Sustainable Decision-Making in Civil Engineering, Construction and Building Technology
Abstract
1. Introduction
2. Research Methodology and Preliminary Results
3. Detailed Analysis of Articles Published in the Period of 2015–2017
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Siddique, N.; Adeli, H. Nature-Inspired Chemical Reaction Optimisation Algorithms. Cogn. Comput. 2017, 9, 411–422. [Google Scholar]
- Siddique, N.; Adeli, H. Physics-based search and optimization: Inspirations from nature. Expert Syst. 2016, 33, 607–623. [Google Scholar] [CrossRef]
- Siddique, N.; Adeli, H. Brief History of Natural Sciences for Natural-Inspired Computing in Engineering. J. Civ. Eng. Manag. 2016, 22, 287–301. [Google Scholar] [CrossRef]
- Siddique, N.; Adeli, H. Applications of Gravitational Search Algorithm in Engineering. J. Civ. Eng. Manag. 2016a, 22, 981–990. [Google Scholar] [CrossRef]
- Siddique, N.; Adeli, H. Simulated annealing, its variants and engineering applications. Int. J. Artif. Intell. Tools 2016, 25, 1630001. [Google Scholar] [CrossRef]
- Siddique, N.; Adeli, H. Central force metaheuristic optimisation. Sci. Iran. 2015, 22, 1941–1953. [Google Scholar]
- Amezquita-Sanchez, J.P.; Adeli, H. Feature extraction and classification techniques for health monitoring of structures. Sci. Iran. 2015, 22, 1931–1940. [Google Scholar]
- Qarib, H.; Adeli, H. Recent advances in health monitoring of civil structures. Sci. Iran. 2014, 21, 1733–1742. [Google Scholar]
- Soto, M.G.; Adeli, H. Placement of control devices for passive, semi-active, and active vibration control of structures. Sci. Iran. 2013, 20, 1567–1578. [Google Scholar]
- El-Khoury, O.; Adeli, H. Recent Advances on Vibration Control of Structures under Dynamic Loading. Arch. Comput. Methods Eng. 2013, 20, 353–360. [Google Scholar] [CrossRef]
- Yeganeh-Fallah, A.; Taghikhany, T. A Modified Sliding Mode Fault Tolerant Control for Large Scale Civil Infrastructures. Comput. Aided Civ. Infrastruct. Eng. 2016, 31, 550–561. [Google Scholar] [CrossRef]
- Ghaedi, K.; Ibrahim, Z.; Adeli, H.; Javanmardi, A. Invited Review: Recent developments in vibration control of building and bridge structures. J. Vibroeng. 2017, 19, 3564–3580. [Google Scholar]
- Amezquita-Sanchez, J.P.; Adeli, H. Signal processing techniques for vibration-based health monitoring of smart structures. Arch. Comput. Methods Eng. 2016, 23, 1–15. [Google Scholar] [CrossRef]
- Aldwaik, M.; Adeli, H. Advances in optimization of highrise building structures. Struct. Multidiscip. Optim. 2014, 50, 899–919. [Google Scholar] [CrossRef]
- Soto, M.G.; Adeli, H. Tuned Mass Dampers. Arch. Comput. Methods Eng. 2013, 20, 419–431. [Google Scholar] [CrossRef]
- Bakule, L.; Rehák, B.; Papík, M. Decentralized Networked Control of Building Structures. Comput. Aided Civ. Infrastruct. Eng. 2016, 31, 871–886. [Google Scholar] [CrossRef]
- Karami, K.; Akbarabadi, S. Developing a smart structure using integrated subspace-based damage detection and semi-active control. Comput. Aided Civ. Infrastruct. Eng. 2016, 31, 887–902. [Google Scholar] [CrossRef]
- Chou, J.S.; Pham, A.D. Smart Artificial Firefly Colony-based Support Vector Regression for Enhanced Forecasting in Civil Engineering. Comput. Aided Civ. Infrastruct. Eng. 2015, 30, 715–732. [Google Scholar] [CrossRef]
- Amezquita-Sanchez, J.P.; Valtierra-Rodriguez, M.; Aldwaik, M.; Adeli, H. Neurocomputing in civil infrastructure. Sci. Iran. 2016, 23, 2417–2428. [Google Scholar] [CrossRef]
- Vaha, P.; Heikkila, T.; Kilpelainen, P.; Jarviluoma, M.; Gambao, E. Extending Automation of Building Construction—Survey on Potential Sensor Technologies and Robotic Applications. Autom. Constr. 2013, 36, 168–178. [Google Scholar] [CrossRef]
- Streimikiene, D.; Balezentis, T.; Balezentiene, L. Comparative assessment of road transport technologies. Renew. Sustain. Energy Rev. 2013, 20, 611–618. [Google Scholar] [CrossRef]
- Pongiglione, M.; Calderini, C. Sustainable Structural Design: Comprehensive Literature Review. J. Struct. Eng. 2016, 142, 04016139. [Google Scholar] [CrossRef]
- Dai, H. A wavelet support vector machine-based neural network meta model for structural reliability assessment. Comput. Aided Civ. Infrastruct. Eng. 2017, 32, 344–357. [Google Scholar] [CrossRef]
