Climate Change Vulnerability Assessment and Adaptation of Bangladesh: Mechanisms, Notions and Solutions
Abstract
:1. Introduction
- To understand household vulnerability along with sustainable livelihoods at community levels in Bangladesh through multiple regression analysis in order to understand which sectors need to be emphasized under climate change regimes;
- To understand the notions, mechanisms and assessment of vulnerability through regression analysis in order to identify some solutions vis a vis transformed adaptations for enhancing adaptation resilience in Bangladesh.
2. Vulnerability Assessment, Sustainable Livelihood and Transformed Adaptation: A Conceptual Paradigm
3. Methodology
4. Results and Discussions
4.1. General Findings
4.1.1. Exposure
4.1.2. Sensitivity
4.1.3. Adaptive Capacity
Physical Capital
Natural Capital
Financial Capital
Social Capital
Human Capital
4.2. Notion and Mechanism of Vulnerability and Adaptation
4.3. Potential Convincing Solutions of the Prioritised Sectors
5. Conclusions and Recommendations
Author Contributions
Funding
Conflicts of Interest
Appendix A
Variable Type | Descriptions | Name | Bangladesh Average | Coastal Average |
---|---|---|---|---|
Outcome | % of people suffering chronic illness | %illness | 14.70 | 15.00 |
Average net salary of salaried employee | income | 5265.03 | 5608.57 | |
Exposure | % of household that have experienced drought shock | %drought | 3.59 | 10.27 |
% of household that have experienced flood shock | %flood | 2.59 | 1.08 | |
% of household shock landslide/erosion | %landslide | 0.42 | 0.09 | |
% of household have found arsenic in their tubewell | %arsenic | 4.08 | 5.24 | |
Sensitivity | Percentage of people engaged in agriculture | %ag | 40.54 | 33.51 |
Percentage of households engaged in agriculture as agricultural labourers | %aglabor | 34.36 | 35.78 | |
Physical | % of household have pucca and semi pucca room | %pucca | 62.42 | 65.81 |
% of household have sanitary toilet | %toilet | 18.27 | 31.83 | |
% of household using tube-well as their source of drinking water | %tubewell | 88.48 | 84.11 | |
% of household have electricity connection | %electricity | 54.23 | 58.28 | |
% of household raise livestock | %livestock | 45.46 | 35.86 | |
Natural | Average rainfall April–October from historic rainfall data | rainavg | 2050.04 | 2173.69 |
Standard deviation of rainfall April–October from historic rainfall data | rainvar | 456.12 | 446.45 | |
% of household have cultivable land | %agland | 41.13 | 36.53 | |
Average amount of cultivable land per household | agland | 134.72 | 115.56 | |
Financial | Average remittance income all sources | remittances | 112,848.20 | 120,718.40 |
Social | % of child birth by doctor or nurse | %birth | 11.09 | 11.85 |
% of people ever immunized | %immune | 11.49 | 11.59 | |
% of household borrow money from friends and relatives | %borrow | 33.14 | 33.97 | |
% of people included in SSN | %ssn | 6.91 | 7.20 | |
Human | Average year of schooling | educ_years | 3.43 | 3.89 |
proportion of household engaged in salaried job | %salaried | 21.68 | 26.24 |
Bangladesh | Coastal Areas | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Income | Illness | Income | Illness | |||||||||||||||||
Exposure | Coefficients: Estimate Std. Error t value Pr(>|t|) | Coefficients: Estimate Std. Error t value Pr(>|t|) | Coefficients: Estimate Std. Error t value Pr(>|t|) | Coefficients: Estimate Std. Error t value Pr(>|t|) | ||||||||||||||||
