---|---|---|---|---|---|
Keyword | Value | Keyword | Value | Keyword | Value | |
1 | solar cell | 0.323 | solar cell | 0.564 | fuel cell | 0.100 |
2 | fuel cell | 0.311 | fuel cell | 0.560 | solar cell | 0.094 |
3 | biomass | 0.226 | renewable energy | 0.536 | biomass | 0.081 |
4 | renewable energy | 0.226 | biomass | 0.522 | renewable energy | 0.069 |
5 | high efficiency | 0.220 | high efficiency | 0.519 | high efficiency | 0.062 |
6 | catalyst | 0.189 | catalyst | 0.511 | polymer | 0.051 |
7 | LED | 0.165 | nanoparticle | 0.498 | LED | 0.049 |
8 | polymer | 0.165 | polymer | 0.492 | catalyst | 0.041 |
9 | nanoparticle | 0.152 | optimization | 0.487 | nanoparticle | 0.030 |
10 | thin film | 0.152 | thin film | 0.485 | climate change | 0.028 |
Rank | Degree Centrality | Closeness Centrality | Betweenness Centrality | |||
---|---|---|---|---|---|---|
Keyword | Value | Keyword | Value | Keyword | Value | |
1 | LED | 0.344 | LED | 0.580 | LED | 0.049 |
2 | solar cell | 0.336 | solar cell | 0.575 | monitoring | 0.042 |
3 | hybrid | 0.308 | energy | 0.566 | energy | 0.038 |
4 | fuel cell | 0.280 | hybrid | 0.561 | solar cell | 0.035 |
5 | energy | 0.272 | monitoring | 0.559 | hybrid | 0.032 |
6 | graphene | 0.264 | fuel cell | 0.552 | climate change | 0.029 |
7 | high efficiency | 0.260 | high efficiency | 0.549 | renewable energy | 0.027 |
8 | monitoring | 0.260 | renewable energy | 0.542 | sensor | 0.026 |
9 | renewable energy | 0.240 | catalyst | 0.534 | high efficiency | 0.026 |
10 | sensor | 0.224 | sensor | 0.534 | fuel cell | 0.026 |
Rank | Degree Centrality | Closeness Centrality | Betweenness Centrality | |||
---|---|---|---|---|---|---|
Keyword | Value | Keyword | Value | Keyword | Value | |
1 | solar cell | 0.272 | solar cell | 0.537 | climate change | 0.061 |
2 | LED | 0.264 | fuel cell | 0.534 | monitoring | 0.058 |
3 | fuel cell | 0.259 | LED | 0.533 | LED | 0.046 |
4 | renewable energy | 0.243 | renewable energy | 0.531 | IoT | 0.042 |
5 | graphene | 0.226 | monitoring | 0.530 | eco-friendly | 0.042 |
6 | IoT | 0.226 | module | 0.527 | renewable energy | 0.040 |
7 | high efficiency | 0.222 | eco-friendly | 0.520 | fuel cell | 0.038 |
8 | eco-friendly | 0.218 | energy | 0.520 | module | 0.028 |
9 | monitoring | 0.213 | IoT | 0.519 | energy | 0.026 |
10 | catalyst | 0.201 | high efficiency | 0.511 | solar cell | 0.026 |
Rank | 2011–2012 | 2013–2014 | 2015–2016 |
---|---|---|---|
1 | solar cell | LED | LED |
2 | fuel cell | solar cell | solar cell |
3 | renewable energy | hybrid | fuel cell |
4 | biomass | energy | renewable energy |
5 | high efficiency | monitoring | IoT |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, J.Y.; Kang, I.; Choi, K.S.; Lee, B.-H. Network Analysis on Green Technology in National Research and Development Projects in Korea. Sustainability 2018, 10, 1043. https://doi.org/10.3390/su10041043
Jeong JY, Kang I, Choi KS, Lee B-H. Network Analysis on Green Technology in National Research and Development Projects in Korea. Sustainability. 2018; 10(4):1043. https://doi.org/10.3390/su10041043
Chicago/Turabian StyleJeong, Jae Yun, Inje Kang, Ki Seok Choi, and Byeong-Hee Lee. 2018. "Network Analysis on Green Technology in National Research and Development Projects in Korea" Sustainability 10, no. 4: 1043. https://doi.org/10.3390/su10041043
APA StyleJeong, J. Y., Kang, I., Choi, K. S., & Lee, B.-H. (2018). Network Analysis on Green Technology in National Research and Development Projects in Korea. Sustainability, 10(4), 1043. https://doi.org/10.3390/su10041043