Time Delay and Frequency Analysis of Remote Microphones
Abstract
1. Introduction
- Electromagnetic induction captured by the hearing aid telecoil;
- Near-field magnetic induction integrated with the Bluetooth standard;
- Frequency modulation with a constant demodulated carrier frequency;
- Digital radio frequency, providing bidirectional exchanges via frequency hopping spread spectrum (FHSS).
2. Materials and Methods
3. Results
3.1. Time Domain Responses
3.2. Frequency Responses in the Lower Part of the Spectrum
3.3. Frequency Responses in the Upper Part of the Spectrum
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RM | Remote Microphone |
HA | Hearing Aid |
CI | Cochlear Implant |
SNR | Signal-to-Noise Ratio |
FHSS | Frequency-Hopping Spread Spectrum |
BTE | Behind-The-Ear |
FIT1 | First Fitting |
CR | Compression Ratio |
HTL | Hearing Threshold Level |
UCL | Uncomfortable Loudness |
FIT2 | Second Fitting |
AAA | American Academy of Audiology |
ISTS | International Speech Test Signal |
References
- Gheller, F.; Lovo, E.; Arsie, A.; Bovo, R. Classroom acoustics: Listening problems in children. Build. Acoust. 2020, 27, 47–59. [Google Scholar] [CrossRef]
- Iglehart, F. Speech perception in classroom acoustics by children with hearing loss and wearing hearing aids. Am. J. Audiol. 2020, 29, 6–17. [Google Scholar] [CrossRef] [PubMed]
- ANSI/ASA S12.60-2010; Acoustical Performance Criteria, Design Requirements, and Guidelines for Schools. American National Standards Institute: Washington, DC, USA; Acoustical Society of America: Melville, NY, USA, 2010.
- American Speech-Language-Hearing Association. Practice Portal—Classroom Acoustics. 2018. Available online: https://www.asha.org/Practice-Portal/professional-issues/classroom-acoustics/ (accessed on 10 September 2025).
- Iglehart, F. Speech perception in classroom acoustics by children with cochlear implants and with typical hearing. Am. J. Audiol. 2016, 25, 100–109. [Google Scholar] [CrossRef]
- Yang, W.; Bradley, J.S. Effects of room acoustics on the intelligibility of speech in classrooms for young children. J. Acoust. Soc. Am. 2009, 125, 922–933. [Google Scholar] [CrossRef] [PubMed]
- McCreery, R.W.; Walker, E.A.; Spratford, M.; Lewis, D.; Brennan, M. Auditory, cognitive, and linguistic factors predict speech recognition in adverse listening conditions for children with hearing loss. Front. Neurosci. 2019, 13, 1093. [Google Scholar] [CrossRef]
- Van Reenen, C.; Karusseit, C. Classroom acoustics as a consideration for inclusive education in South Africa. S. Afr. J. Commun. Disord. 2017, 64, 1–10. [Google Scholar] [CrossRef][Green Version]
- Bovo, R.; Trevisi, P.; Emanuelli, E.; Martini, A. Voice amplification for primary school teachers with voice disorders: A randomized clinical trial. Int. J. Occup. Med. Environ. Health 2013, 26, 363–372. [Google Scholar] [CrossRef]
- Muller, G.H.; Jorgensen, L.E. Hearing Assistive Technologies and classroom consideration. In Hearing Aids for Speech-Language Pathologist: A Guide to Modern Rehabilitative Audiology; Plural Publishing: San Diego, CA, USA, 2020; pp. 219–251. [Google Scholar]
- Valente, D.L.; Plevinsky, H.M.; Franco, J.M.; Heinrichs-Graham, E.C.; Lewis, D.E. Experimental investigation of the effects of the acoustical conditions in a simulated classroom on speech recognition and learning in children. J. Acoust. Soc. Am. 2012, 131, 232–246. [Google Scholar] [CrossRef]
- Lewis, M.S.; Crandell, C.C.; Valente, M.; Horn, J.E. Speech perception in noise: Directional microphones versus frequency modulation (FM) systems. J. Am. Acad. Audiol. 2004, 15, 426–439. [Google Scholar] [CrossRef]
