Occurrence and Transfer by Conjugation of Linezolid-Resistance Among Non-Enterococcus faecalis and Enterococcus faecium in Intensive Pig Farms
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Culture Media and Antibiotics
2.2. Molecular Identification
2.3. Antibiotic Resistance Phenotype
2.4. Antibiotic Resistance Genotype
2.5. Virulence Phenotype
2.5.1. Hemolysis Test
2.5.2. Gelatinase Production
2.5.3. Biofilm Plate Assay
2.6. Molecular Typing for Linezolid Resistant Strains
2.6.1. Molecular Typing by Random Amplified Polymorphic DNA PCR (RAPD-PCR) for E. gallinarum
2.6.2. Molecular Typing by Pulsed Field Gel Electrophoresis (PFGE) for E. casseliflavus
2.7. Filter Mating Experiments
2.8. Statistical Analysis
- (1)
- glm (pheno- or genotypic resistance ~ Category × Species, family = binomial)
- (2)
- glm (pheno- or genotypic resistance ~ Category + Species, family = binomial)
- (3)
- nb-glm (sum of pheno- or genotypic resistances ~ Category × Species)
- (4)
- nb-glm (sum of pheno- or genotypic resistances ~ Category + Species)
3. Results
3.1. Identification
3.2. Antibiotic Resistance Phenotype and Genotype
3.3. Virulence Phenotype
3.4. Genetic Diversity Among the Linezolid Resistant Strains
3.5. Conjugation Experiments
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NFF Enterococcus | Non-E. faecalis and E. faecium Enterococcus spp. |
HAI | healthcare-associated infection |
ARG | antibiotic resistance gene |
AR | antibiotic resistant |
LNZ | Linezolid |
OD | optical density |
MDR | Multidrug resistant |
PFGE | Pulsed Field Gel Electrophoresis |
RAPD-PCR | Random Amplified Polymorphic DNA PCR |
References
- Schleifer, K.H.; Kilpper-Bälz, R. Transfer of Streptococcus faecalis and Streptococcus faecium to the Genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov. Int. J. Syst. Evol. Microbiol. 1984, 34, 31–34. [Google Scholar] [CrossRef]
- García-Solache, M.; Rice, L.B. The Enterococcus: A Model of Adaptability to Its Environment. Clin. Microbiol. Rev. 2019, 32, e00058-18. [Google Scholar] [CrossRef]
- Teixeira, L.M.; Siqueira Carvalho, M.G.; Facklam, R.R.; Shewmaker, P.L. Enterococcus in Manual of Clinical Microbiology, 11th ed.; Jorgensen, J.H., Carroll, K.C., Funke, G., Pfaller, M.A., Landry, M.L., Richter, S.S., Warnock, D.W., Eds.; ASM Press: Washington, DC, USA, 2015; Volume 23, pp. 403–421. [Google Scholar]
- Staley, C.; Dunny, G.M.; Sadowsky, M.J. Environmental and Animal-Associated Enterococci in Advances in Applied Microbiology, 1st ed.; Sariaslani, S., Gadd, G.M., Eds.; Academic Press: Cambridge, MA, USA, 2014; Volume 87, pp. 147–186. [Google Scholar]
- Khan, A.; Miller, W.R.; Axell-House, D.; Munita, J.M.; Arias, C.A. Antimicrobial Susceptibility Testing for Enterococci. J. Clin. Microbiol. 2022, 60, e0084321. [Google Scholar] [CrossRef]
- Paganelli, F.L.; Willems, R.J.; Leavis, H.L. Optimizing future treatment of enterococcal infections: Attacking the biofilm? Trends Microbiol. 2012, 20, 40–49. [Google Scholar] [CrossRef]
- van Harten, R.M.; Willems, R.J.L.; Martin, N.I.; Hendrickx, A.P.A. Multidrug-Resistant Enterococcal Infections: New Compounds, Novel Antimicrobial Therapies? Trends Microbiol. 2017, 25, 467–479. [Google Scholar] [CrossRef]