(Intercept) | 5439.035 | 187.637 | 28.987 | <2 × 10−16 *** | (Intercept) | 14.830852 | 0.455920 | 32.529 | <2 × 10−16 *** | (Intercept) | 6044.38 | 482.82 | 12.519 | <2 × 10−16 *** | (Intercept) | 14.43105 | 0.89576 | 16.110 | <2 × 10−16 *** | |
drought | −9.596 | 17.829 | −0.538 | 0.5907 | drought | 0.024912 | 0.043320 | 0.575 | 0.5656 | drought | −22.38 | 24.83 | −0.901 | 0.370 | drought | 0.06194 | 0.04606 | 1.345 | 0.182 | |
flood | −38.434 | 15.051 | −2.554 | 0.0111 * | flood | −0.074700 | 0.036571 | −2.043 | 0.0418 * | flood | −30.88 | 78.07 | −0.395 | 0.693 | flood | 0.20141 | 0.14485 | 1.391 | 0.168 | |
arsenic | −9.781 | 15.331 | −0.638 | 0.5239 | arsenic | −0.007421 | 0.037250 | −0.199 | 0.8422 | arsenic | −33.00 | 33.42 | −0.987 | 0.326 | arsenic | −0.05416 | 0.06201 | −0.873 | 0.385 | |
Sensitivity | Coefficients: Estimate Std. Error t value Pr(>|t|) | Coefficients: Estimate Std. Error t value Pr(>|t|) | Coefficients: Estimate Std. Error t value Pr(>|t|) | Coefficients: Estimate Std. Error t value Pr(>|t|) | ||||||||||||||||
(Intercept) | 7377.184 | 321.916 | 22.916 | <2 × 10−16 *** | (Intercept) | 15.03180 | 0.84610 | 17.766 | <2 × 10−16 *** | (Intercept) | 7858.82 | 670.05 | 11.729 | <2 × 10−16 *** | (Intercept) | 16.18361 | 1.32241 | 12.238 | <2 × 10−16 *** | |
ag | −45.639 | 6.065 | −7.524 | 4.3 × 10−13 *** | ag | 0.01219 | 0.01594 | 0.765 | 0.445 | ag | −45.47 | 13.90 | −3.270 | 0.00152 ** | ag | 0.02164 | 0.02744 | 0.789 | 0.4324 | |
aglabor | −7.618 | 6.359 | −1.198 | 0.232 | aglabor | −0.02415 | 0.01671 | −1.445 | 0.149 | aglabor | −20.31 | 11.73 | −1.731 | 0.08684 | aglabor | −0.05334 | 0.02315 | −2.304 | 0.0235 * |
Bangladesh | Coastal Area | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Income | Illness | Income | Illness | ||||||||||||||||||
Adaptive Capacity | Physical capital | Coefficients: Estimate Std. Error t value Pr(>|t|) | Coefficients: Estimate Std. Error t value Pr(>|t|) | Coefficients: Estimate Std. Error t value Pr(>|t|) | Coefficients: Estimate Std. Error t value Pr(>|t|) | ||||||||||||||||
(Intercept) | 5457.429 | 793.336 | 6.879 | 2.72 × 10−11 *** | (Intercept) | 12.805832 | 2.147775 | 5.962 | 5.99 × 10−9 *** | (Intercept) | 5231.424 | 1675.710 | 3.122 | 0.00244 ** | (Intercept) | 21.604329 | 3.493028 | 6.185 | 1.96 × 10−8 *** | ||
pucca | 7.286 | 5.290 | 1.377 | 0.169274 | pucca | 0.004075 | 0.014321 | 0.285 | 0.776 | pucca | 18.802 | 11.981 | 1.569 | 0.12019 | pucca | −0.006805 | 0.024974 | −0.272 | 0.786 | ||
toilet | 18.206 | 7.362 | 2.473 | 0.013863 * | toilet | −0.032173 | 0.019931 | −1.614 | 0.107 | toilet | 18.272 | 13.441 | 1.359 | 0.17751 | toilet | −0.042573 | 0.028017 | −1.520 | 0.132 | ||
tubewell | −17.482 | 6.198 | −2.821 | 0.005061 ** | tubewell | 0.001367 | 0.016780 | 0.081 | 0.935 | tubewell | −26.373 | 11.875 | −2.221 | 0.02895 * | tubewell | −0.040486 | 0.024753 | −1.636 | 0.106 | ||
electricity | 20.372 | 5.716 | 3.564 | 0.000415 *** | electricity | 0.009302 | 0.015474 | 0.601 | 0.548 | electricity | 16.274 | 12.419 | 1.310 | 0.19352 | electricity | −0.026362 | 0.025888 | −1.018 | 0.311 | ||
livestock | −11.827 | 6.719 | −1.760 | 0.079231 | livestock | 0.035163 | 0.018191 | 1.933 | 0.054 | livestock | −4.796 | 14.369 | −0.334 | 0.73934 | livestock | 0.003906 | 0.029952 | 0.130 | 0.897 | ||