- Asadi, E.; Adeli, H. Diagrid: An innovative, sustainable, and efficient structural system. Struct. Des. Tall Spec. Build. 2017, 26, e1358. [Google Scholar] [CrossRef]
- Wang, N.M.; Adeli, H. Sustainable Building Design. J. Civ. Eng. Manag. 2014, 20, 1–10. [Google Scholar] [CrossRef]
- Rafiei, M.H.; Adeli, H. Sustainability in highrise building design and construction. Struct. Des. Tall Spec. Build. 2016, 25, 643–658. [Google Scholar] [CrossRef]
- Mikaelsson, L.A.; Larsson, J. Integrated Planning for Sustainable Building—Production an Evolution Over Three Decades. J. Civ. Eng. Manag. 2017, 23, 319–326. [Google Scholar] [CrossRef]
- Oh, B.K.; Kim, K.J.; Kim, Y.; Park, H.S.; Adeli, H. Evolutionary learning based sustainable strain sensing model for structural health monitoring of high-rise buildings. Appl. Soft Comput. 2017, 58, 576–585. [Google Scholar] [CrossRef]
- Soto, M.G.; Adeli, H. Multi-agent replicator controller for sustainable vibration control of smart structures. J. Vibroeng. 2017, 19, 4300–4322. [Google Scholar] [CrossRef]
- Akbari, H.; Cartalis, C.; Kolokotsa, D.; Muscio, A.; Pisello, A.L.; Rossi, F.; Santamouris, M.; Synnefa, A.; Wong, N.H.; Zinzi, M. Local Climate Change and Urban Heat Island Mitigation Techniques—The State of the Art. J. Civ. Eng. Manag. 2016, 22, 1–16. [Google Scholar] [CrossRef]
- Ceravolo, R.; Miraglia, G.; Surace, C.; Zanotti-Fragonara, L. A computational methodology for assessing the time-dependent structural performance of electric road infrastructures. Comput. Aided Civ. Infrastruct. Eng. 2016, 31, 701–716. [Google Scholar] [CrossRef]
- Katsigarakis, K.; Kontes, G.D.; Giannakis, G.I.; Rovas, D.V. Sense-think-act Methodology for Intelligent Building Energy Management. Comput. Aided Civ. Infrastruct. Eng. 2016, 31, 50–64. [Google Scholar] [CrossRef]
- Wang, Y.; Szeto, W.Y. Multiobjective environmentally sustainable road network design using Pareto optimization. Comput. Aided Civ. Infrastruct. Eng. 2017, 32, 964–987. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Q.; Zukerman, M.; Guo, J.; Wang, Y.; Wang, G.; Yang, J.; Moran, B. Multiobjective Path Optimization for Critical Infrastructure Links with Consideration to Seismic Resilience. Comput. Aided Civ. Infrastruct. Eng. 2017, 32, 836–855. [Google Scholar] [CrossRef]
- Bozza, A.; Napolitano, R.; Asprone, D.; Parisi, F.; Manfredi, G. Alternative resilience indices for city ecosystems subjected to natural hazards. Comput. Aided Civ. Infrastruct. Eng. 2017, 32, 527–545. [Google Scholar] [CrossRef]
- Cahill, P.; Jaksic, V.; John Keane, J.; O’Sullivan, A.; Mathewson, A.; Ali, S.F.; Pakrashi, V. Effect of Road Surface, Vehicle and Device Characteristics on Energy Harvesting from Bridge-Vehicle Interactions. Comput. Aided Civ. Infrastruct. Eng. 2016, 31, 921–935. [Google Scholar] [CrossRef]
- Cinelli, M.; Coles, S.R.; Kirwan, K. Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment. Ecol. Indic. 2014, 46, 138–148. [Google Scholar] [CrossRef]
- Kabir, G.; Sadiq, R.; Tesfamariam, S. A review of multi-criteria decision-making methods for infrastructure management. Struct. Infrastruct. Eng. 2014, 10, 1176–1210. [Google Scholar] [CrossRef]
- Jato-Espino, D.; Castillo-Lopez, E.; Rodriguez-Hernandez, J.; Canteras-Jordana, J.C. A review of application of multi-criteria decision making methods in construction. Autom. Constr. 2014, 45, 151–162. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Antuchevičienė, J.; Kapliński, O. Multi-criteria decision making in civil engineering: Part I—A state-of-the-art survey. Eng. Struct. Technol. 2015, 7, 103–113. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Antuchevičienė, J.; Kapliński, O. Multi-criteria decision making in civil engineering. Part II—Applications. Eng. Struct. Technol. 2015, 7, 151–167. [Google Scholar] [CrossRef]
- Franklin, B. Letter to Joseph Priesley, 1772; Reprinted in the Benjamin Franklin Sampler; Fawcett: New York, NY, USA, 1956. [Google Scholar]
- Pareto, V. Cours E-Economic; Universite de Lausanne: Lausanne, Switzerland, 1896/1897. [Google Scholar]
- Simon, H.A. A behaviour model of rational choice. Q. J. Econom. 1955, 69, 99–118. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision Making for Leaders: the Analytical Hierarchy Process for Decisions in a Complex World; Lifetime Learning Publications: Belmont, CA, USA, 1982. [Google Scholar]