- Norrix, L.W.; Camarota, K.; Harris, F.P.; Dean, J. The effects of FM and hearing aid microphone settings, FM gain, and ambient noise levels on SNR at the tympanic membrane. J. Am. Acad. Audiol. 2016, 27, 117–125. [Google Scholar] [CrossRef]
- Ricketts, T.A.; Bentler, R.; Mueller, H.G. Essentials of Modern Hearing Aids: Selection, Fitting, and Verification; Plural Publishing: San Diego, CA, USA, 2017. [Google Scholar]
- Schafer, E.C.; Kirby, B.; Miller, S. Remote microphone technology for children with hearing loss or auditory processing issues. Semin. Hear. 2020, 41, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Walker, E.A.; Curran, M.; Spratford, M.; Roush, P. Remote microphone systems for preschool-age children who are hard of hearing: Access and utilization. Int. J. Audiol. 2019, 58, 200–207. [Google Scholar] [CrossRef]
- Dunn, A.; James, P.; Pelosi, A.; Sorensen, E.; Oleson, J. Managing listening difficulties in patients with ASD and normal hearing sensitivity. Hear. Rev. 2021, 28, 12–16. [Google Scholar]
- Wróblewski, M.; Lewis, D.E.; Valente, D.L.; Stelmachowicz, P.G. Effects of reverberation on speech recognition in stationary and modulated noise by school-aged children and young adults. Ear Hear. 2012, 33, 731–744. [Google Scholar] [CrossRef] [PubMed]
- Fitzroy, A.B.; Krizman, J.; Tierney, A.; Agouridou, M.; Kraus, N. Longitudinal maturation of auditory cortical function during adolescence. Front. Hum. Neurosci. 2015, 9, 530. [Google Scholar] [CrossRef] [PubMed]
- Pichora-Fuller, M.K.; Kramer, S.E.; Eckert, M.A.; Edwards, B.; Hornsby, B.W.; Humes, L.E.; Lemke, U.; Lunner, T.; Matthen, M.; Mackersie, C.L.; et al. Hearing impairment and cognitive energy: The framework for understanding effortful listening (FUEL). Ear Hear. 2016, 37, 5S–27S. [Google Scholar] [CrossRef]
- Hornsby, B.W.; Davis, H.; Bess, F.H. The impact and management of listening-related fatigue in children with hearing loss. Otolaryngol. Clin. N. Am. 2021, 54, 1231–1239. [Google Scholar] [CrossRef]
- Alexander, J. Hearing aid delay and current drain in modern digital devices. Can. Audiol. 2016, 3, 1–12. [Google Scholar]
- Dillon, H. Hearing Aids. In Scott-Brown’s Otorhinolaryngology and Head and Neck Surgery; CRC Press: Boca Raton, FL, USA, 2018; pp. 671–683. [Google Scholar]
- ANSI/ASA S3.22-2014; Specification of Hearing Aid Characteristics. American National Standards Institute: Washington, DC, USA; Acoustical Society of America: Melville, NY, USA, 2014.
- IEC 60118-0:2022; Electroacoustics—Hearing aids—Part 0: Measurement of the Performance Characteristics of Hearing Aids. International Electrotechnical Commission: Geneva, Switzerland, 2022.
- American Academy of Audiology (AAA). Clinical Practice Guidelines: Remote Microphone Hearing Assistance Technologies for Children and Youth from Birth to 21 Years and Supplement A: Fitting and Verification Procedures for Ear-Level FM. 2011. Available online: http://audiology-web.s3.amazonaws.com/migrated/HAT_Guidelines_Supplement_A.pdf_53996ef7758497.54419000.pdf (accessed on 1 August 2018).
- Sousa, R.; Nair, E.; Wannagot, S. Verification protocol for signal transparency using the cochlear mini-microphone 2+ and digital modulation transmitter and receiver with cochlear implants. J. Am. Acad. Audiol. 2019, 30, 198–207. [Google Scholar] [CrossRef]
- Wolfe, J.; Lewis, D.; Eiten, L. Remote microphone systems and communication access for children. In Comprehensive Handbook of Pediatric Audiology; Seewald, R., Tharpe, A.M., Eds.; Plural Publishing: San Diego, CA, USA, 2017. [Google Scholar]
- European Union of Hearing Aid Acousticians (EUHA). Wireless Remote Microphone Systems—Configuration, Verification and Measurement of Individual Benefits. 2017. Available online: https://www.euha.org/content/uploads/2020/12/euha-guideline-04-06-en.pdf (accessed on 1 August 2021).