Natural capital | Coefficients: Estimate Std. Error t value Pr(>|t|) | Coefficients: Estimate Std. Error t value Pr(>|t|) | Coefficients: Estimate Std. Error t value Pr(>|t|) | Coefficients: Estimate Std. Error t value Pr(>|t|) | |||||||||||||||||
(Intercept) | 7683.3239 | 768.0891 | 10.003 | <2 × 10−16 *** | (Intercept) | 15.1368513 | 1.8772368 | 8.063 | 1.13 × 10−14 *** | (Intercept) | 5291.8262 | 1845.5031 | 2.867 | 0.00517 ** | (Intercept) | 13.2553001 | 3.4751171 | 3.814 | 0.000251 *** | ||
rainavg | −0.1069 | 0.3561 | −0.300 | 0.764252 | rainavg | −0.0022528 | 0.0008702 | −2.589 | 0.0100 * | rainavg | 0.9705 | 0.9689 | 1.002 | 0.31922 | rainavg | 0.0009409 | 0.0018245 | 0.516 | 0.607313 | ||
rainvar | −2.1892 | 1.4780 | −1.481 | 0.139450 | rainvar | 0.0064982 | 0.0036124 | 1.799 | 0.0729 | rainvar | −4.0804 | 4.8047 | −0.849 | 0.39802 | rainvar | −0.0026681 | 0.0090473 | −0.295 | 0.768749 | ||
agland | −29.1910 | 7.9888 | −3.654 | 0.000297 *** | agland | 0.0295056 | 0.0195249 | 1.511 | 0.1316 | agland | 0.7892 | 18.4613 | 0.043 | 0.96600 | agland | 0.0243810 | 0.0347630 | 0.701 | 0.484915 | ||
Financial capital | Coefficients: Estimate Std. Error t value Pr(>|t|) | Coefficients: Estimate Std. Error t value Pr(>|t|) | Coefficients: Estimate Std. Error t value Pr(>|t|) | Coefficients: Estimate Std. Error t value Pr(>|t|) | |||||||||||||||||
(Intercept) | 5.218 × 103 | 1.981 × 102 | 26.34 | <2 × 10−16 *** | (Intercept) | 1.523 × 101 | 4.774 × 10−1 | 31.900 | <2 × 10−16 *** | (Intercept) | 5.375 × 103 | 4.693 × 102 | 11.45 | <2 × 10−16 *** | (Intercept) | 1.629 × 101 | 8.615 × 10−1 | 18.908 | <2 × 10−16 *** | ||
remittances | 4.171 × 10−4 | 1.016 × 10−3 | 0.41 | 0.682 | remittances | −4.720 × 10−6 | 2.449 × 10−6 | −1.927 | 0.0548. | remittances | 1.933 ×10−3 | 2.611 × 10−3 | 0.74 | 0.461 | remittances | −1.068 × 10−5 | 4.793 × 10−6 | −2.229 | 0.0283 * | ||
Social capital | Coefficients: Estimate Std. Error t value Pr(>|t|) | Coefficients: Estimate Std. Error t value Pr(>|t|) | Coefficients: Estimate Std. Error t value Pr(>|t|) | Coefficients: Estimate Std. Error t value Pr(>|t|) | |||||||||||||||||
(Intercept) | 5987.43 | 624.90 | 9.581 | <2 × 10−16 *** | (Intercept) | 10.53685 | 1.64596 | 6.402 | 4.84 × 10−10 *** | (Intercept) | 6459.76 | 1303.06 | 4.957 | 3.44 × 10−6 *** | (Intercept) | 10.35663 | 2.75012 | 3.766 | 0.000299 *** | ||
birth | 110.07 | 12.36 | 8.903 | <2 × 10−16 *** | birth | 0.02930 | 0.03257 | 0.900 | 0.3688 | birth | 132.28 | 25.03 | 5.285 | 9.05 ×10 −7 *** | birth | 0.06293 | 0.05283 | 1.191 | 0.236739 | ||
immune | −75.83 | 41.74 | −1.817 | 0.070112 | immune | −0.13959 | 0.10994 | −1.270 | 0.2050 | immune | −79.35 | 86.22 | −0.920 | 0.3599 | immune | −0.08149 | 0.18196 | −0.448 | 0.655376 | ||
borrow | −15.23 | 7.86 | −1.937 | 0.053486 | borrow | 0.14062 | 0.02070 | 6.792 | 4.62 × 10−11 *** | borrow | −36.98 | 18.47 | −2.003 | 0.0483 * | borrow | 0.11567 | 0.03897 | 2.968 | 0.003861 ** | ||
ssn | −82.15 | 23.40 | −3.511 | 0.000504 *** | ssn | 0.11278 | 0.06163 | 1.830 | 0.0681 | ssn | −33.69 | 44.56 | −0.756 | 0.4515 | ssn | 0.12674 | 0.09404 | 1.348 | 0.181189 | ||
Human capital | Coefficients: Estimate Std. Error t value Pr(>|t|) | Coefficients: Estimate Std. Error t value Pr(>|t|) | Coefficients: Estimate Std. Error t value Pr(>|t|) | Coefficients: Estimate Std. Error t value Pr(>|t|) | |||||||||||||||||