- Sadowy, E. Linezolid resistance genes and genetic elements enhancing their dissemination in enterococci and streptococci. Plasmid 2018, 99, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Bi, R.; Qin, T.; Fan, W.; Ma, P.; Gu, B. The emerging problem of linezolid-resistant enterococci. J. Glob. Antimicrob. Resist. 2018, 13, 11–19. [Google Scholar] [CrossRef]
- Morroni, G.; Brenciani, A.; Antonelli, A.; D’Andrea, M.M.; Di Pilato, V.; Fioriti, S.; Mingoia, M.; Vignaroli, C.; Cirioni, O.; Biavasco, F.; et al. Characterization of a multiresistance plasmid carrying the optrA and cfr resistance genes from an Enterococcus faecium clinical isolate. Front. Microbiol. 2018, 9, 2189. [Google Scholar] [CrossRef]
- Brenciani, A.; Morroni, G.; Schwarz, S.; Giovanetti, E. Oxazolidinones: Mechanisms of resistance and mobile genetic elements involved. J. Antimicrob. Chemother. 2022, 77, 2596–2621. [Google Scholar] [CrossRef] [PubMed]
- Pasquaroli, S.; Di Cesare, A.; Vignaroli, C.; Conti, G.; Citterio, B.; Biavasco, F. Erythromycin- and copper-resistant Enterococcus hirae from marine sediment and co-transfer of erm(B) and tcrB to human Enterococcus faecalis. Diagn. Microbiol. Infect. Dis. 2014, 80, 26–28. [Google Scholar] [CrossRef]
- Petrin, S.; Patuzzi, I.; Di Cesare, A.; Tiengo, A.; Sette, G.; Biancotto, G.; Corno, G.; Drigo, M.; Losasso, C.; Cibin, V. Evaluation and quantification of antimicrobial residues and antimicrobial resistance genes in two Italian swine farms. Environ. Pollut. 2019, 255, 113183. [Google Scholar] [CrossRef]
- Bai, H.; He, L.Y.; Wu, D.L.; Gao, F.Z.; Zhang, M.; Zou, H.Y.; Yao, M.S.; Ying, G.G. Spread of airborne antibiotic resistance from animal farms to the environment: Dispersal pattern and exposure risk. Environ. Int. 2022, 158, 106927. [Google Scholar] [CrossRef] [PubMed]
- Salerno, B.; Furlan, M.; Sabatino, R.; Di Cesare, A.; Leati, M.; Volanti, M.; Barco, L.; Orsini, M.; Losasso, C.; Cibin, V. Antibiotic resistance genes load in an antibiotic free organic broiler farm. Poult. Sci. 2022, 101, 101675. [Google Scholar] [CrossRef]
- Lassaletta, L.; Estellés, F.; Beusen, A.H.W.; Bouwman, L.; Calvet, S.; van Grinsven, H.J.M.; Doelman, J.C.; Stehfest, E.; Uwizeye, A.; Westhoek, H. Future global pig production systems according to the Shared Socioeconomic Pathways. Sci. Total Environ. 2019, 665, 739–751. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, T.; Lei, C.W.; Wang, Q.; Huang, Z.; Chen, X.; Wang, H.N. Florfenicol and oxazolidone resistance status in livestock farms revealed by short- and long-read metagenomic sequencing. Front. Microbiol. 2022, 13, 1018901. [Google Scholar] [CrossRef]
- Nüesch-Inderbinen, M.; Biggel, M.; Haussmann, A.; Treier, A.; Heyvaert, L.; Cernela, N.; Stephan, R. Oxazolidinone resistance genes in florfenicol-resistant enterococci from beef cattle and veal calves at slaughter. Front. Microbiol. 2023, 14, 1150070. [Google Scholar] [CrossRef]
- Fukuda, A.; Usui, M. Selection and maintenance of mobile linezolid-resistance genes and plasmids carrying them in the presence of florfenicol, an animal-specific antimicrobial. Access Microbiol. 2025, 7, 000997. [Google Scholar] [CrossRef]
- Zheng, W.; Huyan, J.; Tian, Z.; Zhang, Y.; Wen, X. Clinical class 1 integron-integrase gene—A promising indicator to monitor the abundance and elimination of antibiotic resistance genes in an urban wastewater treatment plant. Environ. Int. 2020, 135, 105372. [Google Scholar] [CrossRef] [PubMed]
