Building Trust in Autonomous Aerial Systems: A Review of Hardware-Rooted Trust Mechanisms
Abstract
1. Introduction
- Reviews HSPs (PUFs, TPMs, TRNGs, tamper-resistant modules) for UAV swarm security.
- Provides a comparative evaluation of HSP-based techniques in terms of energy efficiency, scalability, and operational resilience.
- Analyzes hardware–software trade-offs and advocates hybrid security architectures.
- Links UAV applications to context-sensitive security needs in urban, rural, and military environments.
- Highlights emerging technologies: AI-augmented PUFs, blockchain-based attestation, and RISC-V secure architectures.
- Summarizes attack surfaces and maps them to hardware/software countermeasures.
- Identifies open research challenges and outlines future directions, including post-quantum security and AI-integrated primitives.
2. Related Work
Bibliometric Assessment of Secure Drone Communication
- The red cluster, centered on terms such as ‘machine learning’, ‘computer vision’ and ‘drone technology’, suggests extensive integration of AI into UAV applications.
- The blue group highlights terms such as ‘data collection’, ‘Internet of Things’ and ‘emergency communications’, indicating a focus on real-time data dissemination and telemetry.
- Green clusters ‘mutual authentication’, ‘security attacks’, ‘control station’ and ‘ground control station’, pointing toward security-centric research in swarm coordination and secure routing.
- The yellow group, which includes ‘energy consumption’ and ‘use of unmanned aerial vehicles’, emphasizes the challenge of balancing computational security overhead with resource constraints in real-world deployments.
3. Application of Swarm Drones
3.1. Functional Role of the Application Layer
3.2. Sector-Specific Applications
3.2.1. Agriculture and Environmental Monitoring
3.2.2. Construction and Infrastructure
3.2.3. Logistics and Urban Mobility
3.2.4. Disaster Response and Humanitarian Aid
3.2.5. Entertainment and Media
3.3. Environmental Context and Operational Considerations
3.4. Market Trends and Economic Outlook
3.5. Technological Advancements and Future Directions
4. Communication Architectures
4.1. Communication Protocols
4.1.1. Performance Evaluation of Communication Algorithms
4.1.2. Authentication and Security Mechanism
5. Cybersecurity in UAV Communication Systems
5.1. Cybersecurity Threat Landscape in UAV Systems: Infographic-Based Analysis
5.1.1. Data Interception and Malware Injection
5.1.2. Drone Hijacking and Control Tampering
5.1.3. GPS Spoofing and Jamming
5.1.4. Firmware Level Manipulation and Physical Tampering
5.2. Intrusion Detection Systems (IDS) and Firewalls
5.3. Encryption and Authentication Techniques
5.4. Blockchain and Lightweight Cryptography
5.5. Privacy Concerns in Data Collection
5.6. Limitations of Traditional Security Mechanisms
5.7. Emerging Technologies for Secure UAV Networks
5.8. Swarm Coordination and Optimization Algorithms
5.9. Case Studies and Real-World Incidents
6. Hardware Security Primitives
6.1. Layered Architecture and Embedded Security
6.2. Core Technologies and Their Roles
6.3. Comparative Assessment of HSP-Based Security Techniques
6.3.1. Quantitative Comparison
6.3.2. Radar Chart Analysis
6.3.3. Why Hardware Is the New Frontier in UAV Swarm Security?
6.4. Hardware–Software Trade-Offs and Hybrid Architectures for UAV Swarms
6.5. Emerging Trends: AI-Augmented PUFs, Post-Quantum Primitives, and Hybrid Trust Anchors
7. Verification, Licensing, and Regulation
7.1. Verification
7.1.1. Distance-Bounding Protocols
7.1.2. Delay-Based Cryptographic Decryption
7.1.3. Environmental Physical Unclonable Functions (ePUFs)
7.1.4. Blockchain-Backed Geofencing and Licensing
7.2. Regulatory Frameworks for UAV Operations
7.2.1. Privacy and Data Protection Laws
7.2.2. Airspace Management and Compliance
7.2.3. Ethical Considerations in UAV Deployment
7.2.4. Regulatory Integration and Compliance Frameworks
8. Deployment Challenges
8.1. Disaster Zones: Lightweight and Offline-Capable Security
8.2. Military Deployments: Tamper Resistance and Cryptographic Robustness
8.3. Urban Environments: Privacy, Licensing, and Compliance
9. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alqudsi, Y.; Makaraci, M. UAV swarms: Research, challenges, and future directions. J. Eng. Appl. Sci. 2025, 72, 12. [Google Scholar] [CrossRef]
- Tahir, A.; Böling, J.; Haghbayan, M.H.; Toivonen, H.T.; Plosila, J. Swarms of unmanned aerial vehicles—A survey. J. Ind. Inf. Integr. 2019, 16, 100106. [Google Scholar] [CrossRef]
- Federal Aviation Administration. What to Know About Drones. 2025. Available online: https://www.faa.gov/newsroom/what-know-about-drones (accessed on 18 August 2025).
- Guan, H.; Sun, X.; Su, Y.; Hu, T.; Wang, H.; Wang, H.; Peng, C.; Guo, Q. UAV-lidar aids automatic intelligent powerline inspection. Int. J. Electr. Power Energy Syst. 2021, 130, 106987. [Google Scholar] [CrossRef]
- Shi, L.; Marcano, N.J.H.; Jacobsen, R.H. A review on communication protocols for autonomous unmanned aerial vehicles for inspection application. Microprocess. Microsyst. 2021, 86, 104340. [Google Scholar] [CrossRef]
- U.S. Government Accountability Office. Science & Tech Spotlight: Drone Swarm Technologies; Technical Report GAO-23-106930; U.S. Government Accountability Office: Washington, DC, USA, 2023.