(Intercept) | 1194.250 | 399.091 | 2.992 | 0.002959 ** | (Intercept) | 12.73618 | 1.13594 | 11.212 | <2 × 10−16 *** | (Intercept) | 831.70 | 1055.88 | 0.788 | 0.43295 | (Intercept) | 15.24115 | 2.28877 | 6.659 | 2.12 × 10−9 *** | ||
educ_years | 978.102 | 133.366 | 7.334 | 1.5 × 10−12 *** | educ_years | 1.02789 | 0.37960 | 2.708 | 0.00710 ** | educ_years | 987.09 | 307.02 | 3.215 | 0.00181 ** | educ_years | 0.06330 | 0.66550 | 0.095 | 0.924 | ||
salaried | 33.228 | 9.257 | 3.589 | 0.000377 *** | salaried | −0.07200 | 0.02635 | −2.733 | 0.00659 | salaried | 35.62 | 18.52 | 1.924 | 0.05752 | salaried | −0.01858 | 0.04014 | −0.463 | 0.644 |
References
- Chen, J.; Mueller, V. Coastal climate change, soil salinity and human migration in Bangladesh. Nat. Clim. Chang. 2018, 8, 981–985. [Google Scholar] [CrossRef]
- Momtaz, S.; Shameem, M. Experiencing Climate Change in Bangladesh: Vulnerability and Adaptation in Coastal Region; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Shaw, R.; Mallick, F.; Islam, A. (Eds.) Climate Change Adaptation Actions in Bangladesh; Springer: New York, NY, USA, 2013. [Google Scholar]
- Warrick, R.A.; Ahmad, Q.K. The Implications of Climate and Sea-Level Change for Bangladesh; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Brammer, H. Bangladesh’s diverse and complex physical geography: Implications for agricultural development. Int. J. Environ. Stud. 2016, 74, 1–27. [Google Scholar] [CrossRef]
- Younus, M. Adapting to Climate Change in the Coastal Regions of Bangladesh: Proposal for the Formation of Community-Based Adaptation Committees. Environ. Hazards 2017, 16, 21–49. [Google Scholar] [CrossRef]
- Younus, M. An assessment of vulnerability and adaptation to cyclones through impact assessment guidelines: A bottom-up case study from Bangladesh coast. Nat. Hazards 2017, 89, 1437–1459. [Google Scholar] [CrossRef]
- Adger, W.N.; Adams, H.; Kay, S.; Nicholls, R.J.; Hutton, C.W.; Hanson, S.E.; Rahman, M.M.; Salehin, M. (Eds.) Ecosystem Services, Well-Being and Deltas: Current Knowledge and Understanding. In Ecosystem Services for Well-Being in Deltas: Integrated Assessment for Policy Analysis, Palgrave Macmillan; Springer Nature: Cham, Switzerland, 2018. [Google Scholar]
- Rashid, H.; Paul, B. Climate Change in Bangladesh: Confronting Impending Disasters; Lexington Books: Lanham, MD, USA, 2013. [Google Scholar]
- IPCC. Climate Change 2007: Impacts, Adaptation and Vulnerability; Contribution of Working Group 2 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; 976p. [Google Scholar]
- IPCC. The IPCC Fifth Assessment Report; Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part A; Ch 5—Coastal Systems and Low-Lying Areas; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- IPCC. Global Warming of 1.5 °C; Summary for Policy Makers; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- White, G.F. (Ed.) Natural Hazards: Local, National, Global; Oxford University Press: New York, NY, USA, 1974. [Google Scholar]
- Burton, I.; Bizikova, L.; Dickinson, T.; Howard, Y. Integrating adaptation into policy: Up scaling evidence from local to global. Clim. Policy 2007, 7, 371–376. [Google Scholar] [CrossRef]
