Chitosan Mitigates Phytophthora Blight in Chayote (Sechium edule) by Direct Pathogen Inhibition and Systemic Resistance Induction
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Chitosan Solution
2.2. Pathogen Culture and Inoculum Preparation
2.3. In Vitro Antimicrobial Activity of Chitosan
2.4. Evaluation of Chitosan Against Phytophthora Blight in Chayote Fruits
2.5. Evaluation of Chitosan Against Phytophthora Blight in Chayote Plants
2.6. Statistical Analysis
3. Results
3.1. Chitosan Inhibited Mycelial Growth of P. capsici
3.2. Chitosan Reduced Phytophthora Blight Symptoms in Chayote Fruits
3.3. Chitosan Mitigated Phytophthora Blight in Chayote Plants and Suggests Induction of Systemic Resistance
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jeffrey, C. Appendix: An Outline Classification of the Cucurbitaceae. In Biology and Utilization of the Cucurbitaceae; Cornell University Press: Ithaca, NY, USA, 1990; pp. 449–464. ISBN 9781501745447. [Google Scholar]
- Lira-Saade, R.; Eguiarte-Fruns, L.; Montes-Hernández, S. Recopilación y Análisis de La Información Existente de Las Especies de Los Géneros Cucurbita y sechium Que Crecen y/o Se Cultivan En México; CONABIO: Mexico, D.F., Mexico, 2009; pp. 1–107. [Google Scholar]
- Vieira, E.F.; Pinho, O.; Ferreira, I.M.P.L.V.O.; Delerue-Matos, C. Chayote (Sechium edule): A Review of Nutritional Composition, Bioactivities and Potential Applications. Food Chem. 2019, 275, 557–568. [Google Scholar] [CrossRef] [PubMed]
- Pu, Y.-T.; Luo, Q.; Wen, L.-H.; Li, Y.-R.; Meng, P.-H.; Wang, X.-J.; Tan, G.-F. Origin, Evolution, Breeding, and Omics of Chayote, an Important Cucurbitaceae Vegetable Crop. Front. Plant Sci. 2021, 12, 739091. [Google Scholar] [CrossRef] [PubMed]
- Fu, A.; Wang, Q.; Mu, J.; Ma, L.; Wen, C.; Zhao, X.; Gao, L.; Li, J.; Shi, K.; Wang, Y.; et al. Combined Genomic, Transcriptomic, and Metabolomic Analyses Provide Insights into Chayote (Sechium edule) Evolution and Fruit Development. Hortic. Res. 2021, 8, 35. [Google Scholar] [CrossRef]
- Su, L.; Cheng, S.; Liu, Y.; Xie, Y.; He, Z.; Jia, M.; Zhou, X.; Zhang, R.; Li, C. Transcriptome and Metabolome Analysis Provide New Insights into the Process of Tuberization of Sechium edule Roots. Int. J. Mol. Sci. 2022, 23, 6390. [Google Scholar] [CrossRef]
- SIAP. Anuario Estadístico de La Producción Agrícola. Servicio de Información Agroalimentaria y Pesquera (SIAP). Available online: https://www.gob.mx/siap (accessed on 22 February 2025).