- Jacob, R.T.S.; Paccola, E.C.M.; Bucuvic, É.C.; Salgado, M.H. Fitting assistive technology for people with hearing loss: The importance of remote microphone systems’ electroacoustic verification. Int. J. Environ. Res. Public Health 2021, 18, 13251. [Google Scholar] [CrossRef]
- Kates, J.M.; Arehart, K.H.; Harvey, L.O. Integrating a remote microphone with hearing-aid processing. J. Acoust. Soc. Am. 2019, 145, 3551–3566. [Google Scholar] [CrossRef]
- Frye, G.J. Testing digital and analog hearing instruments: Processing time delays and phase measurements. Hear. Rev. 2001, 8, 34–40. [Google Scholar]
- Chen, J.; Wang, Z.; Dong, R.; Fu, X.; Wang, Y.; Wang, S. Effects of wireless remote microphone on speech recognition in noise for hearing aid users in China. Front. Neurosci. 2021, 15, 643205. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.A.; Moore, B.C. Tolerable hearing aid delays. I. Estimation of limits imposed by the auditory path alone using simulated hearing losses. Ear Hear. 1999, 20, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Jenstad, L.M.; Marynewich, S.; Stapells, D.R. Slow cortical potentials and amplification—Part II: Acoustic measures. Int. J. Otolaryngol. 2012, 2012, 386542. [Google Scholar] [CrossRef] [PubMed]
- Everest, A.F. Master Handbook of Acoustics, 4th ed.; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Stone, M.A.; Moore, B.C. Tolerable hearing aid delays. III. Effects on speech production and perception of across-frequency variation in delay. Ear Hear. 2003, 24, 175–183. [Google Scholar] [CrossRef]
- Goehring, T.; Chapman, J.L.; Bleeck, S.; Monaghan, J.J. Tolerable delay for speech production and perception: Effects of hearing ability and experience with hearing aids. Int. J. Audiol. 2018, 57, 61–68. [Google Scholar] [CrossRef]
RM | CI Connection | Mode of Transmission | Audio Frequency Range | MASL | |
---|---|---|---|---|---|
Phonak Roger Select | Advanced Bionics | 2.4 GHz ISM band | 100 Hz–7.3 kHz | 125 mA/m (with Roger NeckLoop) | |
ReSound Multi Mic | Cochlear | 2.4 GHz | 100 Hz–8 kHz | 100 mA/m | |
HA * | Audio Frequency Range | MASL | OSPL 90 | FOG 50 | Total Harmonic Distortion |
Phonak Sky M90 SP | 100–5000 Hz | HFA 98 dB SPL | PEAK 139 dB SPL HFA 128 dB SPL | PEAK 81 dB SPL HFA 67 dB SPL | 500 Hz 2.0%–800 Hz 1.0% 1.6 kHz 2.0%–3.2 kHz 1.0% |
ReSound Enzo Q988 DWHT | 100–4940 Hz | HFA 114 dB SPL | PEAK 134 dB SPL HFA 130 dB SPL | PEAK 73 dB SPL HFA 67 dB SPL | 500 Hz 2.8%–800 Hz 0.4% 1.6 kHz 0.4%–3.2 kHz 0.1% |
Pure Tone Frequency Sweep | Fitting | HA Brand | Frequency Gain dB | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
500 Hz | 750 Hz | 800 Hz | 1 kHz | 1.6 kHz | 2 kHz | 2.5 kHz | HFA | PEAK | |||
50 dB SPL | FIT1 | HA1 | 23 | 21 | 21 | 19 | 19 | 25 | 28 | 22 | 39 |
HA2 | 23 | 21 | 22 | 23 | 17 | 25 | 28 | 22 | 35 | ||
FIT2 | HA1 | 44 | 43 | 43 | 42 | 42 | 46 | 50 | 45 | 54 | |
HA2 | 40 | 40 | 40 | 42 | 38 | 45 | 46 | 42 | 49 | ||
65 dB SPL | FIT1 | HA1 | 23 | 21 | 21 | 19 | 19 | 25 | 28 | 22 | 38 |
HA2 | 23 | 21 | 22 | 23 | 17 | 25 | 28 | 23 | 35 | ||
FIT2 | HA1 | 39 | 35 | 35 | 34 | 32 | 36 | 40 | 35 | 44 | |
HA2 | 34 | 34 | 35 | 36 | 30 | 35 | 36 | 34 | 41 | ||
80 dB SPL | FIT1 | HA1 | 22 | 18 | 18 | 17 | 17 | 20 | 25 | 20 | 35 |