- Burton, I.; Diringer, E.; Smith, J. Adaptation to Climate Change: International Policy Options; Pew Centre on Global Climate Change: Arlington, VA, USA, 2006. [Google Scholar]
- Burton, I.; Kates, R.W.; White, G.F. The Environment as Hazard, 2th ed.; The Guilford Press: New York, NY, USA, 1993. [Google Scholar]
- Bohle, H.G.; Downing, T.E.; Watts, M.J. Climate Change and Social Vulnerability—Towards a Sociology and Geography of Food Insecurity. Glob. Environ. Chang. 1994, 4, 37–48. [Google Scholar] [CrossRef]
- Adger, W.N.; Butler, C.; Walker-Springett, K. Moral reasoning in adaptation to climate change. Environ. Politics 2017, 26, 371–390. [Google Scholar] [CrossRef]
- Carter, T.R.; Parry, M.L.; Harasawa, H. IPCC Technical Guidelines for Assessing Climate Change Impacts and Adaptations; University College: London, UK; Centre for Global Environmental Research: Kobe, Japan, 1994. [Google Scholar]
- Smit, B.; Wandel, J. Adaptation, Adaptive Capacity and Vulnerability. Glob. Environ. Chang. 2006, 16, 282–292. [Google Scholar] [CrossRef]
- Harvey, N.; Dew, R.E.; Hender, S. Rapid land use change by coastal wind farm development: Australian policies, politics and planning. Land Use Policy 2017, 61, 368–378. [Google Scholar] [CrossRef]
- Adger, W.; Barnett, J.; Brown, K.; Marshall, N.; O’Brien, K. Cultural dimensions of climate change impacts and adaptation. Nat. Clim. Chang. 2013, 3, 112–117. [Google Scholar] [CrossRef]
- Mortreux, C.; Barnett, J. Adaptive capacity: Exploring the research frontier. Wiley Interdiscip. Rev. Clim. Chang. 2017, 8, e467. [Google Scholar] [CrossRef]
- Younus, M.; Sharna, S. Combination of Community-based Vulnerability and Adaptation to Storm Surges in Coastal Regions of Bangladesh. J. Environ. Assess. Policy Manag. 2014, 16, 1450036. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Hutton, C.W.; Adger, W.N.; Hanson, S.E.; Rahman, M.M.; Salehin, M. (Eds.) Ecosystem Services for Well-Being in Deltas: Integrated Assessment for Policy Analysis; Palgrave Macmillan: Basingstoke, UK, 2018. [Google Scholar]
- O’brien, K. Global environmental change II: From adaptation to deliberate transformation. Prog. Hum. Geogr. 2012, 36, 667–676. [Google Scholar] [CrossRef]
- Pelling, M.; O’Brien, K.; Matyas, D. Adaptation and transformation. Clim. Chang. 2014, 133, 113–127. [Google Scholar] [CrossRef] [Green Version]
- Kates, R.; Travis, W.; Wilbanks, T. Transformational adaptation when incremental adaptations to climate change are insufficient. Proc. Natl. Acad. Sci. USA 2012, 109, 201115521. [Google Scholar] [CrossRef] [PubMed]
- Schultz, L.; Folke, C.; Österblom, H.; Olsson, P. Adaptive governance, ecosystem management, and natural capital. Proc. Natl. Acad. Sci. USA 2015, 112, 7369–7374. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Chu, E.; Debats, J. Explaining Progress in Climate Adaptation Planning Across 156 U.S. Municipalities. J. Am. Plan. Assoc. 2015, 81, 191–202. [Google Scholar] [CrossRef]
- Sterner, T. Higher costs of climate change. Nature 2015, 527, 177–178. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.M.; Markowitz, E.M.; Howe, P.D.; Ko, C.-Y.; Leiserowitz, A.A. Leiserowitz: Predictors of public climate change awareness and risk perception around the world. Nat. Clim. Chang. 2015, 5, 1014–1020. [Google Scholar] [CrossRef]
- Barnett, J.; Graham, S.; Mortreux, C.; Fincher, R.; Waters, E.; Hurlimann, A. A Local Coastal Adaptation Pathway. Nat. Clim. Chang. 2014, 4, 1103–1108. [Google Scholar] [CrossRef]