- Zaitseva, E.; Levashenko, V.; Mukhamediev, R.; Brinzei, N.; Kovalenko, A.; Symagulov, A. Review of reliability assessment methods of drone swarm (fleet) and a new importance evaluation based method of drone swarm structure analysis. Mathematics 2023, 11, 2551. [Google Scholar] [CrossRef]
- Doggalli, G.; Santhoshinii, E.; Manojkumar, H.; Srivastava, M.; Ganesh, H.; Barigal, A.; Anithaa, V.; Ameen, A.; Kundu, R. Drone technology for crop disease resistance: Innovations and challenges. J. Sci. Res. Rep. 2024, 30, 174–180. [Google Scholar] [CrossRef]
- Humpe, A. Bridge inspection with an off-the-shelf 360 camera drone. Drones 2020, 4, 67. [Google Scholar] [CrossRef]
- Hassija, V.; Chamola, V.; Agrawal, A.; Goyal, A.; Luong, N.C.; Niyato, D.; Yu, F.R.; Guizani, M. Fast, reliable, and secure drone communication: A comprehensive survey. IEEE Commun. Surv. Tutor. 2021, 23, 2802–2832. [Google Scholar] [CrossRef]
- Constantinescu, N.; Ticleanu, O.A.; Hunyadi, I.D. Securing Authentication and Detecting Malicious Entities in Drone Missions. Drones 2024, 8, 767. [Google Scholar] [CrossRef]
- Jacobsen, R.H.; Matlekovic, L.; Shi, L.; Malle, N.; Ayoub, N.; Hageman, K.; Hansen, S.; Nyboe, F.F.; Ebeid, E. Design of an autonomous cooperative drone swarm for inspections of safety critical infrastructure. Appl. Sci. 2023, 13, 1256. [Google Scholar] [CrossRef]
- Zhou, Y.; Rao, B.; Wang, W. UAV swarm intelligence: Recent advances and future trends. IEEE Access 2020, 8, 183856–183878. [Google Scholar] [CrossRef]
- Zhai, X.; Shao, M.; Cang, M.; Cheng, X.; Wu, S.; Wang, J. Application of drone technology in power grid engineering. J. Phys. Conf. Ser. 2024, 2798, 012007. [Google Scholar] [CrossRef]
- Lin, C.; He, D.; Kumar, N.; Choo, K.K.R.; Vinel, A.; Huang, X. Security and privacy for the internet of drones: Challenges and solutions. IEEE Commun. Mag. 2018, 56, 64–69. [Google Scholar] [CrossRef]
- Bhunia, S.; Tehranipoor, M. Hardware security primitives. In Hardware Security; Morgan Kaufmann: San Mateo, CA, USA, 2019; pp. 311–345. [Google Scholar]
- Vidaković, M.; Vinko, D. Hardware-based methods for electronic device protection against invasive and non-invasive attacks. Electronics 2023, 12, 4507. [Google Scholar] [CrossRef]
- Chen, W.; Zhu, J.; Liu, J.; Guo, H. A fast coordination approach for large-scale drone swarm. J. Netw. Comput. Appl. 2024, 221, 103769. [Google Scholar] [CrossRef]
- Tehranipoor, M.; Pundir, N.; Vashistha, N.; Farahmandi, F. Hardware Security Primitives; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Jagatheesaperumal, S.K.; Rahouti, M.; Chehri, A.; Xiong, K.; Bieniek, J. Blockchain-based security architecture for unmanned aerial vehicles in b5g/6g services and beyond: A comprehensive approach. IEEE Open J. Commun. Soc. 2025, 6, 1042–1069. [Google Scholar] [CrossRef]
- Chen, X.; Tang, J.; Lao, S. Review of unmanned aerial vehicle swarm communication architectures and routing protocols. Appl. Sci. 2020, 10, 3661. [Google Scholar] [CrossRef]
- Wani, A.R.; Gupta, S.K.; Khanam, Z.; Rashid, M.; Alshamrani, S.S.; Baz, M. A novel approach for securing data against adversary attacks in UAV embedded HetNet using identity based authentication scheme. IET Intell. Transp. Syst. 2023, 17, 2171–2189. [Google Scholar] [CrossRef]
- Zhang, H.; Xi, S.; Jiang, H.; Shen, Q.; Shang, B.; Wang, J. Resource allocation and offloading strategy for UAV-assisted LEO satellite edge computing. Drones 2023, 7, 383. [Google Scholar] [CrossRef]
- Singh, M.; Aujla, G.S.; Bali, R.S. Derived blockchain architecture for security-conscious data dissemination in edge-envisioned Internet of Drones ecosystem. Clust. Comput. 2022, 25, 2281–2302. [Google Scholar] [CrossRef]
- Lv, H.; Liu, F.; Yuan, N. Drone presence detection by the drone’s RF communication. J. Phys. Conf. Ser. 2021, 1738, 012044. [Google Scholar] [CrossRef]
- Wen, K.; Wang, S.; Wu, Y.; Wang, J.; Han, L.; Xie, Q. A secure authentication protocol supporting efficient handover for UAV. Mathematics 2024, 12, 716. [Google Scholar] [CrossRef]
- Han, K.; Al Nuaimi, E.; Al Blooshi, S.; Psiakis, R.; Yeun, C.Y. Scalable authenticated communication in drone swarm environment. J. Internet Technol. 2024, 25, 255–265. [Google Scholar]
- Kumar, A.; Yadav, A.S.; Gill, S.S.; Pervaiz, H.; Ni, Q.; Buyya, R. A secure drone-to-drone communication and software defined drone network-enabled traffic monitoring system. Simul. Model. Pract. Theory 2022, 120, 102621. [Google Scholar] [CrossRef]
- Bansal, G.; Sikdar, B. S-MAPS: Scalable mutual authentication protocol for dynamic UAV swarms. IEEE Trans. Veh. Technol. 2021, 70, 12088–12100. [Google Scholar] [CrossRef]
- Chen, W.; Meng, X.; Liu, J.; Guo, H.; Mao, B. Countering large-scale drone swarm attack by efficient splitting. IEEE Trans. Veh. Technol. 2022, 71, 9967–9979. [Google Scholar] [CrossRef]
- Kim, S.K. Advanced drone swarm security by using blockchain governance game. Mathematics 2022, 10, 3338. [Google Scholar] [CrossRef]
- Ashush, N.; Greenberg, S.; Manor, E.; Ben-Shimol, Y. Unsupervised drones swarm characterization using rf signals analysis and machine learning methods. Sensors 2023, 23, 1589. [Google Scholar] [CrossRef]
- Jomaa, I.; Saleh, W.; Rokan, R.; Hussien, S. Secured drone communication based on esalsa20 algorithm. Int. J. Circuits Syst. Signal Process 2023, 17, 67–75. [Google Scholar] [CrossRef]
- Senigagliesi, L.; Ciattaglia, G.; Gambi, E. Autoencoder based physical layer authentication for UAV communications. In Proceedings of the 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring), Florence, Italy, 20–23 June 2023; pp. 1–6. [Google Scholar]
- Jan, S.U.; Khan, H.U. Identity and aggregate signature-based authentication protocol for IoD deployment military drone. IEEE Access 2021, 9, 130247–130263. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, J.; Huang, F.; Cai, D.; Wu, Y.; Chen, X.; Igorevich, K.K. Lightweight trustworthy message exchange in unmanned aerial vehicle networks. IEEE Trans. Intell. Transp. Syst. 2021, 24, 2144–2157. [Google Scholar] [CrossRef]
- Gopi, S.P.; Magarini, M.; Alsamhi, S.H.; Shvetsov, A.V. Machine learning-assisted adaptive modulation for optimized drone-user communication in b5g. Drones 2021, 5, 128. [Google Scholar] [CrossRef]
- Manikandan, K.; Sriramulu, R. Optimized path planning strategy to enhance security under swarm of unmanned aerial vehicles. Drones 2022, 6, 336. [Google Scholar] [CrossRef]
- Krook, J.; Bossens, D.; Winter, P.; Araujo-Estrada, S.; Downer, J.; Windsor, S. Mapping the complexity of legal challenges for trustworthy drones on construction sites in the United Kingdom. ACM J. Responsible Comput. 2024, 1, 1–26. [Google Scholar] [CrossRef]
- Kutynska, A.; Dei, M. Legal regulation of the use of drones: Human rights and privacy challenges. J. Int’l Leg. Commc’n 2023, 8, 39. [Google Scholar] [CrossRef]
- Kim, D. Pedestrian and bicycle volume data collection using drone technology. J. Urban Technol. 2020, 27, 45–60. [Google Scholar] [CrossRef]