- Di Cesare, A.; Frangipani, E.; Citterio, B.; Sabatino, R.; Corno, G.; Fontaneto, D.; Mangiaterra, G.; Bencardino, D.; Zoppi, S.; Di Blasio, A.; et al. Class 1 integron and Enterococcus spp. abundances in swine farms from the “ Suckling piglets” to the “Fatteners” production category. Vet. Microbiol. 2022, 274, 109576. [Google Scholar] [CrossRef] [PubMed]
- Prakash, V.P.; Rao, S.R.; Parija, S.C. Emergence of unusual species of enterococci causing infections, South India. BMC Infect. Dis. 2005, 5, 14. [Google Scholar] [CrossRef]
- Mullally, C.A.; Fahriani, M.; Mowlaboccus, S.; Coombs, G.W. Non-faecium non-faecalis enterococci: A review of clinical manifestations, virulence factors, and antimicrobial resistance. Clin. Microbiol. Rev. 2024, 37, e0012123. [Google Scholar] [CrossRef]
- Zarzecka, U.; Zakrzewski, A.J.; Chajęcka-Wierzchowska, W.; Zadernowska, A. Linezolid-Resistant Enterococcus spp. Isolates from Foods of Animal Origin-The Genetic Basis of Acquired Resistance. Foods 2022, 11, 975. [Google Scholar] [CrossRef]
- Alawi, M.; Smyth, C.; Drissner, D.; Zimmerer, A.; Leupold, D.; Müller, D.; Do, T.T.; Velasco-Torrijos, T.; Walsh, F. Private and well drinking water are reservoirs for antimicrobial resistant bacteria. NPJ Antimicrob. Resist. 2024, 2, 7. [Google Scholar] [CrossRef] [PubMed]
- Coombs, G.W.; Daley, D.A.; Yee, N.W.; Mowlaboccus, S. Australian Group on Antimicrobial Resistance (AGAR) Australian Enterococcal Sepsis Outcome Programme (AESOP) Annual Report 2020. Commun. Dis. Intell. 2022, 46. [Google Scholar] [CrossRef]
- Cebeci, T. Species prevalence, virulence genes, and antibiotic resistance of enterococci from food-producing animals at a slaughterhouse in Turkey. Sci. Rep. 2024, 14, 13191. [Google Scholar] [CrossRef]
- Dutka-Malen, S.; Evers, S.; Courvalin, P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J. Clin. Microbiol. 1995, 33, 24–27. [Google Scholar] [CrossRef]
- Biavasco, F.; Foglia, G.; Paoletti, C.; Zandri, G.; Magi, G.; Guaglianone, E.; Sundsfjord, A.; Pruzzo, C.; Donelli, G.; Facinelli, B. VanA-type enterococci from humans, animals, and food: Species distribution, population structure, Tn1546 typing and location, and virulence determinants. Appl. Environ. Microbiol. 2007, 73, 3307–3319. [Google Scholar] [CrossRef]
- Layton, B.A.; Walters, S.P.; Lam, L.H.; Boehm, A.B. Enterococcus species distribution among human and animal hosts using multiplex PCR. J. Appl. Microbiol. 2010, 109, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, Approved Standard-Tenth Edition (2020) Document M07-A10; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020; Volume 35, No 2. [Google Scholar]
- Brenciani, A.; Fioriti, S.; Morroni, G.; Cucco, L.; Morelli, A.; Pezzotti, G.; Paniccià, M.; Antonelli, A.; Magistrali, C.F.; Rossolini, G.M.; et al. Detection in Italy of a porcine Enterococcus faecium isolate carrying the novel phenicol-oxazolidinone-tetracycline resistance gene poxtA. J. Antimicrob. Chemother. 2019, 74, 817–818. [Google Scholar] [CrossRef] [PubMed]
- Kehrenberg, C.; Schwarz, S. Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates. Antimicrob. Agents Chemother. 2006, 50, 1156–1163. [Google Scholar] [CrossRef] [PubMed]