- McEvoy, D.; Ahmed, I.; Trundle, A.; Sang, L.T.; Diem, N.N.; Suu, L.T.; Quoc, T.B.; Mallick, F.H.; Rahman, R.; Rahman, A.; et al. In support of urban adaptation: A participatory assessment process for secondary cities in Vietnam and Bangladesh. Clim. Dev. 2014, 6, 205–215. [Google Scholar] [CrossRef]
- Schipper, E.L.; Langston, L. A Comparative Overview of Resilience Measurement Frameworks: Analysing Indicators and Approaches; Working Paper 422; Overseas Development Institute ODI: London, UK, 2015. [Google Scholar]
- Yoseph-Paulus, R.; Hindmarsh, R. Addressing inadequacies of sectoral coordination and local capacity building in Indonesia for effective climate change adaptation. Clim. Dev. 2018, 10, 35–48. [Google Scholar] [CrossRef]
- Williams, C.; Fenton, A.; Huq, S. Knowledge and Adaptive Capacity. Nat. Clim. Chang. 2015, 5, 82–83. [Google Scholar] [CrossRef]
- Vogel, B.; Henstra, D. Studying local climate adaptation: A heuristic research framework for comparative policy analysis. Glob. Environ. Chang. 2015, 31, 110–120. [Google Scholar] [CrossRef]
- Younus, M.; Harvey, N. Economic Consequences of Failed Autonomous Adaptation to Extreme Floods: A Case Study from Bangladesh. J. Local Econ. Policy Unit 2014, 29, 20–35. [Google Scholar] [CrossRef]
- Paul, B. Human Injuries Caused by Bangladesh’s Cyclone Sidr: An Empirical Study. Nat. Hazards 2010, 54, 483–495. [Google Scholar] [CrossRef]
- Vincent, K. Creating an Index of Social Vulnerability to Climate Change for Africa; Working Paper; Tyndall, Center for Climate Change Research: Oxford, UK, 2004; Volume 56. [Google Scholar]
- Kelly, P.M.; Adger, W.N. Theory and practice in assessing vulnerability to climate change and facilitating adaptation. Clim. Chang. 2000, 47, 325–352. [Google Scholar] [CrossRef]
- Younus, M.; Harvey, N. Community-based flood vulnerability and adaptation assessment: A case study from Bangladesh. J. Environ. Assess. Policy Manag. 2013, 15, 1350010. [Google Scholar] [CrossRef]
- Heltberg, R.; Bonch-Osmolovskiy, M. Mapping Vulnerability to Climate Change; World Bank Policy Research Working Paper No. 5554; The World Bank: Washington, DC, USA, 2011. [Google Scholar]
- Deressa, T.; Hassan, R.M.; Ringler, C. Measuring Ethiopian Farmers’ Vulnerability to Climate Change across Regional States; International Food Policy Research Institute: Washington, DC, USA, 2008. [Google Scholar]
- Adger, W.N.; Agrawala, S.; Mirza, M.M.Q.; Conde, C.; O’Brien, K.; Pulhin, J.; Pulwarty, R.; Smit, B.; Takahashi, K. Assessment of adaptation practices, options, constraints and capacity. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 717–743. [Google Scholar]
- Adger, W.N.; Dessai, S.; Goulden, M.; Hulme, M.; Lorenzoni, I.; Nelson, D.R.; Naess, L.O.; Wolf, J.; Wreford, A. Are there social limits to adaptation to climate change? Clim. Chang. 2009, 93, 335–354. [Google Scholar] [CrossRef]
- Adger, W.N.; Lorenzoni, I.; O’Brien, K. (Eds.) Adapting to Climate Change: Thresholds, Values, Governance; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Park, S.E.; Marshall, N.A.; Jakku, E.; Dowd, A.M.; Howden, S.M.; Mendham, E.; Fleming, A. Informing adaptation responses to climate change through theories of transformation. Glob. Environ. Chang. 2011, 22, 115–126. [Google Scholar] [CrossRef]