- Gillan, J.K.; Ponce-Campos, G.E.; Swetnam, T.L.; Gorlier, A.; Heilman, P.; McClaran, M.P. Innovations to expand drone data collection and analysis for rangeland monitoring. Ecosphere 2021, 12, e03649. [Google Scholar] [CrossRef]
- Tu, Y.J.; Piramuthu, S. Security and privacy risks in drone-based last mile delivery. Eur. J. Inf. Syst. 2024, 33, 617–630. [Google Scholar] [CrossRef]
- Telli, K.; Kraa, O.; Himeur, Y.; Ouamane, A.; Boumehraz, M.; Atalla, S.; Mansoor, W. A comprehensive review of recent research trends on unmanned aerial vehicles (uavs). Systems 2023, 11, 400. [Google Scholar] [CrossRef]
- Patel, A.; Cherukuri, A.K. Analysis of Light-Weight Cryptography Algorithms for UAV-Networks. arXiv 2025, arXiv:2504.04063. [Google Scholar] [CrossRef]
- Khan, M.A.; Qureshi, I.M.; Khanzada, F. A hybrid communication scheme for efficient and low-cost deployment of future flying ad-hoc network (FANET). Drones 2019, 3, 16. [Google Scholar] [CrossRef]
- Alsamhi, S.H.; Shvetsov, A.V.; Shvetsova, S.V.; Hawbani, A.; Guizani, M.; Alhartomi, M.A.; Ma, O. Blockchain-empowered security and energy efficiency of drone swarm consensus for environment exploration. IEEE Trans. Green Commun. Netw. 2022, 7, 328–338. [Google Scholar] [CrossRef]
- Manikandan, K.; Sriramulu, R. ASMTP: Anonymous secure messaging token-based protocol assisted data security in swarm of unmanned aerial vehicles. Int. J. Netw. Manag. 2024, 34, e2271. [Google Scholar] [CrossRef]
- Kumar, R.; Aljuhani, A.; Kumar, P.; Kumar, A.; Franklin, A.; Jolfaei, A. Blockchain-enabled secure communication for unmanned aerial vehicle (UAV) networks. In Proceedings of the 5th International ACM Mobicom Workshop on Drone Assisted Wireless Communications for 5G and Beyond, Sydney, Australia, 17 October 2022; pp. 37–42. [Google Scholar]
- Xie, Q.; Wang, H. PUF-Based Secure and Efficient Anonymous Authentication Protocol for UAV Towards Cross-Domain Environments. Drones 2025, 9, 260. [Google Scholar] [CrossRef]
- Boke, A.K.; Nakhate, S.; Rajawat, A. FPGA implementation of PUF based key generator for secure communication in IoT. Integration 2023, 89, 241–247. [Google Scholar] [CrossRef]
- Bathalapalli, V.K.; Mohanty, S.P.; Kougianos, E.; Iyer, V.; Rout, B. PUFchain 4.0: Integrating PUF-based TPM in distributed ledger for security-by-design of IoT. In Proceedings of the Great Lakes Symposium on VLSI 2023, Knoxville, TN, USA, 5–7 June 2023; pp. 231–236. [Google Scholar]
- Gao, B.; Lin, B.; Li, X.; Tang, J.; Qian, H.; Wu, H. A unified PUF and TRNG design based on 40-nm RRAM with high entropy and robustness for IoT security. IEEE Trans. Electron. Devices 2022, 69, 536–542. [Google Scholar] [CrossRef]
- Emimi, M.; Khaleel, M.; Alkrash, A. The current opportunities and challenges in drone technology. Int. J. Electr. Eng. Sustain. 2023, 1, 74–89. [Google Scholar]
- Vergouw, B.; Nagel, H.; Bondt, G.; Custers, B. Drone technology: Types, payloads, applications, frequency spectrum issues and future developments. In The Future of Drone Use: Opportunities and Threats from Ethical and Legal Perspectives; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–45. [Google Scholar]
- Tuğrul, K.M. Drone technologies and applications. In Drones-Various Applications; IntechOpen: London, UK, 2023. [Google Scholar]
- Dutta, G.; Goswami, P. Application of drone in agriculture: A review. Int. J. Chem. Stud. 2020, 8, 181–187. [Google Scholar] [CrossRef]
- Shahmoradi, J.; Talebi, E.; Roghanchi, P.; Hassanalian, M. A comprehensive review of applications of drone technology in the mining industry. Drones 2020, 4, 34. [Google Scholar] [CrossRef]
- Ayamga, M.; Akaba, S.; Nyaaba, A.A. Multifaceted applicability of drones: A review. Technol. Forecast. Soc. Change 2021, 167, 120677. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Khan, M.A.; Ghadi, Y.Y. Editorial on the advances, innovations and applications of UAV Technology for Remote Sensing. Remote Sens. 2023, 15, 5087. [Google Scholar] [CrossRef]
- Mandloi, D.; Arya, R.; Verma, A.K. Internet of drones. In Recent Trends in Artificial Intelligence Towards a Smart World: Applications in Industries and Sectors; Springer: Berlin/Heidelberg, Germany, 2024; pp. 353–373. [Google Scholar]
- Home. Skybound Intelligence: AIS Impact on Drone Technology. Whitepaper/Report. 2024. Available online: https://ijsrem.com/download/skybound-intelligence-ais-impact-on-drone-technology/ (accessed on 11 August 2025).
- Marek, D.; Paszkuta, M.; Szyguła, J.; Biernacki, P.; Domański, A.; Szczygieł, M.; Król, M.; Wojciechowski, K. Swarm of drones in a simulation environment—Efficiency and adaptation. Appl. Sci. 2024, 14, 3703. [Google Scholar] [CrossRef]
- Bakirci, M. A Novel Swarm Unmanned Aerial Vehicle System: Incorporating Autonomous Flight, Real-Time Object Detection, and Coordinated Intelligence for Enhanced Performance. Trait. Du Signal 2023, 40, 2063. [Google Scholar] [CrossRef]
- Ahirwar, S.; Swarnkar, R.; Bhukya, S.; Namwade, G. Application of drone in agriculture. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2500–2505. [Google Scholar] [CrossRef]
- Pathak, H.; Kumar, G.; Mohapatra, S.; Gaikwad, B.; Rane, J. Use of drones in agriculture: Potentials, Problems and Policy Needs. ICAR-Natl. Inst. Abiotic Stress Manag. 2020, 300, 4–15. [Google Scholar]
- Rejeb, A.; Abdollahi, A.; Rejeb, K.; Treiblmaier, H. Drones in agriculture: A review and bibliometric analysis. Comput. Electron. Agric. 2022, 198, 107017. [Google Scholar] [CrossRef]
- Spoorthi, S.; Shadaksharappa, B.; Suraj, S.; Manasa, V. Freyr drone: Pesticide/fertilizers spraying drone-an agricultural approach. In Proceedings of the 2017 2nd International Conference on Computing and Communications Technologies (ICCCT), Chennai, India, 23–24 February 2017; pp. 252–255. [Google Scholar]
- Yigit, Y.; Nguyen, L.D.; Ozdem, M.; Kinaci, O.K.; Hoang, T.; Canberk, B.; Duong, T.Q. TwinPort: 5G drone-assisted data collection with digital twin for smart seaports. Sci. Rep. 2023, 13, 12310. [Google Scholar] [CrossRef] [PubMed]
- Adegboye, M.A.; Fung, W.K.; Karnik, A. Recent advances in pipeline monitoring and oil leakage detection technologies: Principles and approaches. Sensors 2019, 19, 2548. [Google Scholar] [CrossRef]
- Altshuler, Y.; Pentland, A.; Bruckstein, A. Defending Large-Scale Critical Infrastructures Using a Swarm of Drones. In Applied Swarm Intelligence; CRC Press: Boca Raton, FL, USA, 2024; pp. 180–218. [Google Scholar]
- Day, D. Drones for transmission infrastructure inspection and mapping improve efficiency. Nat. Gas Electr. 2017, 33, 7–11. [Google Scholar] [CrossRef]
- Yang, L.; Fan, J.; Liu, Y.; Li, E.; Peng, J.; Liang, Z. A review on state-of-the-art power line inspection techniques. IEEE Trans. Instrum. Meas. 2020, 69, 9350–9365. [Google Scholar] [CrossRef]
- Nooralishahi, P.; Ibarra-Castanedo, C.; Deane, S.; López, F.; Pant, S.; Genest, M.; Avdelidis, N.P.; Maldague, X.P. Drone-based non-destructive inspection of industrial sites: A review and case studies. Drones 2021, 5, 106. [Google Scholar] [CrossRef]
- Grand View Research. Drone Market Size, Share & Trends Report. 2025. Available online: https://www.grandviewresearch.com/press-release/global-drone-market (accessed on 18 August 2025).