- Zeleny, M. Multiple Criteria Decision Making; McGraw-Hill: New York, NY, USA, 1982. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Herrera-Viedma, E. Fuzzy Sets and Fuzzy Logic in Multi-Criteria Decision Making. The 50th Anniversary of Prof. Lotfi Zadeh’s Theory: Introduction. Technol. Econ. Dev. Econ. 2015, 21, 677–683. [Google Scholar] [CrossRef]
- Kou, G.; Ergu, D. AHP/ANP Theory and Its Application in Technological and Economic Development: The 90th Anniversary of Thomas L. Saaty. Technol. Econ. Dev. Econ. 2016, 22, 649–650. [Google Scholar] [CrossRef]
- Kou, G.; Ergu, D.; Lin, C.S.; Chen, Y. Pairwise Comparison Matrix in Multiple Criteria Decision Making. Technol. Econ. Dev. Econ. 2016, 22, 738–765. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Antucheviciene, J.; Turskis, Z.; Adeli, H. Hybrid multiple-criteria decision-making methods: A review of applications in engineering. Sci. Iran. 2016, 23, 1–20. [Google Scholar]
- Zavadskas, E.K.; Govindan, K.; Antucheviciene, J.; Turskis, Z. Hybrid multiple criteria decision-making methods: A review of applications for sustainability issues. Econ. Res. Ekon. Istraz. 2016, 29, 857–887. [Google Scholar] [CrossRef]
- Yi, W.; Wang, S. Multi-objective mathematical programming approach to construction laborer assignment with equity consideration. Comput. Aided Civ. Infrastruct. Eng. 2016, 31, 954–965. [Google Scholar] [CrossRef]
- Pons, O.; de la Fuente, A.; Aguado, A. The Use of MIVES as a Sustainability Assessment MCDM Method for Architecture and Civil Engineering Applications. Sustainability 2016, 8, 460. [Google Scholar] [CrossRef]
- Penades-Pla, V.; Garcia-Segura, T.; Marti, J.V.; Yepes, V. A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design. Sustainability 2016, 8, 1295. [Google Scholar] [CrossRef]
- Keshavarz Ghorabaee, M.; Amiri, M.; Zavadskas, E.K.; Antucheviciene, J. Supplier evaluation and selection in fuzzy environments: A review of MADM approaches. Econ. Res. Ekon. Istraz. 2016, 30, 1073–1118. [Google Scholar] [CrossRef]
- Si, J.; Marjanovic-Halburd, L.; Nasiri, F.; Bell, S. Assessment of building-integrated green technologies: A review and case study on applications of Multi-Criteria Decision Making (MCDM) method. Sustain. Cities Soc. 2016, 27, 106–115. [Google Scholar] [CrossRef]
- Streimikiene, D.; Balezentis, T. Multi-criteria assessment of small scale CHP technologies in buildings. Renew. Sustain. Energy Rev. 2013, 26, 183–189. [Google Scholar] [CrossRef]
- Mardani, A.; Jusoh, A.; Zavadskas, E.K.; Cavallaro, F.; Khalifah, Z. Sustainable and Renewable Energy: An Overview of the Application of Multiple Criteria Decision Making Techniques and Approaches. Sustainability 2015, 7, 13947–13984. [Google Scholar] [CrossRef]
- Cerveira, A.; Baptista, J.; Solteiro Pires, E.J. Wind Farm Distribution Network Optimization. Integr. Comput. Aided Eng. 2016, 23, 69–79. [Google Scholar] [CrossRef]
- Mardani, A.; Jusoh, A.; Nor, K.M.D.; Khalifah, Z.; Zakwan, N.; Valipour, A. Multiple criteria decision-making techniques and their applications—A review of the literature from 2000 to 2014. Econ. Res. Ekon. Istraz. 2015, 28, 516–571. [Google Scholar] [CrossRef]
- Mardani, A.; Jusoh, A.; Zavadskas, E.K. Fuzzy multiple criteria decision-making techniques and applications—Two decades review from 1994 to 2014. Expert Syst. Appl. 2015, 42, 4126–4148. [Google Scholar] [CrossRef]
- Kahraman, C.; Onar, S.C.; Oztaysi, B. Fuzzy Multicriteria Decision-Making: A Literature Review. Int. J. Comput. Intell. Syst. 2015, 8, 637–666. [Google Scholar] [CrossRef]
- Antucheviciene, J.; Kala, Z.; Marzouk, M.; Vaidogas, E.R. Solving Civil Engineering Problems by Means of Fuzzy and Stochastic MCDM Methods: Current State and Future Research. Math. Probl. Eng. 2015, 2015, 362579. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Mardani, A.; Turskis, Z.; Jusoh, A.; Nor, K.M.D. Development of TOPSIS Method to Solve Complicated Decision-Making Problems: An Overview on Developments from 2000 to 2015. Int. J. Inf. Technol. Decis. Mak. 2016, 15, 645–682. [Google Scholar] [CrossRef]
- Behzadian, M.; Otaghsara, S.K.; Yazdani, M.; Ignatius, J. A state-of the-art survey of TOPSIS applications. Expert Syst. Appl. 2012, 39, 13051–13069. [Google Scholar] [CrossRef]