- Cinthi, M.; Coccitto, S.N.; Fioriti, S.; Morroni, G.; Simoni, S.; Vignaroli, C.; Magistrali, C.F.; Albini, E.; Brenciani, A.; Giovanetti, E. Occurrence of a plasmid co-carrying cfr(D) and poxtA2 linezolid resistance genes in Enterococcus faecalis and Enterococcus casseliflavus from porcine manure, Italy. J. Antibiot. Chemother. 2022, 77, 598–603. [Google Scholar] [CrossRef]
- Aarestrup, F.M.; Agerso, Y.; Gerner-Smidt, P.; Madsen, M.; Jensen, L.B. Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark. Diagn. Microbiol. Infect. Dis. 2000, 37, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Warsa, U.C.; Nonoyama, M.; Ida, T.; Okamoto, R.; Okubo, T.; Shimauchi, C.; Kuga, A.; Inoue, M. Detection of tet(K) and tet(M) in Staphylococcus aureus of Asian countries by the polymerase chain reaction. J. Antibiot. 1996, 49, 1127–1132. [Google Scholar] [CrossRef] [PubMed]
- Di Cesare, A.; Luna, G.M.; Vignaroli, C.; Pasquaroli, S.; Tota, S.; Paroncini, P.; Biavasco, F. Aquaculture Can Promote the Presence and Spread of Antibiotic-Resistant Enterococci in Marine Sediments. PLoS ONE 2013, 8, e62838. [Google Scholar] [CrossRef]
- You, I.; Kariyama, R.; Zervos, M.J.; Kumon, H.; Chow, J.W. In-vitro activity of arbekacin alone and in combination with vancomycin against gentamicin- and methicillin-resistant Staphylococcus aureus. Diagn. Microbiol. Infect. Dis. 2000, 36, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, J.J. Streptococcal Genetics. Curtiss, R., III, Ed.; American Society for Microbiology: Washington, DC, USA, 1987. [Google Scholar]
- Jensen, L.B.; Frimodt-Møller, N.; Aarestrup, F.M. Presence of erm gene classes in gram-positive bacteria of animal and human origin in Denmark. FEMS Microbiol. Lett. 1999, 170, 151–158. [Google Scholar] [CrossRef]
- Sutcliffe, J.; Grebe, T.; Tait-Kamradt, A.; Wondrack, L. Detection of erythromycin-resistant determinants by PCR. Antimicrob. Agents Chemother. 1996, 40, 2562–2566. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhang, L.; Zhang, Y.; Liu, H.; Xu, K.; Zhang, B.; Feng, T.; Yang, S. Analysis of molecular characteristics of CAMP-negative Streptococcus agalactiae strains. Front. Microbiol. 2023, 14, 1189093. [Google Scholar] [CrossRef]
- Baldassarri, L.; Donnelli, G.; Gelosia, A.; Voglino, M.C.; Simpson, A.W.; Christensen, G.D. Purification and characterization of the staphylococcal slime-associated antigen and its occurrence among Staphylococcus epidermis clinical isolates. Infect. Immun. 1996, 64, 3410–3415. [Google Scholar] [CrossRef]
- Vignaroli, C.; Luna, G.M.; Pasquaroli, S.; Di Cesare, A.; Petruzzella, R.; Paroncini, P.; Biavasco, F. Epidemic Escherichia coli ST131 and Enterococcus faecium ST17 in Coastal Marine Sediments from an Italian Beach. Environ. Sci. Technol. 2013, 47, 13772–13780. [Google Scholar] [CrossRef]
- Fioriti, S.; Coccitto, S.N.; Cedraro, N.; Simoni, S.; Morroni, G.; Brenciani, A.; Mangiaterra, G.; Vignaroli, C.; Vezzulli, L.; Biavasco, F.; et al. Linezolid Resistance Genes in Enterococci Isolated from Sediment and Zooplankton in Two Italian Coastal Areas. Appl. Environ. Microbiol. 2021, 87, e02958-20. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org (accessed on 30 July 2025).