- Cadena-Iñiguez, J.; Arévalo-Galarza, M.dL.; Soto-Hernández, M.R.; Ruiz-Posadas, L.d.M. Reorientación Del Sistema de Producción y Comercialización de Chayote. Agro Product. 2016, 9, 47–48. [Google Scholar] [CrossRef]
- Cadena-Iñiguez, J.; Arévalo-Galarza, M.L. El Chayote. In GISeM: Rescatando y Aprovechando Los Recursos Fitogenéticos de Mesoamérica; Grupo Interdisciplinario de Investigación en Sechium edule en México, Ed.; Mexico A.C.-Colegio de Postgraduados: Mexico City, Mexico, 2010; Volume 1, ISBN 978-607-7533-80-1. [Google Scholar]
- San Martín-Romero, E.; Luna-Rodríguez, M.; Díaz-Fleischer, F.; Iglesias-Andreu, L.G.; Noa-Carrazana, J.C.; Flores-Estévez, N.; Barceló-Antemate, D. A Strain of Chryseobacterium sp. Isolated from Necrotic Leaf Tissue of Chayote (Sechium edule Jacq). Int. Res. J. Biol. Sci. 2014, 3, 52–60. [Google Scholar]
- Olguín-Hernández, G.; Cadena-Iñiguez, J.; Arévalo-Galarza, M.; Valdez-Carrasco, J.; Rosas-Saito, G.; Tlapal-Bolaños, B. Organismos Asociados Al Chayote (Sechium edule Jacq.) Sw. En México; Colegio de Postgraduados: Mexico City, Mexico, 2017; ISBN 978-607-715-340-5. [Google Scholar]
- Olguín-Hernández, G.; Valdovinos-Ponce, G.; Cadena-Íñiguez, J.; Arévalo-Galarza, M.d.L. Etiología de La Marchitez de Plantas de Chayote (Sechium edule) En El Estado de Veracruz. Rev. Mex. Fitopatol. 2013, 31, 161–169. [Google Scholar]
- Andrade-Luna, M.I.; Espinosa-Victoria, D.; Gómez-Rodríguez, O.; Cadena-Iñiguez, J.; Arévalo-Galarza, M.d.L.; Trejo-Téllez, L.I.; Delgadillo-Martínez, J. Severidad de Una Cepa de Phytophthora capsici En Plantas de Chayote Sechium edule a Nivel de Cámara de Crecimiento. Rev. Mex. Fitopatol. 2017, 35, 40–57. [Google Scholar] [CrossRef]
- Quesada-Ocampo, L.M.; Parada-Rojas, C.H.; Hansen, Z.; Vogel, G.; Smart, C.; Hausbeck, M.K.; Carmo, R.M.; Huitema, E.; Naegele, R.P.; Kousik, C.S.; et al. Phytophthora capsici: Recent Progress on Fundamental Biology and Disease Management 100 Years after Its Description. Annu. Rev. Phytopathol. 2023, 61, 185–208. [Google Scholar] [CrossRef]
- Parada-Rojas, C.H.; Granke, L.L.; Naegele, R.P.; Hansen, Z.; Hausbeck, M.K.; Kousik, C.S.; McGrath, M.T.; Smart, C.D.; Quesada-Ocampo, L.M. A Diagnostic Guide for Phytophthora capsici Infecting Vegetable Crops. Plant Health Prog. 2021, 22, 404–414. [Google Scholar] [CrossRef]
- Álvarez, L.A.S.; López Robles, L.E.; Guevara Hernández, F. Manejo Tradicional de Enfermedades Del Agroecosistema Chayote (Sechium edule Jacq.) Sw. de Traspatio En Chiapas, México. Magna Sci. UCEVA 2022, 2, 252–259. [Google Scholar] [CrossRef]
- Soto-Contreras, A.; Caamal-Chan, M.G.; Ramírez-Mosqueda, M.A.; Murguía-González, J.; Núñez-Pastrana, R. Morphological and Molecular Identification of Phytophthora capsici Isolates with Differential Pathogenicity in Sechium edule. Plants 2024, 13, 1602. [Google Scholar] [CrossRef]
- Babadoost, M. Oomycete Diseases of Cucurbits: History, Significance, and Management. In Horticultural Reviews; Janick, J., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 279–314. ISBN 9781119281245. [Google Scholar]