- Mardani, A.; Zavadskas, E.K.; Govindan, K.; Senin, A.A.; Jusoh, A. VIKOR Technique: A Systematic Review of the State of the Art Literature on Methodologies and Applications. Sustainability 2016, 8, 37. [Google Scholar] [CrossRef]
- Balezentis, T.; Balezentis, A. A Survey on Development and Applications of the Multi-criteria Decision Making Method MULTIMOORA. J. Multi-Criteria Decis. Anal. 2014, 21, 209–222. [Google Scholar] [CrossRef]
- Behzadian, M.; Kazemadeh, R.B.; Albadvi, A.; Aghdasi, M. PROMETHEE: A comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 2010, 200, 198–215. [Google Scholar] [CrossRef]
- Yang, Z.; Emmerich, M.; Baeck, T.; Kok, J. Multiobjective Inventory Routing with Uncertain Demand Using Population-based Metaheuristics. Integr. Comput. Aided Eng. 2016, 23, 205–220. [Google Scholar] [CrossRef]
- Pan, L.; He, C.; Tian, Y.; Su, Y.; Zhang, X. A Region Division Based Diversity Maintaining Approach for Many-Objective Optimization. Integr. Comput. Aided Eng. 2017, 24, 279–296. [Google Scholar] [CrossRef]
- Marttunen, M.; Lienert, J.; Belton, V. Structuring problems for Multi-Criteria Decision Analysis in practice: A literature review of method combinations. Eur. J. Oper. Res. 2017, 263, 1–17. [Google Scholar] [CrossRef]
- Tzeng, G.-H.; Huang, J.J. Multiple Attribute Decision Making: Methods and Applications; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2011; 349p. [Google Scholar]
- Tzeng, G.-H.; Huang, J.J. Fuzzy Multiple Objective Decision Making; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2014; 313p. [Google Scholar]
- Tzeng, G.-H.; Shen, K.-Y. New Concepts and Trends of Hybrid Multiple Criteria Decision Making; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2017. [Google Scholar]
- Kou, G.; Ergu, D.; Peng, Y.; Shi, Y. Data Processing for the AHP/ANP. In Quantitative Management; Springer: Berlin/Heidelberg, Germany, 2013; Volume 1. [Google Scholar]
- Bisdorff, R.; Dias, L.C.; Meyer, P.; Mousseau, V.; Pirlot, M. (Eds.) Evaluation and Decision Models with Multiple Criteria: Case Studies. In International Handbooks on Information Systems; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Liu, H.-C. FMEA Using Uncertainty Theories and MCDM Methods; Springer: Singapore, 2016. [Google Scholar]
- Naubi, I.; Zardari, N.H.; Shirazi, S.M.; Roslan, N.A.; Yusop, Z.; Haniffah, M.R.B.M. Ranking of Skudai river sub-watersheds from sustainability indices application of PROMETHEE method. Int. J. 2017, 12, 124–131. [Google Scholar] [CrossRef]
- De la Fuente, A.; Blanco, A.; Armengou, J.; Aguado, A. Sustainability based-approach to determine the concrete type and reinforcement configuration of TBM tunnels linings. Case study: Extension line to Barcelona Airport T1. Tunn. Undergr. Space Technol. 2017, 61, 179–188. [Google Scholar] [CrossRef]
- Arroyo, P.; Fuenzalida, C.; Albert, A.; Hallowell, M.R. Collaborating in decision making of sustainable building design: An experimental study comparing CBA and WRC methods. Energy Build. 2016, 128, 132–142. [Google Scholar] [CrossRef]
- Arroyo, P.; Tommelein, I.D.; Ballard, G. Comparing AHP and CBA as decision methods to resolve the choosing problem in detailed design. J. Constr. Eng. Manag. 2015, 141, 04014063. [Google Scholar] [CrossRef]
- Ignatius, J.; Rahman, A.; Yazdani, M.; Šaparauskas, J.; Haron, S.H. An integrated fuzzy ANP–QFD approach for green building assessment. J. Civ. Eng. Manag. 2016, 22, 551–563. [Google Scholar] [CrossRef]
- Hosseini, S.A.; de la Fuente, A.; Pons, O. Multicriteria decision-making method for sustainable site location of post-disaster temporary housing in urban areas. J. Constr. Eng. Manag. 2016, 142, 04016036. [Google Scholar] [CrossRef]
- Chen, L.; Pan, W. BIM-aided variable fuzzy multi-criteria decision making of low-carbon building measures selection. Sustain. Cities Soc. 2016, 27, 222–232. [Google Scholar] [CrossRef]
- Jalaei, F.; Jrade, A.; Nassiri, M. Integrating Decision Support System (DSS) and Building Information Modeling (BIM) to Optimize the Selection of Sustainable Building Components. J. Inf. Technol. Constr. 2015, 20, 399–420. [Google Scholar]
- Medineckiene, M.; Zavadskas, E.K.; Björk, F.; Turskis, Z. Multi-criteria decision-making system for sustainable building assessment/certification. Arch. Civ. Mech. Eng. 2015, 15, 11–18. [Google Scholar] [CrossRef]