- Van Gompel, L.; Luiken, R.E.C.; Hansen, R.B.; Munk, P.; Bouwknegt, M.; Heres, L.; Greve, G.D.; Scherpenisse, P.; Jongerius-Gortemaker, B.G.M.; Tersteeg-Zijderveld, M.H.G.; et al. Description and determinants of the faecal resistome and microbiome of farmers and slaughterhouse workers: A metagenome-wide cross-sectional study. Environ. Int. 2020, 143, 105939. [Google Scholar] [CrossRef]
- Sun, J.; Liao, X.P.; D’Souza, A.W.; Boolchandani, M.; Li, S.H.; Cheng, K.; Martinez, J.L.; Li, L.; Feng, Y.J.; Fang, L.X.; et al. Environmental remodeling of human gut microbiota and antibiotic resistome in livestock farms. Nat. Commun. 2020, 11, 1427. [Google Scholar] [CrossRef] [PubMed]
- Novais, C.; Freitas, A.R.; Silveira, E.; Antunes, P.; Silva, R.; Coque, T.M.; Peixe, L. Spread of multidrug-resistant Enterococcus to animals and humans: An underestimated role for the pig farm environment. J. Antimicrob. Chemother. 2013, 68, 2746–2754. [Google Scholar] [CrossRef]
- Grudlewska-Buda, K.; Skowron, K.; Bauza-Kaszewska, J.; Budzyńska, A.; Wiktorczyk-Kapischke, N.; Wilk, M.; Wujak, M.; Paluszak, Z. Assessment of antibiotic resistance and biofilm formation of Enterococcus species isolated from different pig farm environments in Poland. BMC Microbiol. 2023, 23, 89. [Google Scholar] [CrossRef]
- Byappanahalli, M.N.; Nevers, M.B.; Korajkic, A.; Staley, Z.R.; Harwood, V.J. Enterococci in the environment. Microbiol. Mol. Biol. Rev. 2012, 76, 685–706. [Google Scholar] [CrossRef]
- Torres, C.; Alonso, C.A.; Ruiz-Ripa, L.; León-Sampedro, R.; Del Campo, R.; Coque, T.M. Antimicrobial Resistance in Enterococcus spp. of animal origin. Microbiol. Spectr. 2018, 6, ARBA-0032-2018. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Wu, C.; Shen, Z.; Schwarz, S.; Du, X.D.; Dai, L.; Zhang, W.; Zhang, Q.; Shen, J. First report of the multidrug resistance gene cfr in Enterococcus faecalis of animal origin. Antimicrob. Agents Chemother. 2012, 56, 1650–1654. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Dai, L.; Wu, C.; Shen, J. First report of multiresistance gene cfr in Enterococcus species casseliflavus and gallinarum of swine origin. Vet. Microbiol. 2014, 170, 352–357. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, Y.; Cai, J.; Schwarz, S.; Cui, L.; Hu, Z.; Zhang, R.; Li, J.; Zhao, Q.; He, T.; et al. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J. Antimicrob. Chemother. 2015, 70, 2182–2190. [Google Scholar] [CrossRef] [PubMed]
- Abdullahi, I.N.; Lozano, C.; Juárez-Fernández, G.; Höfle, U.; Simón, C.; Rueda, S.; Martínez, A.; Álvarez-Martínez, S.; Eguizábal, P.; Martínez-Cámara, B.; et al. Nasotracheal enterococcal carriage and resistomes: Detection of optrA-, poxtA- and cfrD-carrying strains in migratory birds, livestock, pets, and in-contact humans in Spain. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 569–581. [Google Scholar] [CrossRef]