- Erdelj, M.; Król, M.; Natalizio, E. Wireless sensor networks and multi-UAV systems for natural disaster management. Comput. Netw. 2017, 124, 72–86. [Google Scholar] [CrossRef]
- Erdelj, M.; Natalizio, E.; Chowdhury, K.R.; Akyildiz, I.F. Help from the sky: Leveraging UAVs for disaster management. IEEE Pervasive Comput. 2017, 16, 24–32. [Google Scholar] [CrossRef]
- Innocente, M.S.; Grasso, P. Self-organising swarms of firefighting drones: Harnessing the power of collective intelligence in decentralised multi-robot systems. J. Comput. Sci. 2019, 34, 80–101. [Google Scholar] [CrossRef]
- Mao, J.; Jia, Z.; Gu, H.; Shi, C.; Shi, H.; He, L.; Wu, Q. Robust UAV Path Planning with Obstacle Avoidance for Emergency Rescue. In Proceedings of the 2025 IEEE Wireless Communications and Networking Conference (WCNC), Milan, Italy, 24–27 March 2025; pp. 1–6. [Google Scholar]
- Abdel-Malek, M.A.; Akkaya, K.; Saputro, N.; Ibrahim, A.S. Efficient authentication of drones to mmWave wireless mesh networks in post-disaster scenarios. In Proceedings of the GLOBECOM 2020–2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [Google Scholar]
- Bushnaq, O.M.; Mishra, D.; Natalizio, E.; Akyildiz, I.F. Unmanned aerial vehicles (UAVs) for disaster management. In Nanotechnology-Based Smart Remote Sensing Networks for Disaster Prevention; Elsevier: Amsterdam, The Netherlands, 2022; pp. 159–188. [Google Scholar]
- Hu, M.; Liu, W.; Lu, J.; Fu, R.; Peng, K.; Ma, X.; Liu, J. On the joint design of routing and scheduling for vehicle-assisted multi-UAV inspection. Future Gener. Comput. Syst. 2019, 94, 214–223. [Google Scholar] [CrossRef]
- Ghandeharizadeh, S. Holodeck: Immersive 3D Displays Using Swarms of Flying Light Specks. In Proceedings of the 3rd ACM International Conference on Multimedia in Asia, Gold Coast, Australia, 1–3 December 2021; pp. 1–7. [Google Scholar]
- Ahmed, G.; Sheltami, T.; Mahmoud, A.; Imam, M. Performance Evaluation of Three Routing Protocols for Drone Communication Networks. Arab. J. Sci. Eng. 2024, 49, 13149–13161. [Google Scholar] [CrossRef]
- Feng, O.; Zhang, H.; Tang, W.; Wang, F.; Feng, D.; Zhong, G. Digital Low-Altitude Airspace Unmanned Aerial Vehicle Path Planning and Operational Capacity Assessment in Urban Risk Environments. Drones 2025, 9, 320. [Google Scholar] [CrossRef]
- Feng, C.; Yu, K.; Bashir, A.K.; Al-Otaibi, Y.D.; Lu, Y.; Chen, S.; Zhang, D. Efficient and secure data sharing for 5G flying drones: A blockchain-enabled approach. IEEE Netw. 2021, 35, 130–137. [Google Scholar] [CrossRef]
- Aydin, Y.; Kurt, G.K.; Ozdemir, E.; Yanikomeroglu, H. Authentication and handover challenges and methods for drone swarms. IEEE J. Radio Freq. Identif. 2022, 6, 220–228. [Google Scholar] [CrossRef]
- Nyaaba, A.A.; Ayamga, M. Intricacies of medical drones in healthcare delivery: Implications for Africa. Technol. Soc. 2021, 66, 101624. [Google Scholar] [CrossRef]
- Baturone, I.; Román, R.; Corbacho, Á. A unified multibit PUF and TRNG based on ring oscillators for secure IoT devices. IEEE Internet Things J. 2022, 10, 6182–6192. [Google Scholar] [CrossRef]
- Ko, Y.; Kim, J.; Duguma, D.G.; Astillo, P.V.; You, I.; Pau, G. Drone secure communication protocol for future sensitive applications in military zone. Sensors 2021, 21, 2057. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Gutiérrez, A.J.; Castillo, E.; Escobar-Molero, A.; Cruz-Cozar, J.; Morales, D.P.; Parrilla, L. Secure sensor prototype using hardware security modules and trusted execution environments in a blockchain application: Wine logistic use case. Electronics 2023, 12, 2987. [Google Scholar] [CrossRef]
- Khalil, F.M.; Fazil, A.; Hussain, M.J.; Masood, A. Cross-Layer RF Distance Bounding Scheme for Passive and Semi-passive Ubiquitous Computing Systems. Comput. Secur. 2024, 137, 103633. [Google Scholar] [CrossRef]
- Kumar, P.; Darshi, S.; Shailendra, S. Drone assisted device to device cooperative communication for critical environments. IET Commun. 2021, 15, 957–972. [Google Scholar] [CrossRef]
- Grand View Research. AI in Drone Market Size, Share & Trends Analysis Report by Type (Station Based, Cloud Based), by Component (Hardware, Software, Services), by Application, by End Use, by Region, And Segment Forecasts, 2025–2033. Report ID: GVR-4-68040-645-7; Historical Range: 2021–2023; Forecast Period: 2025–2033. Market Size Was Estimated at USD 12,292.6 million in 2024 and Projected to Reach USD 51,328.7 Million by 2033 (CAGR 17.9%). 2023; Available online: https://www.grandviewresearch.com/industry-analysis/ai-drone-market-report (accessed on 11 August 2025).
- MarketsandMarkets™. UAV (Drone) Industry Worth $40.56 billion by 2030. Press Release: UAV (Drone) Market (OEM+Aftermarket) Estimated at USD 26.12 Billion in 2025, Projected to Reach USD 40.56 Billion by 2030 (CAGR 9.2% from 2025–2030). 2025. Available online: https://www.marketsandmarkets.com/PressReleases/unmanned-aerial-vehicles-uav.asp (accessed on 18 August 2025).