- Kabcoff, R.I. Quick-R Accessing the Power of R. Available online: http://www.statmethods.net/graphs/scatterplot.html (accessed on 7 August 2016).
- Bangladesh Bureau of Statistics, Government of Bangladesh. BBS—Bangladesh Bureau of Statistics (2011): Household Income and Expenditure Survey 2010; Bangladesh Bureau of Statistics, Government of Bangladesh: Dhaka, Bangladesh, 2011.
- Younus, M. Autonomous Crop Adaptation Processes to Extreme Floods: A Case Study in Bangladesh. Environ. Hazards 2015, 14, 36–53. [Google Scholar] [CrossRef]
- Younus, M. Flood Vulnerability and Adaptation to Climate Change in Bangladesh: A Review. J. Environ. Assess. Policy Manag. 2014, 16, 1450024. [Google Scholar] [CrossRef]
Bangladesh | Coastal Areas | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable Type | Name | Income Significance | Intercept | Coefficient | Illness Significance | Intercept | Coefficient | Income Significance | Intercept | Coefficient | Illness Significance | Intercept | Coefficient | |
Exposure | % of households exposed to flood shock | * | 5439.035 | −38.434 | * | 14.830 | −0.0747 | |||||||
Sensitivity | % of people engaged in agriculture | *** | 7377.184 | −45.639 | ** | 7858.82 | −45.47 | |||||||
% of households engaged in agriculture as agricultural labourers | *** | 7377.184 | −7.618 | “.” | 7858.82 | −20.31 | * | 16.183 | −0.053 | |||||
Adaptive capacity | Physical | % of households with a sanitary toilet | * | 5457.429 | 18.206 | |||||||||
% of households using tubewell as their source of drinking water | ** | 5457.429 | −17.482 | * | 5231.424 | −26.373 | ||||||||
% households have electricity connection | *** | 5457.429 | 20.372 | |||||||||||
Natural | Average rainfall April–October from historical rainfall data | * | 15.136 | −0.0022 | ||||||||||
Financial | Average remittance income from all sources (home/abroad) | “.” | 1.523 × 101 | −4.720 × 10−6 | * | 1.629 × 101 | −1.068 × 10−5 | |||||||
Social | % of child birth by doctor/nurse | *** | 5987.43 | 110.07 | *** | 6459.76 | 132.28 | |||||||
% of households borrowing money from friends and relatives | *** | 10.536 | 0.140 | * | 6459.76 | −36.98 | ** | 10.356 | 0.1156 | |||||
% of people included in SSN | *** | 5987.43 | −82.15 | |||||||||||
Human | Average year of schooling | *** | 1194.250 | 978.102 | ** | 12.736 | 1.027 | ** | 831.70 | 987.09 | ||||
% of households engaged in salaried jobs | *** | 1194.250 | 33.228 | ** | 12.736 | −0.072 |
Highly Significance to Income | Highly Significance to Illness |
---|---|
1. Edu_years (Human) | 1. Edu_years (Human) |
2. Birth (Social) | 2. Borrow (Social) |
3. Salaried jobs (Human) | 3. Salaried jobs (Human) |
4. Electricity (Physical) | 4. Flood (Exposure) |
5. Aglabour (sensitivity) | 5. Rain Average (Natural) |
6. Agriculture (sensitivity) | 6. Remittances (Financial) |
7. SSN (Social Safety Network) |
Prioritized Variables | Intervention Strategies/Transformed Adaptation Strategies | Potentially Executed by | |
---|---|---|---|