- Abdullahi, I.N.; Lozano, C.; Zarazaga, M.; Latorre-Fernández, J.; Hallstrøm, S.; Rasmussen, A.; Stegger, M.; Torres, C. Genomic Characterization and Phylogenetic Analysis of Linezolid-Resistant Enterococcus from the Nostrils of Healthy Hosts Identifies Zoonotic Transmission. Curr. Microbiol. 2024, 81, 225. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, Y.; Schwarz, S.; Li, Y.; Shen, Z.; Zhang, Q.; Wu, C.; Shen, J. Transferable multiresistance plasmids carrying cfr in Enterococcus spp. from swine and farm environment. Antimicrob. Agents Chemother. 2013, 57, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.X.; Duan, J.H.; Chen, M.Y.; Deng, H.; Liang, H.Q.; Xiong, Y.Q.; Sun, J.; Liu, Y.H.; Liao, X.P. Prevalence of cfr in Enterococcus faecalis strains isolated from swine farms in China: Predominated cfr-carrying pCPPF5-like plasmids conferring “non-linezolid resistance” phenotype. Infect. Genet. Evol. 2018, 62, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Han, D.; Tang, Z.; Hao, J.; Xiong, W.; Zeng, Z. Co-existence of the oxazolidinone resistance genes cfr and optrA on two transferable multi-resistance plasmids in one Enterococcus faecalis isolate from swine. Int. J. Antimicrob. Agents 2020, 56, 105993. [Google Scholar] [CrossRef]
- Almeida, L.M.; Gaca, A.; Bispo, P.M.; Lebreton, F.; Saavedra, J.T.; Silva, R.A.; Basílio-Júnior, I.D.; Zorzi, F.M.; Filsner, P.H.; Moreno, A.M.; et al. Coexistence of the Oxazolidinone Resistance-Associated Genes cfr and optrA in Enterococcus faecalis from a Healthy Piglet in Brazil. Front. Public Health 2020, 8, 518. [Google Scholar] [CrossRef]
- Lei, C.W.; Chen, X.; Liu, S.Y.; Li, T.Y.; Chen, Y.; Wang, H.N. Clonal spread and horizontal transfer mediate dissemination of phenicol-oxazolidinone-tetracycline resistance gene poxtA in enterococci isolates from a swine farm in China. Vet. Microbiol. 2021, 262, 109219. [Google Scholar] [CrossRef]
- Ch’ng, J.H.; Chong, K.K.L.; Lam, L.N.; Wong, J.J.; Kline, K.A. Biofilm-associated infection by enterococci. Nat. Rev. Microbiol. 2019, 17, 82–94. [Google Scholar] [CrossRef]
- Conwell, M.; Dooley, J.S.G.; Naughton, P.J. Enterococcal biofilm—A nidus for antibiotic resistance transfer? J. Appl. Microbiol. 2022, 132, 3444–3460. [Google Scholar] [CrossRef]
- Patil, A.; Banerji, R.; Kanojiya, P.; Saroj, S.D. Foodborne ESKAPE Biofilms and Antimicrobial Resistance: Lessons Learned from Clinical Isolates. Pathog. Glob. Health 2021, 115, 339–356. [Google Scholar] [CrossRef]
Strains ID | MIC μg/mL | Genotype | ||||
---|---|---|---|---|---|---|
Linezolid | Tetracycline | Gentamicin | Streptomycin | Erythromycin | ||
E. casseliflavus 2 * | S (<4) | R (>128) | S (≤500) | R (>1000) | R (>8) | tetM; tetL; ant; ermB |
E. casseliflavus 10 * | S (<4) | R (>128) | S (≤500) | R (>1000) | R (>8) | ermB |
E. casseliflavus 55 * | S (<4) | R (>128) | R (>500) | S (<1000) | R (>8) | tetM; tetL; aac(6′)-aph(2″); ermB |
E. casseliflavus 61 * | R (8) | R (>128) | S (≤500) | S (<1000) | R (>8) | cfr(D); optrA; tetM; ermB |
E. casseliflavus 62 * | R (8) | R (>128) | R (>500) | S (<1000) | R (>8) | cfr(D); optrA, aac(6′)-aph(2″); ermB |
E. casseliflavus 63 | S (<4) | S (<8) | S (≤500) | S (<1000) | R (>8) | ermB |
E. casseliflavus 65 | R (8) | S (<8) | S (≤500) | S (<1000) | R (>8) | cfr(D); optrA; ermB |