- Nakhaei, J.; Bitarafan, M.; Lale Arefi, S.; Kapliński, O. Model for rapid assessment of vulnerability of office buildings to blast using SWARA and SMART methods (a case study of swiss re tower). J. Civ. Eng. Manag. 2016, 22, 831–843. [Google Scholar] [CrossRef]
- Yousefi, H.; Ghodusinejad, M.H.; Noorollahi, Y. GA/AHP-based optimal design of a hybrid CCHP system considering economy, energy and emission. Energy Build. 2017, 138, 309–317. [Google Scholar] [CrossRef]
- Kalibatas, D.; Kovaitis, V. Selecting the most effective alternative of waterproofing membranes for multifunctional inverted flat roofs. J. Civ. Eng. Manag. 2017, 23, 650–660. [Google Scholar] [CrossRef]
- Turskis, Z.; Daniūnas, A.; Zavadskas, E.K.; Medzvieckas, J. Multicriteria evaluation of building foundation alternatives. Comput. Aided Civ. Infrastruct. Eng. 2016, 31, 717–729. [Google Scholar] [CrossRef]
- Leonavičiūtė, G.; Dėjus, T.; Antuchevičienė, J. Analysis and prevention of construction site accidents. Građevinar 2016, 68, 399–410. [Google Scholar]
- Turskis, Z.; Juodagalvienė, B. A novel hybrid multi-criteria decision-making model to assess a stairs shape for dwelling houses. J. Civ. Eng. Manag. 2016, 22, 1078–1087. [Google Scholar] [CrossRef]
- Ebrahimian, A.; Ardeshir, A.; Rad, I.Z.; Ghodsypour, S.H. Urban stormwater construction method selection using a hybrid multi-criteria approach. Autom. Constr. 2015, 58, 118–128. [Google Scholar] [CrossRef]
- Nezarat, H.; Sereshki, F.; Ataei, M. Ranking of geological risks in mechanized tunneling by using Fuzzy Analytical Hierarchy Process (FAHP). Tunn. Undergr. Space Technol. 2015, 50, 358–364. [Google Scholar] [CrossRef]
- Shariati, S.; Abedi, M.; Saedi, A.; Yazdani-Chamzini, A.; Tamošaitienė, J.; Šaparauskas, J.; Stupak, S. Critical factors of the application of nanotechnology in construction industry by using ANP technique under fuzzy intuitionistic environment. J. Civ. Eng. Manag. 2017, 23, 914–925. [Google Scholar] [CrossRef]
- Onat, O.; Celik, E. An integral based fuzzy approach to evaluate waste materials for concrete. Smart Struct. Syst. 2017, 19, 323–333. [Google Scholar] [CrossRef]
- Na, K.L.; Lee, H.E.; Liew, M.S.; Zawawi, N.W.A. An expert knowledge based decommissioning alternative selection system for fixed oil and gas assets in the South China Sea. Ocean Eng. 2017, 130, 645–658. [Google Scholar] [CrossRef]
- Naziris, I.A.; Lagaros, N.D.; Papaioannou, K. Optimized fire protection of cultural heritage structures based on the analytic hierarchy process. J. Build. Eng. 2016, 8, 292–304. [Google Scholar] [CrossRef]
- Kursunoglu, N.; Onder, M. Selection of an appropriate fan for an underground coal mine using the Analytic Hierarchy Process. Tunn. Undergr. Space Technol. 2015, 48, 101–109. [Google Scholar] [CrossRef]
- Schöttle, A.; Arroyo, P. Comparison of Weighting-Rating-Calculating, Best Value, and Choosing by Advantages for Bidder Selection. J. Constr. Eng. Manag. 2017, 143, 05017015. [Google Scholar] [CrossRef]
- Khanzadi, M.; Turskis, Z.; Ghodrati Amiri, G.; Chalekaee, A. A model of discrete zero-sum two-person matrix games with grey numbers to solve dispute resolution problems in construction. J. Civ. Eng. Manag. 2017, 23, 824–835. [Google Scholar] [CrossRef]
- Dadpour, M.; Shakeri, E. A Hybrid Model Based on Fuzzy Approach Type II to Select Private Sector in Partnership Projects. Iran. J. Sci. Technol. Trans. Civ. Eng. 2017, 41, 175–186. [Google Scholar] [CrossRef]
- Jang, W.; Hong, H.U.; Han, S.H.; Baek, S.W. Optimal supply vendor selection model for LNG plant projects using fuzzy-TOPSIS theory. J. Manag. Eng. 2016, 33, 04016035. [Google Scholar] [CrossRef]
- Formisano, A.; Castaldo, C.; Chiumiento, G. Optimal seismic upgrading of a reinforced concrete school building with metal-based devices using an efficient multi-criteria decision-making method. Struct. Infrastruct. Eng. 2017, 13, 1373–1389. [Google Scholar] [CrossRef]
- Formisano, A.; Mazzolani, F.M. On the selection by MCDM methods of the optimal system for seismic retrofitting and vertical addition of existing buildings. Comput. Struct. 2015, 159, 1–13. [Google Scholar] [CrossRef]
- Terracciano, G.; Di Lorenzo, G.; Formisano, A.; Landolfo, R. Cold-formed thin-walled steel structures as vertical addition and energetic retrofitting systems of existing masonry buildings. Eur. J. Environ. Civ. Eng. 2015, 19, 850–866. [Google Scholar] [CrossRef]