- MarketsandMarkets™. UAV (Drone) Market by Type (Fixed Wing, Rotary Wing, Hybrid); Platform (Civil & Commercial, Defense & Government); Point of Sale; Systems; Function; Industry; Application; Mode of Operation; MTOW; Range; Region—Global Forecast to 2030. Estimated UAV (Drone) Market (OEM + Aftermarket) Value: USD 26.12 Billion in 2025; Projected to Reach USD 40.56 Billion by 2030 (CAGR: 9.2% from 2025–2030). 2025. Available online: https://www.marketsandmarkets.com/Market-Reports/unmanned-aerial-vehicles-uav-market-662.html (accessed on 18 August 2025).
- Edulakanti, S.R.; Ganguly, S. The emerging drone technology and the advancement of the Indian drone business industry. J. High Technol. Manag. Res. 2023, 34, 100464. [Google Scholar] [CrossRef]
- Anandhi, D.; Keerthana, B.; Velmurugan, D. Skybound Intelligence: AI’s Impact on Drone Technology. Int. J. Sci. Res. Eng. Manag. (IJSREM) 2024, 8, 1–7. [Google Scholar] [CrossRef]
- Alotaibi, F.M.; Al-Dhaqm, A.; Al-Otaibi, Y.D.; Alsewari, A.A. A comprehensive collection and analysis model for the drone forensics field. Sensors 2022, 22, 6486. [Google Scholar] [CrossRef]
- Al-Fuwaiers, A.; Mishra, S. ML-based Intrusion Detection for Drone IoT Security. J. Cybersecur. Inf. Manag. 2024, 14, 64. [Google Scholar]
- Yazid, Y.; Ez-Zazi, I.; Guerrero-González, A.; El Oualkadi, A.; Arioua, M. UAV-enabled mobile edge-computing for IoT based on AI: A comprehensive review. Drones 2021, 5, 148. [Google Scholar] [CrossRef]
- Alotaibi, A.; Chatwin, C.; Birch, P. A secure communication framework for drone swarms in autonomous surveillance operations. J. Comput. Commun. 2024, 12, 1–25. [Google Scholar] [CrossRef]
- Javed, S.; Hassan, A.; Ahmad, R.; Ahmed, W.; Ahmed, R.; Saadat, A.; Guizani, M. State-of-the-art and future research challenges in uav swarms. IEEE Internet Things J. 2024, 11, 19023–19045. [Google Scholar] [CrossRef]
- Tang, R.; Tang, J.; Talip, M.S.A.; Aridas, N.K.; Xu, X. Enhanced multi agent coordination algorithm for drone swarm patrolling in durian orchards. Sci. Rep. 2025, 15, 9139. [Google Scholar] [CrossRef] [PubMed]
- Spanaki, K.; Karafili, E.; Sivarajah, U.; Despoudi, S.; Irani, Z. Artificial intelligence and food security: Swarm intelligence of AgriTech drones for smart AgriFood operations. Prod. Plan. Control 2022, 33, 1498–1516. [Google Scholar] [CrossRef]
- He, Y.; Huang, F.; Wang, D.; Chen, B.; Li, T.; Zhang, R. Performance analysis and optimization design of AAV-assisted vehicle platooning in NOMA-enhanced Internet of Vehicles. IEEE Trans. Intell. Transp. Syst. 2025, 26, 8810–8819. [Google Scholar] [CrossRef]
- Ahmed, M.; Soofi, A.A.; Raza, S.; Li, Y.; Khan, F.; Khan, W.U.; Asif, M.; Han, Z. A Comprehensive Survey on RIS-Enhanced Physical Layer Security in UAV-Assisted Networks. IEEE Internet Things J. 2025, 12, 32538–32562. [Google Scholar] [CrossRef]
- Teng, M.; Gao, C.; Wang, Z.; Li, X. A communication-based identification of critical drones in malicious drone swarm networks. Complex Intell. Syst. 2024, 10, 3197–3211. [Google Scholar] [CrossRef]
- Girma, A.; Brown, K. Security Analysis of Drone Communication Methods. In Proceedings of the International Conference on Information Technology-New Generations, Las Vegas, NV, USA, 14–18 April 2024; pp. 125–131. [Google Scholar]
- Srivastava, A.; Prakash, J. Future FANET with application and enabling techniques: Anatomization and sustainability issues. Comput. Sci. Rev. 2021, 39, 100359. [Google Scholar] [CrossRef]
- Campion, M.; Ranganathan, P.; Faruque, S. A review and future directions of UAV swarm communication architectures. In Proceedings of the 2018 IEEE International Conference on Electro/Information Technology (EIT), Rochester, MI, USA, 3–5 May 2018; pp. 0903–0908. [Google Scholar]
- Yue, K. Application of EEUC-based inter aircraft ultraviolet communication network algorithm in energy consumption optimization of drone swarm. Energy Inform. 2024, 7, 27. [Google Scholar] [CrossRef]
- Soria, E.; Schiano, F.; Floreano, D. SwarmLab: A MATLAB drone swarm simulator. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021; pp. 8005–8011. [Google Scholar]
- Svaigen, A.R.; Boukerche, A.; Ruiz, L.B.; Loureiro, A.A. Trajectory matters: Impact of jamming attacks over the drone path planning on the Internet of Drones. Ad Hoc Netw. 2023, 146, 103179. [Google Scholar] [CrossRef]
- Liu, C.; Huang, L.; Dong, Z. A two-stage approach of joint route planning and resource allocation for multiple UAVs in unmanned logistics distribution. IEEE Access 2022, 10, 113888–113901. [Google Scholar] [CrossRef]
- Lara-Nino, C.A.; Diaz-Perez, A.; Morales-Sandoval, M. Energy/area-efficient scalar multiplication with binary Edwards curves for the IoT. Sensors 2019, 19, 720. [Google Scholar] [CrossRef]
- Yesodha, K.; Krishnamurthy, M.; Thangaramya, K.; Kannan, A. Elliptic curve encryption-based energy-efficient secured ACO routing protocol for wireless sensor networks. J. Supercomput. 2024, 80, 18866–18899. [Google Scholar] [CrossRef]
- Covaciu, F.; Iordan, A.E. Control of a drone in virtual reality using MEMS sensor technology and machine learning. Micromachines 2022, 13, 521. [Google Scholar] [CrossRef]
- Li, H.; Zhan, Z.; Wang, Z. Energy-consumption model for rotary-wing drones. J. Field Robot. 2024, 41, 1940–1959. [Google Scholar] [CrossRef]
- Tosato, P.; Facinelli, D.; Prada, M.; Gemma, L.; Rossi, M.; Brunelli, D. An autonomous swarm of drones for industrial gas sensing applications. In Proceedings of the 2019 IEEE 20th International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), Washington, DC, USA, 10–12 June 2019; pp. 1–6. [Google Scholar]
- Saare, M.A.; Jawad, M.N.; Al-Shareeda, M.A.; Almaiah, M.A.; Obeidat, M. Evaluating elliptic curve cryptography in constrained environments: A Raspberry Pi-based approach. Int. J. Innov. Res. Sci. Stud. 2025, 8, 3966–3976. [Google Scholar] [CrossRef]
- Gope, P.; Millwood, O.; Saxena, N. A provably secure authentication scheme for RFID-enabled UAV applications. Comput. Commun. 2021, 166, 19–25. [Google Scholar] [CrossRef]