Education Years | -Technical Education -Computer Education Internet related technologically equipped knowledge -Vocational training Wielding Weaving fishing nets Social Worker Education Carer training Rural health worker education Carpenter education auto mobile education Handling tractor Driving agricultural cultivation equipment and machineries training and education Auto Mechanics Building structuring (Raj Mistri) Typing training Data analysis training Village doctors or health assistant training Surveyors (amin) Driving auto tempo training Jewellery labouring training Hospitality training Asst agriculture officer training Deed registration training (mohuri) Assistant surveyor training localised resources maintenance worker (fishing, cultivating and weaving) | electrician training telephone operator training telephone cable mechanic TV antenna mechanic Rice threshold worker (boiler) Animal doctors’ helper Customer service training Auto rickshaw driving training Rickshaw Mechanic Training Pruning trees/vegetables producing expert training Taxi/Uber/rent a car/rental auto tempo training personnel Child care training Irrigation water supplier training Environment Knowledge sharing worker Job seeking adviser labour registration and suppling training disaster preparedness training evacuation volunteer from local disaster training first aid training Poultry/hatchers’ food supplier training Cattle food supplier training Trained Informer training course (for information centre with Community based adaptation committee (CBAC) centre at Mauza level). |
|
Borrow | Facilitating government and non-government micro financing -Interest free loaning -after disaster special interest free money from the concerned government agencies at local levels | NGO affairs bureau, Planning commission Bangladesh Bank, Upazilla Nirbahi Office, Upazilla Cooperative Office, Upazilla Women Affairs Office | |
Salaried Jobs | Facilitating private sector investment Introducing agricultural labor as formal jobs Facilitating SME’s | BEZA, BEPZA, BOI, Ministry of agriculture | |
Flood |
| Ministry of water resources Bangladesh water dev. board field office District Executive Engineers Office, Water Board | |
Remittance | Reducing migration cost Eliminating visa trading Creating national job roster for overseas placement | Ministry of expatriates welfare and overseas employment Bureau of manpower employment training District employment and training offices | |
Electricity connections | Taking every household under electricity connections | BPDB, REB | |
Agriculture and agricultural labor |
| Private companies and SMEs | |
SSN | Expanding the area of SSN by Increasing the number of VDG beneficiaries, Aged pensions holders | Department of social service Department of women affairs |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Younus, M.A.F.; Kabir, M.A. Climate Change Vulnerability Assessment and Adaptation of Bangladesh: Mechanisms, Notions and Solutions. Sustainability 2018, 10, 4286. https://doi.org/10.3390/su10114286
Younus MAF, Kabir MA. Climate Change Vulnerability Assessment and Adaptation of Bangladesh: Mechanisms, Notions and Solutions. Sustainability. 2018; 10(11):4286. https://doi.org/10.3390/su10114286
Chicago/Turabian StyleYounus, Md Aboul Fazal, and Md Alamgir Kabir. 2018. "Climate Change Vulnerability Assessment and Adaptation of Bangladesh: Mechanisms, Notions and Solutions" Sustainability 10, no. 11: 4286. https://doi.org/10.3390/su10114286
APA StyleYounus, M. A. F., & Kabir, M. A. (2018). Climate Change Vulnerability Assessment and Adaptation of Bangladesh: Mechanisms, Notions and Solutions. Sustainability, 10(11), 4286. https://doi.org/10.3390/su10114286