- Cavalcante, C.A.V.; Alencar, M.H.; Lopes, R.S. Multicriteria Model to Support Maintenance Planning in Residential Complexes under Warranty. J. Constr. Eng. Manag. 2016, 143, 04016110. [Google Scholar] [CrossRef]
- Verma, M.; Rajasankar, J.; Anandavalli, N.; Prakash, A.; Iyer, N.R. Fuzzy similarity approach for ranking and health assessment of towers based on visual inspection. Adv. Struct. Eng. 2015, 18, 1399–1414. [Google Scholar] [CrossRef]
- Lin, S.C.J.; Ali, A.S.; Bin Alias, A. Analytic hierarchy process decision-making framework for procurement strategy selection in building maintenance work. J. Perform. Constr. Facil. 2015, 29, 04014050. [Google Scholar] [CrossRef]
- Agrebi, M.; Abed, M.; Omri, M.N. ELECTRE I based relevance decision-makers feedback to the location selection of distribution centers. J. Adv. Transp. 2017, 2017, 7131094. [Google Scholar] [CrossRef]
- Baušys, R.; Juodagalvienė, B. Garage location selection for residential house by WASPAS-SVNS method. J. Civ. Eng. Manag. 2017, 23, 421–429. [Google Scholar] [CrossRef]
- Hosseini, S.A.; de la Fuente, A.; Pons, O. Multi-criteria decision-making method for assessing the sustainability of post-disaster temporary housing units technologies: A case study in Bam, 2003. Sustain. Cities Soc. 2016b, 20, 38–51. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Hwang, C.L.; Yoon, K. Multiple Attributes Decision Making Methods and Applications; Springer: Berlin/Hedelberg, Germany, 1981. [Google Scholar]
- San-José, J.T.; Cuadrado, J. Industrial building design stage based on a system approach to their environmental sustainability. Constr. Build. Mater. 2010, 24, 438–447. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z.; Antucheviciene, J. Selecting a contractor by using a novel method for multiple attribute analysis: Weighted Aggregated Sum Product Assessment with grey values (WASPAS-G). Stud. Inform. Control 2015, 24, 141–150. [Google Scholar] [CrossRef]
- Mareschal, B.; Brans, J.P. PROMETHEE V: MCDM Problems with Segmentation Constrains; Universite Libre de Brusells: Brussels, Belgium, 1992. [Google Scholar]
- Zavadskas, E.K.; Turskis, Z. A new additive ratio assessment (ARAS) method in multicriteria decision-making. Technol. Econ. Dev. Econ. 2010, 16, 159–172. [Google Scholar] [CrossRef]
- Opricovic, S. Multicriteria Optimization of Civil Engineering Systems; University of Belgrade: Belgrade, Serbia, 1998. [Google Scholar]
- MacCrimmon, K.R. Decision Makingamong Multipleattribute Alternatives: A Survey and Consolidated Approach; RAND Memorandum, RM-4823-ARPA; RAND Corporation: Santa Monica, CA, USA, 1968. [Google Scholar]
- Laplace, P.-S. Essai Philosophique sur les Probabilités; Courcier: Paris, France, 1814. [Google Scholar]
- Hurwicz, L. Optimality Criteria for Decision-Making under Ignorance: Cowles Commission Paper. Statistics 1951, 370, 45–52. [Google Scholar]
- Bayes, T. An Essay towards solving a Problem in the Doctrine of Chances. Philos. Trans. 1763, 53, 370–418. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z.; Antuchevičienė, J.; Zakarevičius, A. Optimization of weighted aggregated sum product assessment. Electron. Electr. Eng. 2012, 122, 3–6. [Google Scholar] [CrossRef]
- Roy, B. La methode ELECTRE. Rev. Inform. Rech. Oper. RIRO 1968, 8, 57–75. [Google Scholar]
- Saaty, T.L. Decision Making with Dependence and Feedback. The Analytic Network Process; RWS Publications: Pitsburg, PA, USA, 1996; 370p. [Google Scholar]
- Keršulienė, V.; Zavadskas, E.K.; Turskis, Z. Selection of rational dispute resolution method by applying new stepwise weight assessment ratio analysis (SWARA). J. Bus. Econ. Manag. 2010, 11, 243–258. [Google Scholar] [CrossRef]
- Keshavarz Ghorabaee, M.; Zavadskas, E.K.; Laya, O.; Turskis, Z. Multi-Criteria Inventory Classification Using a New Method of Evaluation Based on Distance from Average Solution (EDAS). Informatica 2015, 26, 435–451. [Google Scholar] [CrossRef]
- Yoon, K.; Hwang, C. Multiple Attribute Decision Making: An Introduction; Sage Publications: London, UK, 1995. [Google Scholar]
- Hodges, J.L.; Lehmann, E.L. The Use of Previous Experience in Reaching Statistical Decision. Ann. Math. Stud. 1952, 23, 396–407. [Google Scholar] [CrossRef]