- Lounis, K.; Ding, S.H.; Zulkernine, M. D2D-MAP: A drone to drone authentication protocol using physical unclonable functions. IEEE Trans. Veh. Technol. 2022, 72, 5079–5093. [Google Scholar] [CrossRef]
- Ever, Y.K. A secure authentication scheme framework for mobile-sinks used in the internet of drones applications. Comput. Commun. 2020, 155, 143–149. [Google Scholar] [CrossRef]
- Ganesan, R.; Raajini, X.M.; Nayyar, A.; Sanjeevikumar, P.; Hossain, E.; Ertas, A.H. Bold: Bio-inspired optimized leader election for multiple drones. Sensors 2020, 20, 3134. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Ullah, I.; Abdullah, A.M.; Mohsan, S.A.H.; Noor, F. An efficient and conditional privacy-preserving heterogeneous signcryption scheme for the Internet of drones. Sensors 2023, 23, 1063. [Google Scholar] [CrossRef]
- Ning, H.; Farha, F.; Ullah, A.; Mao, L. Physical unclonable function: Architectures, applications and challenges for dependable security. IET Circuits Devices Syst. 2020, 14, 407–424. [Google Scholar] [CrossRef]
- Awaludin, A.M.; Park, J.; Wardhani, R.W.; Kim, H. A high-performance ECC processor over Curve448 based on a novel variant of the Karatsuba formula for asymmetric digit multiplier. IEEE Access 2022, 10, 67470–67481. [Google Scholar] [CrossRef]
- Pu, C.; Choo, K.K.R. Lightweight Sybil attack detection in IoT based on bloom filter and physical unclonable function. Comput. Secur. 2022, 113, 102541. [Google Scholar] [CrossRef]
- Alaya, H.; Ben Letaifa, A.; Rachedi, A. State of the art and taxonomy survey on federated learning and blockchain integration in UAV applications. J. Supercomput. 2025, 81, 655. [Google Scholar] [CrossRef]
- Khan, M.A.; Shah, H.; Rehman, S.U.; Kumar, N.; Ghazali, R.; Shehzad, D.; Ullah, I. Securing internet of drones with identity-based proxy signcryption. IEEE Access 2021, 9, 89133–89142. [Google Scholar] [CrossRef]
- Shelare, S.; Belkhode, P.; Nikam, K.C.; Yelamasetti, B.; Gajbhiye, T. A payload based detail study on design and simulation of hexacopter drone. Int. J. Interact. Des. Manuf. (IJIDeM) 2024, 18, 2675–2692. [Google Scholar] [CrossRef]
- Sabuncu, Ö.; Bilgehan, B. Revolutionizing healthcare 5.0: Blockchain-driven optimization of drone-to-everything communication using 5G network for enhanced medical services. Technol. Soc. 2024, 77, 102552. [Google Scholar] [CrossRef]
- Rahbari, D.; Alam, M.M.; Le Moullec, Y.; Jenihhin, M. Fast and fair computation offloading management in a swarm of drones using a rating-based federated learning approach. IEEE Access 2021, 9, 113832–113849. [Google Scholar] [CrossRef]
- Gope, P.; Sikdar, B. An efficient privacy-preserving authenticated key agreement scheme for edge-assisted internet of drones. IEEE Trans. Veh. Technol. 2020, 69, 13621–13630. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Othman, N.Q.H.; Li, Y.; Alsharif, M.H.; Khan, M.A. Unmanned aerial vehicles (UAVs): Practical aspects, applications, open challenges, security issues, and future trends. Intell. Serv. Robot. 2023, 16, 109–137. [Google Scholar] [CrossRef] [PubMed]
- Banafaa, M.K.; Pepeoğlu, Ö.; Shayea, I.; Alhammadi, A.; Shamsan, Z.A.; Razaz, M.A.; Alsagabi, M.; Al-Sowayan, S. A comprehensive survey on 5G-and-beyond networks with UAVs: Applications, emerging technologies, regulatory aspects, research trends and challenges. IEEE Access 2024, 12, 7786–7826. [Google Scholar] [CrossRef]
- Zulkifley, M.A.; Behjati, M.; Nordin, R.; Zakaria, M.S. Mobile network performance and technical feasibility of LTE-powered unmanned aerial vehicle. Sensors 2021, 21, 2848. [Google Scholar] [CrossRef] [PubMed]
- Kolios, A. Assessing risks for the use of drones for wind turbine inspections. J. Phys. Conf. Ser. 2024, 2767, 032030. [Google Scholar] [CrossRef]
- Liu, X.; Ahmad, S.F.; Anser, M.K.; Ke, J.; Irshad, M.; Ul-Haq, J.; Abbas, S. Cyber security threats: A never-ending challenge for e-commerce. Front. Psychol. 2022, 13, 927398. [Google Scholar] [CrossRef]
- Sihag, V.; Choudhary, G.; Choudhary, P.; Dragoni, N. Cyber4drone: A systematic review of cyber security and forensics in next-generation drones. Drones 2023, 7, 430. [Google Scholar] [CrossRef]
- Alsariera, Y.A.; Awwad, W.F.; Algarni, A.D.; Elmannai, H.; Gamarra, M.; Escorcia-Gutierrez, J. Enhanced Dwarf Mongoose optimization algorithm with deep learning-based attack detection for drones. Alex. Eng. J. 2024, 93, 59–66. [Google Scholar] [CrossRef]
- Zhu, C.; Zhu, X.; Qin, T. An efficient privacy protection mechanism for blockchain-based federated learning system in UAV-MEC Networks. Sensors 2024, 24, 1364. [Google Scholar] [CrossRef]
- Ezuma, M.; Erden, F.; Anjinappa, C.K.; Ozdemir, O.; Guvenc, I. Detection and classification of UAVs using RF fingerprints in the presence of Wi-Fi and Bluetooth interference. IEEE Open J. Commun. Soc. 2019, 1, 60–76. [Google Scholar] [CrossRef]
- Mykytyn, P.; Brzozowski, M.; Dyka, Z.; Langendoerfer, P. GPS-spoofing attack detection mechanism for UAV swarms. arXiv 2023, arXiv:2301.12766. [Google Scholar] [CrossRef]
- Atheeq, C.; Gulzar, Z.; Al Reshan, M.S.; Alshahrani, H.; Sulaiman, A.; Shaikh, A. Securing uav networks: A lightweight chaotic-frequency hopping approach to counter jamming attacks. IEEE Access 2024, 12, 38685–38699. [Google Scholar] [CrossRef]
- Mekdad, Y.; Acar, A.; Aris, A.; El Fergougui, A.; Conti, M.; Lazzeretti, R.; Uluagac, S. Exploring jamming and hijacking attacks for micro aerial drones. In Proceedings of the ICC 2024-IEEE International Conference on Communications, Denver, CO, USA, 9–13 June 2024; pp. 1939–1944. [Google Scholar]
- Omolara, A.E.; Alawida, M.; Abiodun, O.I. Drone cybersecurity issues, solutions, trend insights and future perspectives: A survey. Neural Comput. Appl. 2023, 35, 23063–23101. [Google Scholar] [CrossRef]
- Thubron, R. Drones Helped Hackers Penetrate Financial Firm Network Remotely. 2022. Available online: https://www.techspot.com/news/96321-drones-helped-hackers-penetrate-financial-firm-network-remotely.html (accessed on 25 August 2025).