- Li, Z.; Jennings, A. Worldwide Regulations of Standard Values of Pesticides for Human Health Risk Control: A Review. Int. J. Environ. Res. Public Health 2017, 14, 826. [Google Scholar] [CrossRef]
- Singh, S.; Garg, V.K.; Ramamurthy, P.C.; Singh, J.; Pandey, A. Impact and Prospects of Pesticides on Human and Environmental Health. In Current Developments in Biotechnology and Bioengineering; Singh, J., Pandey, A., Singh, S., Garg, V.K., Ramamurthy, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–32. ISBN 978-0-323-91900-5. [Google Scholar]
- Mir, S.A.; Padhiary, A.; Ekka, N.J.; Baitharu, I.; Nayak, B. Environmental Impacts of Synthetic and Biofungicides. In Current Developments in Biotechnology and Bioengineering; Singh, J., Pandey, A., Singh, S., Garg, V.K., Ramamurthy, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 487–504. ISBN 978-0-323-91900-5. [Google Scholar]
- Singh, M.; Mersie, W.; Brlansky, R.H. Phytotoxicity of the Fungicide Metalaxyl and Its Optical Isomers. Plant Dis. 2003, 87, 1144–1147. [Google Scholar] [CrossRef]
- Hahn, T.; Tafi, E.; Paul, A.; Salvia, R.; Falabella, P.; Zibek, S. Current State of Chitin Purification and Chitosan Production from Insects. J. Chem. Technol. Biotechnol. 2020, 95, 2775–2795. [Google Scholar] [CrossRef]
- Riseh, R.S.; Hassanisaadi, M.; Vatankhah, M.; Babaki, S.A.; Barka, E.A. Chitosan as a Potential Natural Compound to Manage Plant Diseases. Int. J. Biol. Macromol. 2022, 220, 998–1009. [Google Scholar] [CrossRef]
- EFSA Panel on Plant Protection Products and their Residues (PPR); Coja, T.; Adriaanse, P.; Choi, J.; Finizio, A.; Giraudo, M.; Kuhl, T.; Metruccio, F.; McVey, E.; Paparella, M.; et al. Statement Concerning the Review of the Approval of the Basic Substances Chitosan and Chitosan Hydrochloride When Used in Plant Protection. EFSA J. 2025, 23, e9318. [Google Scholar] [CrossRef]
- Abo Elsoud, M.M.; Elmansy, E.A.; Abdelhamid, S.A. Economic and Non-Seasonal Source for Production of Chitin and Chitosan. J. Chem. Rev. 2022, 4, 222–240. [Google Scholar] [CrossRef]
- Shetranjiwalla, S.; Ononiwu, A. Identifying Barriers to Scaled-up Production and Commercialization of Chitin and Chitosan Using Green Technologies: A Review and Quantitative Green Chemistry Assessment. Int. J. Biol. Macromol. 2025, 305, 141062. [Google Scholar] [CrossRef] [PubMed]
- Rabea, E.I.; Badawy, M.E.-T.; Stevens, C.V.; Smagghe, G.; Steurbaut, W. Chitosan as Antimicrobial Agent: Applications and Mode of Action. Biomacromolecules 2003, 4, 1457–1465. [Google Scholar] [CrossRef] [PubMed]
- Iriti, M.; Faoro, F. Chitosan as a MAMP, Searching for a PRR. Plant Signal Behav. 2009, 4, 66–68. [Google Scholar] [CrossRef]
- Zheng, K.; Lu, J.; Li, J.; Yu, Y.; Zhang, J.; He, Z.; Ismail, O.M.; Wu, J.; Xie, X.; Li, X.; et al. Efficiency of Chitosan Application against Phytophthora Infestans and the Activation of Defence Mechanisms in Potato. Int. J. Biol. Macromol. 2021, 182, 1670–1680. [Google Scholar] [CrossRef]