E. casseliflavus 75 | S (<4) | R (>128) | S (≤500) | S (<1000) | S (<1–4) | tetM |
E. casseliflavus 77 | S (<4) | R (16) | S (≤500) | S (<1000) | R (>8) | ermB |
E. hirae 14 | S (<4) | R (>128) | S (≤500) | R (>1000) | S (<1–4) | tetM; tetL; tetK |
E. hirae 15 * | S (<4) | R (>128) | S (≤500) | R (>1000) | R (>8) | tetM; tetL; tetK; ermB |
E. hirae 16 * | S (<4) | R (>128) | S (≤500) | R (>1000) | R (>8) | tetM; tetL; tetK; ermB |
E. hirae 17 * | S (<4) | R (>128) | S (≤500) | R (>1000) | R (>8) | tetM; tetL; tetK; ermB |
E. hirae 18 * | S (<4) | R (>128) | S (≤500) | R (>1000) | R (>8) | tetM; tetL; tetK; ermB |
E. hirae 19 * | S (<4) | R (>128) | S (≤500) | R (>1000) | R (>8) | tetM; tetL; tetK; ermB |
E. hirae 21 | S (<4) | R (128) | S (≤500) | S (<1000) | S (<1–4) | tetM; tetK |
E. hirae 22 * | S (<4) | R (>128) | S (≤500) | R (>1000) | R (>8) | tetM; tetL; tetK; ermB |
E. hirae 23 * | S (<4) | R (>128) | S (≤500) | R (>1000) | R (>8) | tetM; tetL; tetK; ermB |
E. hirae 33 * | S (<4) | R (>128) | S (≤500) | R (>1000) | R (>8) | tetM; tetL; tetK; ermB |
E. hirae 34 | S (<4) | R (128) | S (≤500) | S (<1000) | S (<1–4) | tetM; tetK |
E. hirae 36 * | S (<4) | R (128) | S (≤500) | R (>1000) | R (>8) | tetM; tetK; ant; ermB |
E. hirae 37 * | S (<4) | R (>128) | S (≤500) | R (>1000) | R (>8) | tetM; tetL; ermB |
E. hirae 38 * | S (<4) | R (>128) | S (≤500) | R (>1000) | R (>8) | tetM; tetL; ermB |
E. hirae 42 | S (<4) | R (>128) | S (≤500) | S (<1000) | S (<1–4) | tetM; tetL |
E. hirae 43 | S (<4) | R (>128) | S (≤500) | R (>1000) | S (<1–4) | tetM; tetL; ant |
E. hirae 44 | S (<4) | R (>128) | S (≤500) | R (>1000) | S (<1–4) | tetM; tetL; ant |
E. hirae 73 | S (<4) | R (128) | S (≤500) | S (<1000) | S (<1–4) | tetM |
E. gallinarum 1 | S (<4) | S (<8) | R (>500) | S (<1000) | S (<1–4) | aac(6′)-aph(2″) |
E. gallinarum 4 | S (<4) | R (>128) | S (≤500) | S (<1000) | R (>8) | ermB |
E. gallinarum 13 * | S (<4) | R (>128) | R (>500) | R (>1000) | R (>8) | tetM; aac(6′)-aph(2″) |
E. gallinarum 29 | S (<4) | R (>128) | S (≤500) | S (<1000) | R (>8) | tetM; ermB |
E. gallinarum 35 | S (<4) | R (>128) | S (≤500) | S (<1000) | R (>8) | tetM; tetL; ermB |
E. gallinarum 46 * | R (8) | R (>128) | S (≤500) | S (<1000) | R (>8) | cfr(D); optrA, tetM; ermB |
E. gallinarum 47 * | R (8) | R (>128) | R (>500) | S (<1000) | R (>8) | cfr(D); optrA, tetM; aac(6′)-aph(2″); ermB |
E. gallinarum 48 * | R (8) | R (>128) | R (>500) | S (<1000) | R (>8) | cfr(D); optrA, tetM; aac(6′)-aph(2″); ermB |
E. gallinarum 49 * | R (8) | R (>128) | R (>500) | S (<1000) | R (>8) | cfr(D); optrA, tetM; aac(6′)-aph(2″); ermB |
E. gallinarum 50 * | R (8) | R (>128) | R (>500) | S (<1000) | R (>8) | cfr(D); optrA, tetM; aac(6′)-aph(2″); ermB |
E. gallinarum 54 * | S (<4) | R (>128) | R (>500) | R (>1000) | R (>8) | tetM; aac(6′)-aph(2″) |
E. gallinarum 56 | S (<4) | R (>128) | S (≤500) | S (<1000) | R (>8) | tetM; tetL; ermB |
E. gallinarum 57 | S (<4) | R (>128) | S (≤500) | S (<1000) | R (>8) | tetM; tetL; ermB |