- Wadhwani, S. U.S. Financial Services Company Targeted by Hackers Using DJI Drones. 2022. Available online: https://www.spiceworks.com/it-security/network-security/news/wifi-cyberattack-using-drones/ (accessed on 25 August 2025).
- Pardhasaradhi, B.; Cenkeramaddi, L.R. GPS spoofing detection and mitigation for drones using distributed radar tracking and fusion. IEEE Sens. J. 2022, 22, 11122–11134. [Google Scholar] [CrossRef]
- Lo, S.; Liu, Z.; Ibrahim, L.; Chen, Y.H.; Walter, T. Observations of GNSS Spoofing in Russia in 2023–2024. In Proceedings of the 2025 International Technical Meeting of The Institute of Navigation, Anaheim, CA, USA, 26–29 January 2025; pp. 425–442. [Google Scholar]
- Ren, Y.; Restivo, R.D.; Tan, W.; Wang, J.; Liu, Y.; Jiang, B.; Wang, H.; Song, H. Knowledge distillation-based gps spoofing detection for small uav. Future Internet 2023, 15, 389. [Google Scholar] [CrossRef]
- Richter-Brockmann, J.; Sasdrich, P.; Güneysu, T. Revisiting fault adversary models–hardware faults in theory and practice. IEEE Trans. Comput. 2022, 72, 572–585. [Google Scholar] [CrossRef]
- Grandamme, P.; Tissot, P.A.; Bossuet, L.; Dutertre, J.M.; Colombier, B.; Grosso, V. Switching off your device does not protect against fault attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2024, 2024, 425–450. [Google Scholar] [CrossRef]
- Greenberg, A. A $500 Open-Source Tool Lets Anyone Hack Computer Chips with Lasers. Wired. RayV Lite by NetSPI Enables Laser Fault Injection and Laser Logic State Imaging Using Low-Cost, Open-Source Components to Democratize Hardware-Level Chip Hacking. 2024. Available online: https://www.wired.com/story/rayv-lite-laser-chip-hacking-tool/ (accessed on 13 August 2025).
- Albakri, A.; Alshahrani, R.; Alharbi, F.; Ahamed, S.B. Fully homomorphic encryption with optimal key generation secure group communication in Internet of Things environment. Appl. Sci. 2023, 13, 6055. [Google Scholar] [CrossRef]
- Tychola, K.A.; Voulgaridis, K.; Lagkas, T. Beyond flight: Enhancing the Internet of Drones with blockchain technologies. Drones 2024, 8, 219. [Google Scholar] [CrossRef]
- Raivi, A.M.; Huda, S.A.; Alam, M.M.; Moh, S. Drone routing for drone-based delivery systems: A review of trajectory planning, charging, and security. Sensors 2023, 23, 1463. [Google Scholar] [CrossRef] [PubMed]
- Alshahrani, H.; Islam, N.; Syed, D.; Sulaiman, A.; Al Reshan, M.S.; Rajab, K.; Shaikh, A.; Shuja-Uddin, J.; Soomro, A. Sustainability in blockchain: A systematic literature review on scalability and power consumption issues. Energies 2023, 16, 1510. [Google Scholar] [CrossRef]
- Ilakkiya, N.; Rajaram, A. A secured trusted routing using the structure of a novel directed acyclic graph-blockchain in mobile ad hoc network internet of things environment. Multimed. Tools Appl. 2024, 83, 87903–87928. [Google Scholar] [CrossRef]
- Fang, J.; Li, Y.; Ji, P.N.; Wang, T. Drone detection and localization using enhanced fiber-optic acoustic sensor and distributed acoustic sensing technology. J. Light. Technol. 2022, 41, 822–831. [Google Scholar] [CrossRef]
- Shan, L.; Miura, R.; Kagawa, T.; Ono, F.; Li, H.B.; Kojima, F. Machine learning-based field data analysis and modeling for drone communications. IEEE Access 2019, 7, 79127–79135. [Google Scholar] [CrossRef]
- Da Silva, R.I.; Rezende, J.D.C.V.; Souza, M.J.F. Collecting large volume data from wireless sensor network by drone. Ad Hoc Netw. 2023, 138, 103017. [Google Scholar] [CrossRef]
- Dehkordi, A.S.; Zehmakan, A.N. More Efficient Sybil Detection Mechanisms Leveraging Resistance of Users to Attack Requests. arXiv 2025, arXiv:2501.16624. [Google Scholar] [CrossRef]
- Airlangga, G.; Liu, A. A study of the data security attack and defense pattern in a centralized UAV–cloud architecture. Drones 2023, 7, 289. [Google Scholar] [CrossRef]
- Al-Meer, A.; Al-Kuwari, S. Physical unclonable functions (PUF) for IoT devices. ACM Comput. Surv. 2023, 55, 1–31. [Google Scholar] [CrossRef]
- Demigha, O.; Larguet, R. Hardware-based solutions for trusted cloud computing. Comput. Secur. 2021, 103, 102117. [Google Scholar] [CrossRef]
- McGrath, T.; Bagci, I.E.; Wang, Z.M.; Roedig, U.; Young, R.J. A puf taxonomy. Appl. Phys. Rev. 2019, 6, 011303. [Google Scholar] [CrossRef]
- Lata, K.; Cenkeramaddi, L.R. Fpga-based puf designs: A comprehensive review and comparative analysis. Cryptography 2023, 7, 55. [Google Scholar] [CrossRef]
- Verri, F.A.N.; Marcondes, C.A.; Loubach, D.S.; Sbruzzi, E.F.; Marques, J.C.; Júnior, L.A.P.; Maximo, M.R.O.D.A.; Curtis, V.V. An analysis on tradable permit models for last-mile delivery drones. IEEE Access 2020, 8, 186279–186290. [Google Scholar] [CrossRef]
- Kang, W.; Jeong, E.; Shim, S.; Ha, S. Optimization of Task Allocation for Resource-Constrained Swarm Robots. IEEE Trans. Autom. Sci. Eng. 2024, 22, 3068–3085. [Google Scholar] [CrossRef]
- Khalil, H.; Rahman, S.U.; Ullah, I.; Khan, I.; Alghadhban, A.J.; Al-Adhaileh, M.H.; Ali, G.; ElAffendi, M. A UAV-swarm-communication model using a machine-learning approach for search-and-rescue applications. Drones 2022, 6, 372. [Google Scholar] [CrossRef]
- Shafik, W. Cyber security perspectives in public spaces: Irone case study. In Handbook of Research on Cybersecurity Risk in Contemporary Business Systems; IGI Global: Hershey, PA, USA, 2023; pp. 79–97. [Google Scholar]
- Kehoe, A. Navy Ships Swarmed by Drones, Not UFOs, Defense Officials Confirm. The War Zone 2022. DoD Officials Confirmed During a Congressional Hearing That Mysterious Swarms of Objects Around U.S. Navy Ships Off Southern California in July 2019 Were Drones—Not UFOs—Prompting Defensive Measures Including Onboard Security and Radio-Frequency Counter-Drone Responses. Available online: https://www.twz.com/navy-ships-swarmed-by-drones-not-ufos-defense-officials-confirm (accessed on 20 August 2025).