- Mukul-López, H.; Ortíz-Vázquez, E.; Zúñiga-Aguilar, J.J.; Lizama-Uc, G. Treatment with Chitosan Protects Habanero Pepper against the Infection with Phytophthora capsici. Isr. J. Plant Sci. 2010, 58, 61–65. [Google Scholar] [CrossRef]
- Zohara, F.; Surovy, M.Z.; Khatun, A.; Prince, F.R.K.; Ankada, A.M.; Rahman, M.; Islam, T. Chitosan Biostimulant Controls Infection of Cucumber by Phytophthora capsici through Suppression of Asexual Reproduction of the Pathogen. Acta Agrobot. 2019, 72, 1763. [Google Scholar] [CrossRef]
- Esyanti, R.R.; Dwivany, F.M.; Mahani, S.; Nugrahapraja, H.; Meitha, K. Foliar Application of Chitosan Enhances Growth and Modulates Expression of Defense Genes in Chilli Pepper (Capsicum annuum L.). Aust. J. Crop Sci. 2019, 13, 55–60. [Google Scholar] [CrossRef]
- Torres-Rodriguez, J.A.; Reyes Pérez, J.J.; Ramos, L.T.; Gonzalo-Matute, L.; Rueda-Puente, E.O.; Hernandez-Montiel, L.G. Chitosan as a Postharvest Alternative for the Control of Phytophthora capsici in Bell Pepper Fruits. Sci 2025, 7, 37. [Google Scholar] [CrossRef]
- Arroyo-Axol, J.R.; Solano-Baéz, A.R.; Zúñiga-Aguilar, J.J.; Llarena-Hernández, R.C.; Rojas Avelizapa, L.I.; Núñez-Pastrana, R. Susceptibilidad de Cinco Genotipos de Chayote, Sechium edule (Jacq.) Sw., a Phytophthora capsici L. En Veracruz. Rev. Mex. Fitopatol. 2020, 38, 128. [Google Scholar]
- Huang, X.; You, Z.; Luo, Y.; Yang, C.; Ren, J.; Liu, Y.; Wei, G.; Dong, P.; Ren, M. Antifungal Activity of Chitosan against Phytophthora infestans, the Pathogen of Potato Late Blight. Int. J. Biol. Macromol. 2021, 166, 1365–1376. [Google Scholar] [CrossRef] [PubMed]
- González-Peña, F.D.; Falcón-Rodríguez, B.; Costales Menéndez, D.; Foroud, N.A.; Vaillant Flores, D.; Aispuro-Hernández, E.; Martínez-Téllez, M.A. Chitosan Induces Tomato Basal Resistance against Phytophthora nicotianae and Inhibits Pathogen Development. Can. J. Plant Pathol. 2022, 44, 400–414. [Google Scholar] [CrossRef]
- Atia, M.M.M.; Buchenauer, H.; Aly, A.Z.; Abou-Zaid, M.I. Antifungal Activity of Chitosan against Phytophthora infestans and Activation of Defence Mechanisms in Tomato to Late Blight. Biol. Agric. Hortic. 2005, 23, 175–197. [Google Scholar] [CrossRef]
- Ramírez-Benítez, J.E.; Arjona Sabido, R.A.; Caamal Velázquez, J.H.; Ávila, N.L.R.; Solís Pereira, S.E.; Lizama Uc, G. Inhibición Del Crecimiento y Modificación Genética de Phytophthora capsici Usando Quitosano de Bajo Grado de Polimerización. Rev. Argent. Microbiol. 2019, 51, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhao, X.; Han, X.; Du, Y. Antifungal Activity of Oligochitosan against Phytophthora capsici and Other Plant Pathogenic Fungi in Vitro. Pestic. Biochem. Physiol. 2007, 87, 220–228. [Google Scholar] [CrossRef]
- Nasaj, M.; Chehelgerdi, M.; Asghari, B.; Ahmadieh-Yazdi, A.; Asgari, M.; Kabiri-Samani, S.; Sharifi, E.; Arabestani, M. Factors Influencing the Antimicrobial Mechanism of Chitosan Action and Its Derivatives: A Review. Int. J. Biol. Macromol. 2024, 277, 134321. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Hashemi, M.; Hosseini, S.M. Integration between Chitosan and Zataria multiflora or Cinnamomum zeylanicum Essential Oil for Controlling Phytophthora drechsleri, the Causal Agent of Cucumber Fruit Rot. LWT Food Sci. Technol. 2016, 65, 349–356. [Google Scholar] [CrossRef]