HA2 | 23 | 21 | 22 | 23 | 17 | 23 | 26 | 22 | 33 | ||
FIT2 | HA1 | 31 | 26 | 25 | 24 | 22 | 26 | 30 | 25 | 36 | |
HA2 | 26 | 26 | 27 | 28 | 19 | 27 | 27 | 25 | 33 |
ISTS at 65 dB SPL Speech-Like Stimulus | Fitting | HA-RM Brand | Frequency Gain dB | ||||||
---|---|---|---|---|---|---|---|---|---|
500 Hz | 750 Hz | 800 Hz | 1 kHz | 1.6 kHz | 2 kHz | 2.5 kHz | |||
STEP 1 Testing HA | FIT1 | HA1 | 23 | 20 | 20 | 19 | 19 | 25 | 28 |
HA2 | 24 | 21 | 22 | 23 | 17 | 24 | 27 | ||
FIT2 | HA1 | 39 | 36 | 37 | 37 | 38 | 45 | 50 | |
HA2 | 34 | 25 | 36 | 38 | 35 | 42 | 44 | ||
STEP 2 Testing HA connected to RM in mute modality | FIT1 | HA1 + RM1 mute | 23 | 20 | 20 | 19 | 19 | 25 | 28 |
HA2 + RM2 mute | 24 | 21 | 22 | 23 | 17 | 24 | 27 | ||
FIT2 | HA1 + RM1 mute | 39 | 36 | 37 | 37 | 38 | 45 | 50 | |
HA2 + RM2 mute | 34 | 25 | 36 | 38 | 35 | 43 | 44 | ||
STEP 3 Testing RM unmuted connected to HA | FIT1 | RM1 + HA1 | 20 | 20 | 20 | 17 | 15 | 24 | 26 |
RM2 + HA2 | 18 | 20 | 22 | 25 | 17 | 24 | 24 | ||
FIT2 | RM1 + HA1 | 36 | 36 | 38 | 36 | 36 | 49 | 50 | |
RM2 + HA2 | 30 | 25 | 36 | 40 | 35 | 43 | 40 |
Fit | Brand | HA + (Input 65 dB SPL) | HA + RM Output (Input 65 dB SPL) | (Input 65 dB SPL) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Low Frequency Gain (dB) | Low Frequency Gain (dB) | Low Frequency Gain (dB) | ||||||||
500 Hz | 800 Hz | 1000 Hz | 500 Hz | 800 Hz | 1000 Hz | 500 Hz | 800 Hz | 1000 Hz | ||
1 | 1 | 21.5 | 19.7 | 17.1 | 21.7 | 20.5 | 16.9 | −10 | 8.4 | 4.8 |
2 | 23 | 22.1 | 19.6 | 22 ± 2.5 | 22 ± 2.5 | 20 ± 2.5 | 7.1 | 7.9 | 6.5 | |
2 | 1 | 42.8 | 40.1 | 38.3 | 42.3 | 40.9 | 38.2 | −1.7 | 30.3 | 11.6 |
2 | 39 | 39.4 | 38.2 | 35 ± 2.5 | 38 ± 2.5 | 36.4 ± 2.5 | 15.8 | 23.3 | 23.4 |
Fit | Brand | HA + (Input 65 dB SPL) | HA + RM Output (Input 65 dB SPL) | (Input 65 dB SPL) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
High Frequency Gain (dB) | High Frequency Gain (dB) | High Frequency Gain (dB) | ||||||||
1600 Hz | 2000 Hz | 2500 Hz | 1600 Hz | 2000 Hz | 2500 Hz | 1600 Hz | 2000 Hz | 2500 Hz | ||
1 | 1 | 15 | 21.9 | 24 | ? | ? | ? | 4.4 | 29.1 | 22.4 |
2 | 12.9 | 19 | 22.5 | ? | ? | ? | −8.4 | 18 | 16.5 | |
2 | 1 | 36.5 | 41.6 | 41 | ? | ? | ? | 28 | 45.1 | 38.4 |
2 | 35.8 | 39.9 | 38.2 | ? | ? | ? | 7.6 | 34.4 | 34.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andreatta, E.; Caregnato, I.; Selmo, A.; Gulli, A.; Onofrei, M.G.; Orzan, E. Time Delay and Frequency Analysis of Remote Microphones. Audiol. Res. 2025, 15, 123. https://doi.org/10.3390/audiolres15050123
Andreatta E, Caregnato I, Selmo A, Gulli A, Onofrei MG, Orzan E. Time Delay and Frequency Analysis of Remote Microphones. Audiology Research. 2025; 15(5):123. https://doi.org/10.3390/audiolres15050123
Chicago/Turabian StyleAndreatta, Elena, Igor Caregnato, Antonio Selmo, Andrea Gulli, Marius George Onofrei, and Eva Orzan. 2025. "Time Delay and Frequency Analysis of Remote Microphones" Audiology Research 15, no. 5: 123. https://doi.org/10.3390/audiolres15050123
APA StyleAndreatta, E., Caregnato, I., Selmo, A., Gulli, A., Onofrei, M. G., & Orzan, E. (2025). Time Delay and Frequency Analysis of Remote Microphones. Audiology Research, 15(5), 123. https://doi.org/10.3390/audiolres15050123