- Bridgman, P.W. Dimensional Analysis; Yale University Press: New Haven, CT, USA, 1922. [Google Scholar]
- Zyoud, S.H.; Fuchs-Hanusch, D. A bibliometric-based survey on AHP and TOPSIS techniques. Expert Syst. Appl. 2017, 78, 158–181. [Google Scholar] [CrossRef]
- Dzitac, I.; Filip, F.G.; Manolescu, M.J. Fuzzy Logic Is Not Fuzzy: World-renowned Computer Scientist Lotfi A. Zadeh. Int. J. Comput. Commun. Control 2017, 12, 748–789. [Google Scholar] [CrossRef]
Institutions | Number of Articles |
---|---|
Vilnius Gediminas Technical University | 30 |
University of Tehran | 17 |
Amirkabir University of Technology | 7 |
University of Naples Federico II | 5 |
University of Arizona | 5 |
Polytechnic University of Catalonia | 5 |
Iran University Science Technology | 5 |
Hong Kong Polytechnic University | 5 |
University of British Columbia | 4 |
Seoul National University of Science Technology | 4 |
Istanbul Teknik University | 4 |
Indian Institute of Technology IIT | 4 |
Texas A&M University System | 3 |
Royal Institute of Technology | 3 |
Kaunas University of Technology | 3 |
Islamic Azad University | 3 |
Hohai University | 3 |
Title of Journal | Number of Articles |
---|---|
Journal of Civil Engineering and Management | 24 |
Water Resources Management | 23 |
Archives of Civil and Mechanical Engineering | 7 |
Stochastic Environmental Research and Risk Assessment | 6 |
Journal of Hydroinformatics | 6 |
Energy and Buildings | 6 |
Water Resources Bulletin | 5 |
Journal of Construction Engineering and Management | 5 |
Tunnelling and Underground Space Technology | 4 |
Ocean Engineering | 4 |
Journal of Advanced Transportation | 4 |
Automation in Construction | 4 |
Transportation | 3 |
Sustainable Cities and Society | 3 |
Structure and Infrastructure Engineering | 3 |
Building and Environment | 3 |
Publications | Number of Publications | |
---|---|---|
1991–2014 | 1991–2017 (15 October) | |
Publications on MCDM methods | ||
All | 2290 | 3571 |
Articles: | 1589 | 2605 |
• Countries | 72 | 91 |
• Institutions | >100 | >100 |
• Journals | >100 | >100 |
Publications on MCDM in Civil Engineering and Construction Building Technology | ||
All | 138 | 195 |
Articles: | 113 | 160 |
• Countries | 28 | 34 |
• Institutions | >100 | >100 |
• Journals | 38 | 57 |
Application Domain and Problem Solved | MCDM Method(s) Applied * | Publication |
---|---|---|
Sustainable construction (27.78%) | ||
Watershed sustainability | PROMETHEE | Naubi et al. (2017) [79] |
Sustainability based-approach to determine the concrete type and reinforcement configuration | AHP, MIVES | de la Fuente et al. (2017) [80] |
Sustainable building design | CBA, WRC approaches | Arroyo et al. (2016) [81] |
Choosing problem in building detailed design | AHP, CBA | Arroyo et al. (2015) [82] |
Approach for green building assessment | fuzzy ANP | Ignatius et al. (2016) [83] |
Method for assessing the sustainability of post-disaster temporary housing | MIVES | Hosseini et al. (2016a) [84] |
BIM-aided variable fuzzy MCDM model for selecting Low-carbon building (LCB) measures | fuzzy PROMETHEE | Chen & Pan (2016) [85] |
Selection of Sustainable Building Components | TOPSIS | Jalaei et al. (2015) [86] |
Sustainable building assessment/certification | AHP, ARAS | Medineckiene et al. (2015) [87] |
Assessment of vulnerability of office buildings to blast | SMART, SWARA | Nakhaei et al. (2016) [88] |
Construction technology (22.22%) | ||
Integration of a hybrid CCHP system into a commercial building | AHP | Yousefi et al. (2017) [89] |
Selecting the most effective alternative of waterproofing membranes for multifunctional inverted flat roofs | SAW, Hurwicz, Laplace and Bayes rules | Kalibatas & Kovaitis (2017) [90] |
Multicriteria evaluation of building foundation alternatives | AHP, WASPAS-G | Turskis et al. (2016) [91] |
Analysis and prevention of construction site accidents | WASPAS-G | Leonavičiūtė et al. (2016) [92] |
Decision-making model to assess a stairs shape for dwelling houses | AHP, SAW, MEW, TOPSIS, EDAS, ARAS, Laplace Rule, Bayes Rule, FM | Turskis & Juodagalvienė (2016) [93] |
Selection of urban storm water construction method | Fuzzy AHP and CP | Ebrahimian et al. (2015) [94] |
Ranking of geological risks in mechanized tunneling | Fuzzy AHP | Nezarat et al. (2015) [95] |
The critical factors of the application of nanotechnology in construction | IFS, ANP | Shariati et al. (2017) [96] |