- Avila-Quezada, G.D.; Rai, M. Novel Nanotechnological Approaches for Managing Phytophthora Diseases of Plants. Trends Plant Sci. 2023, 28, 1070–1080. [Google Scholar] [CrossRef]
- López-Gervacio, A.D.; Qui-Zapata, J.A.; Barrera-Martínez, I.; Montero-Cortés, M.I.; García-Morales, S. Selenium Nanoparticles (SeNPs) Inhibit the Growth and Proliferation of Reproductive Structures in Phytophthora capsici by Altering Cell Membrane Stability. Agronomy 2025, 15, 490. [Google Scholar] [CrossRef]
- Qiu, C.; Bao, Y.; Lü, D.; Yan, M.; Li, G.; Liu, K.; Wei, S.; Wu, M.; Li, Z. The Synergistic Effects of Humic Acid, Chitosan and Bacillus subtilis on Tomato Growth and against Plant Diseases. Front. Microbiol. 2025, 16, 1574765. [Google Scholar] [CrossRef]
- Küpper, V.; Kortekamp, A.; Steiner, U. Combining Trichoderma koningiopsis and Chitosan as a Synergistic Biocontrol and Biostimulating Complex to Reduce Copper Rates for Downy Mildew Control on Grapevine. Biol. Control 2023, 185, 105293. [Google Scholar] [CrossRef]
Chitosan Treatments (g L−1) | Mean of Rank | Disease Severity Index (%) | Disease Inhibition Rate (%) |
---|---|---|---|
Control | 35.3 | 96 | 0 |
0.1 | 27.6 | 84 | 12.5 |
0.25 | 30.9 | 86 | 10.4 |
0.5 | 18.4 | 64 | 33.3 |
1 | 15.3 * | 48 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arroyo-Axol, J.R.; Miranda-Solares, A.K.; Zúñiga-Aguilar, J.J.; Solano-Báez, A.R.; Llarena-Hernández, R.C.; Rojas-Avelizapa, L.I.; Núñez-Pastrana, R. Chitosan Mitigates Phytophthora Blight in Chayote (Sechium edule) by Direct Pathogen Inhibition and Systemic Resistance Induction. Int. J. Plant Biol. 2025, 16, 96. https://doi.org/10.3390/ijpb16030096
Arroyo-Axol JR, Miranda-Solares AK, Zúñiga-Aguilar JJ, Solano-Báez AR, Llarena-Hernández RC, Rojas-Avelizapa LI, Núñez-Pastrana R. Chitosan Mitigates Phytophthora Blight in Chayote (Sechium edule) by Direct Pathogen Inhibition and Systemic Resistance Induction. International Journal of Plant Biology. 2025; 16(3):96. https://doi.org/10.3390/ijpb16030096
Chicago/Turabian StyleArroyo-Axol, José Rigoberto, Ana Karen Miranda-Solares, José Juan Zúñiga-Aguilar, Alma Rosa Solano-Báez, Régulo Carlos Llarena-Hernández, Luz Irene Rojas-Avelizapa, and Rosalía Núñez-Pastrana. 2025. "Chitosan Mitigates Phytophthora Blight in Chayote (Sechium edule) by Direct Pathogen Inhibition and Systemic Resistance Induction" International Journal of Plant Biology 16, no. 3: 96. https://doi.org/10.3390/ijpb16030096
APA StyleArroyo-Axol, J. R., Miranda-Solares, A. K., Zúñiga-Aguilar, J. J., Solano-Báez, A. R., Llarena-Hernández, R. C., Rojas-Avelizapa, L. I., & Núñez-Pastrana, R. (2025). Chitosan Mitigates Phytophthora Blight in Chayote (Sechium edule) by Direct Pathogen Inhibition and Systemic Resistance Induction. International Journal of Plant Biology, 16(3), 96. https://doi.org/10.3390/ijpb16030096