E. gallinarum 58 | S (<4) | R (>128) | S (≤500) | S (<1000) | R (>8) | tetL; ermB |
E. gallinarum 59 | S (<4) | R (>128) | S (≤500) | S (<1000) | R (>8) | tetM; ermB |
E. avium 12 | S (<4) | R (128) | S (≤500) | S (<1000) | R (>8) | tetM; tetO |
E. avium 20 * | S (<4) | R (128) | S (≤500) | R (>1000) | R (>8) | tetM; tetL; ermB |
E. avium 40 * | S (<4) | R (64) | R (>500) | R (>1000) | R (>8) | tetM; ermB |
E. avium 51 | S (<4) | R (64) | S (≤500) | S (<1000) | R (>8) | tetM |
E. avium 67 * | S (<4) | R (>128) | S (≤500) | S (<1000) | R (>8) | tetM; tetL; ermB |
E. avium 74 * | S (<4) | R (64) | S (≤500) | R (>1000) | R (>8) | tetM; tetL; ermB |
E. avium 76 | S (<4) | R (64) | S (≤500) | S (<1000) | R (>8) | tetM |
E. durans 11 | S (<4) | R (128) | S (≤500) | S (<1000) | S (<1–4) | tetO |
Donors Strains | Donors CFU/mL | Recipient CFU/mL | Transconjugant CFU/mL | Transfer Frequency * |
---|---|---|---|---|
E. casseliflavus 61 | 5.3 × 108 | 4 × 1010 | 8.30 × 105 | 2.08 × 10−5 ± 9.69 × 10−6 |
E. casseliflavus 62 | 3.4 × 108 | 1.80 × 1010 | 5.60 × 104 | 3.11 × 10−6 ± 4.17 × 10−7 |
E. gallinarum 46 | 7.3 × 108 | 1.3 × 1010 | 1.3 × 105 | 1 × 10−5 ± 2.58 × 10−6 |
E. gallinarum 49 | 7.5 × 108 | 2 × 1010 | 1.15 × 104 | 5.75 × 10−7 ± 1.06 × 10−8 |
Transconjugants | Strek | Linezolid MIC μg/ml | ddl E. faecium | cfr(D) | optrA |
---|---|---|---|---|---|
E. casseliflavus 61 x E. faecium 64/3 | 10/10 | 8 | 10/10 | + (1/10) | + (10/10) |
E. casseliflavus 62 x E. faecium 64/3 | 10/10 | 8 | 10/10 | + (3/10) | + (10/10) |
E. gallinarum 46 x E. faecium 64/3 | 10/10 | 8 | 10/10 | - | + (10/10) |
E. gallinarum 49 x E. faecium 64/3 | 10/10 | 8 | 10/10 | - | + (10/10) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piccioni, G.; Di Cesare, A.; Sabatino, R.; Corno, G.; Mangiaterra, G.; Marchis, D.; Citterio, B. Occurrence and Transfer by Conjugation of Linezolid-Resistance Among Non-Enterococcus faecalis and Enterococcus faecium in Intensive Pig Farms. Microbiol. Res. 2025, 16, 180. https://doi.org/10.3390/microbiolres16080180
Piccioni G, Di Cesare A, Sabatino R, Corno G, Mangiaterra G, Marchis D, Citterio B. Occurrence and Transfer by Conjugation of Linezolid-Resistance Among Non-Enterococcus faecalis and Enterococcus faecium in Intensive Pig Farms. Microbiology Research. 2025; 16(8):180. https://doi.org/10.3390/microbiolres16080180
Chicago/Turabian StylePiccioni, Giorgia, Andrea Di Cesare, Raffaella Sabatino, Gianluca Corno, Gianmarco Mangiaterra, Daniela Marchis, and Barbara Citterio. 2025. "Occurrence and Transfer by Conjugation of Linezolid-Resistance Among Non-Enterococcus faecalis and Enterococcus faecium in Intensive Pig Farms" Microbiology Research 16, no. 8: 180. https://doi.org/10.3390/microbiolres16080180
APA StylePiccioni, G., Di Cesare, A., Sabatino, R., Corno, G., Mangiaterra, G., Marchis, D., & Citterio, B. (2025). Occurrence and Transfer by Conjugation of Linezolid-Resistance Among Non-Enterococcus faecalis and Enterococcus faecium in Intensive Pig Farms. Microbiology Research, 16(8), 180. https://doi.org/10.3390/microbiolres16080180