Building structures and systems (11.11%) | ||
Evaluation and selection of waste materials for recovery and reuse in concrete | Choquet integral based fuzzy approach | Onat & Celik (2017) [97] |
Selection of a best practicable decommissioning method | AHP | Na et al. (2017) [98] |
Optimization of fire protection of cultural heritage structures | AHP | Naziris et al. (2016) [99] |
Selection of an appropriate fan for an underground coal mine | AHP | Kursunoglu & Onder (2015) [100] |
Construction management (11.11%) | ||
Selecting the best bidder during a tendering procedure | WRC, BVS, CBA approaches | Schöttle & Arroyo (2017) [101] |
Dispute resolution method for disputes in construction projects | Laplace, Hurwicz, Hodges-Lehmann rules for games with grey numbers | Khanzadi et al. (2017) [102] |
Introduction of private sectors into major projects. A hybrid model for evaluation and selection of the private sector for partnership projects | SWOT, Fuzzy VIKOR, PROMEEHTE | Dadpour & Shakeri (2017) [103] |
Supply vendor selection model. Development of liquefied natural gas (LNG) plants as megaprojects | Fuzzy TOPSIS | Jang et al. (2016) [104] |
Retrofitting (11.11%) | ||
Optimal seismic upgrading of a reinforced concrete school building with metal-based devices | TOPSIS | Formisano et al. (2017) [105] |
Assessment of building-integrated green technologies | AHP | Si et al. (2016) [57] |
The optimal system for seismic retrofitting and vertical addition of existing buildings | TOPSIS, ELECTRE, VIKOR | Formisano & Mazzolani (2015) [106] |
The analysis of vertical addition systems for energetic retrofitting of existing masonry buildings | TOPSIS | Terracciano et al. (2015) [107] |
Building maintenance (8.33%) | ||
Quantitative tool to support the definition of a maintenance-inspection policy | Multicriteria model based on the delay-time concept | Cavalcante et al. (2016) [108] |
Assessment of existing telecommunication towers | Fuzzy TOPSIS | Verma et al. (2015) [109] |
Decision-making framework for procurement strategy selection in building maintenance work | AHP | Lin et al. (2015) [110] |
Location selection problems (8.33%) | ||
Location selection of distribution centers | ELECTRE I | Agrebi (2017) [111] |
Garage location selection for residential house | AHP, WASPAS-SVNS | Baušys & Juodagalvienė (2017) [112] |
Model to support decision makers in choosing site locations for temporary housing | AHP, MIVES | Hosseini et al. (2016b) [113] |
Methods | Articles |
---|---|
AHP, Saaty 1980 [114] | 15 |
Fuzzy Sets, Zadeh 1965 [47] | 12 |
TOPSIS, Hwang, Yoon 1981 [115] | 7 |
MIVES, San-José, Cuadrado 2010 [116] | 3 |
WASPAS-G, Zavadskas et al., 2015b [117] | 2 |
PROMETHEE, Mareschal, Brans 1992 [118] | 2 |
ARAS, Zavadskas, Turskis 2010 [119] | 2 |
VIKOR, Opricovic 1998 [120] | 2 |
SAW, MacCrimon 1968 [121] | 2 |
Laplace Rule, Laplace 1814 [122] | 2 |
Hurwicz Rule, Hurwicz 1951 [123] | 2 |
Bayes Rule, Bayes 1763 [124] | 2 |
WASPAS, Zavadskas et al., 2012 [125] | 2 |
ELECTRE, Roy 1968 [126] | 1 |
ANP, Saaty 1996 [127] | 1 |
SWARA, Kersuliene et al., 2010 [128] | 1 |
WSM, MacCrimon 1968 [121] | 1 |
EDAS, Keshavarz Ghorabaee et al., 2015 [129] | 1 |
MEW, Yoon, Hwang 1995 [130] | 1 |
Hodges-Lehmann Rule, Hodges, Lehmann 1952 [131] | 1 |
FM, Bridgman 1922 [132] | 1 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zavadskas, E.K.; Antucheviciene, J.; Vilutiene, T.; Adeli, H. Sustainable Decision-Making in Civil Engineering, Construction and Building Technology. Sustainability 2018, 10, 14. https://doi.org/10.3390/su10010014
Zavadskas EK, Antucheviciene J, Vilutiene T, Adeli H. Sustainable Decision-Making in Civil Engineering, Construction and Building Technology. Sustainability. 2018; 10(1):14. https://doi.org/10.3390/su10010014
Chicago/Turabian StyleZavadskas, Edmundas Kazimieras, Jurgita Antucheviciene, Tatjana Vilutiene, and Hojjat Adeli. 2018. "Sustainable Decision-Making in Civil Engineering, Construction and Building Technology" Sustainability 10, no. 1: 14. https://doi.org/10.3390/su10010014
APA StyleZavadskas, E. K., Antucheviciene, J., Vilutiene, T., & Adeli, H. (2018). Sustainable Decision-Making in Civil Engineering, Construction and Building Technology. Sustainability, 10(1), 14. https://doi.org/10.3390/su10010014