- Fox News. Unknown Drone Fleet Breached US Military Base Airspace in Virginia for 17 Straight Days. 2025. Available online: https://www.foxnews.com/politics/unknown-drone-fleet-breached-us-military-base-airspace-virginia-17-straight-days-report (accessed on 18 August 2025).
- U.S. Attorney’s Office, Middle District of Tennessee. Man Arrested and Charged with Attempting to Use a Weapon of Mass Destruction and to Destroy an Energy Facility in Nashville. Press Release: Skyler Philippi, 24, Was Arrested and Charged with Attempting to Use a Weapon of Mass Destruction and Destroy an Energy Facility in Nashville, Allegedly Motivated by White Supremacist Ideology. Threat Includes Drone-Based Sabotage of the Power Grid. 2024. Available online: https://www.justice.gov/usao-mdtn/pr/man-arrested-and-charged-attempting-use-weapon-mass-destruction-and-destroy-energy (accessed on 15 August 2025).
- Marizco, M. Man Arrested for Using Drones to Smuggle Meth Across Border. Border Report, 18 August 2025. [Google Scholar]
- Obiuto, N.C.; Festus-Ikhuoria, I.C.; Olajiga, O.K.; Adebayo, R.A. Reviewing the role of ai in drone technology and applications. Comput. Sci. IT Res. J. 2024, 5, 741–756. [Google Scholar] [CrossRef]
- Alioto, M. Trends in hardware security: From basics to ASICs. IEEE Solid-State Circuits Mag. 2019, 11, 56–74. [Google Scholar] [CrossRef]
- Wali, A.; Das, S. Hardware and information security primitives based on 2D materials and devices. Adv. Mater. 2023, 35, 2205365. [Google Scholar] [CrossRef]
- De, A.; Basu, A.; Ghosh, S.; Jaeger, T. Hardware assisted buffer protection mechanisms for embedded RISC-V. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2020, 39, 4453–4465. [Google Scholar] [CrossRef]
- Michailidis, E.T.; Vouyioukas, D. A review on software-based and hardware-based authentication mechanisms for the internet of drones. Drones 2022, 6, 41. [Google Scholar] [CrossRef]
- Wang, Y.; Su, Z.; Ni, J.; Zhang, N.; Shen, X. Blockchain-empowered space-air-ground integrated networks: Opportunities, challenges, and solutions. IEEE Commun. Surv. Tutor. 2021, 24, 160–209. [Google Scholar] [CrossRef]
- Tun, N.W.; Mambo, M. Secure PUF-based authentication systems. Sensors 2024, 24, 5295. [Google Scholar] [CrossRef]
- Pinto, S.; Santos, N. Demystifying arm trustzone: A comprehensive survey. ACM Comput. Surv. (CSUR) 2019, 51, 1–36. [Google Scholar] [CrossRef]
- Haj-Yahya, J.; Wong, M.M.; Pudi, V.; Bhasin, S.; Chattopadhyay, A. Lightweight secure-boot architecture for risc-v system-on-chip. In Proceedings of the 20th International Symposium on Quality Electronic Design (ISQED), Santa Clara, CA, USA, 6–7 March 2019; pp. 216–223. [Google Scholar]
- Valente, L.; Nadalini, A.; Veeran, A.H.C.; Sinigaglia, M.; Sá, B.; Wistoff, N.; Tortorella, Y.; Benatti, S.; Psiakis, R.; Kulmala, A.; et al. A heterogeneous risc-v based soc for secure nano-uav navigation. IEEE Trans. Circuits Syst. I Regul. Pap. 2024, 71, 2266–2279. [Google Scholar] [CrossRef]
- Taneja, S. Energy-efficient and low-cost hardware security primitives for secure ubiquitous computing. In Proceedings of the 65th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS 2022), Fukuoka, Japan, 7–10 August 2022. [Google Scholar]
- Kamali, H.M.; Azar, K.Z.; Farahmandi, F.; Tehranipoor, M. Advances in logic locking: Past, present, and prospects. Cryptol. Eprint Arch. 2022. [Google Scholar]
- Bernard, C.; Bryant, W.; Becker, R.; Di, J. Design of asynchronous polymorphic logic gates for hardware security. In Proceedings of the 2021 IEEE High Performance Extreme Computing Conference (HPEC), Waltham, MA, USA, 20–24 September 2021; pp. 1–5. [Google Scholar]
- Azar, K.Z.; Kamali, H.M.; Farahmandi, F.; Tehranipoor, M. Understanding Logic Locking; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar]
- Garb, K.; Obermaier, J.; Ferres, E.; Künig, M. Fortress: FORtified tamper-resistant envelope with embedded security sensor. In Proceedings of the 2021 18th International Conference on Privacy, Security and Trust (PST), Auckland, New Zealand, 13–15 December 2021; pp. 1–12. [Google Scholar]
- Trusted Platform Module. 2018. Available online: https://researchedsolution.wordpress.com/2013/09/14/trusted-platform-module/ (accessed on 25 July 2025).
- Lu, D.; Han, R.; Shen, Y.; Dong, X.; Ma, J.; Du, X.; Guizani, M. xTSeH: A trusted platform module sharing scheme towards smart IoT-eHealth devices. IEEE J. Sel. Areas Commun. 2020, 39, 370–383. [Google Scholar] [CrossRef]
- Sharma, G.; Joshi, A.M.; Mohanty, S.P. Fortified-grid: Fortifying smart grids through the integration of the trusted platform module in internet of things devices. Information 2023, 14, 491. [Google Scholar] [CrossRef]
- Al-Hazbi, S.; Hussain, A.; Sciancalepore, S.; Oligeri, G.; Papadimitratos, P. Radio frequency fingerprinting via deep learning: Challenges and opportunities. In Proceedings of the 2024 International Wireless Communications and Mobile Computing (IWCMC), Ayia Napa, Cyprus, 27–31 May 2024; pp. 0824–0829. [Google Scholar]
- Wei, J.; Yu, L.; Zhu, L.; Zhou, X. RF fingerprint extraction method based on CEEMDAN and multidomain joint entropy. Wirel. Commun. Mob. Comput. 2022, 2022, 5326892. [Google Scholar] [CrossRef]
- Al-Ghuraybi, H.A.; AlZain, M.A.; Soh, B. Exploring the integration of blockchain technology, physical unclonable function, and machine learning for authentication in cyber-physical systems. Multimed. Tools Appl. 2024, 83, 35629–35672. [Google Scholar] [CrossRef]
- Mars, A.; Ghandour, H.; Adi, W. SRAM-SUC: Ultra-Low Latency Robust Digital PUF. arXiv 2021, arXiv:2106.07105. [Google Scholar]
- Shamsoshoara, A.; Korenda, A.; Afghah, F.; Zeadally, S. A survey on physical unclonable function (PUF)-based security solutions for Internet of Things. Comput. Netw. 2020, 183, 107593. [Google Scholar] [CrossRef]
- Kim, J.S.; Patel, M.; Hassan, H.; Mutlu, O. The DRAM latency PUF: Quickly evaluating physical unclonable functions by exploiting the latency-reliability tradeoff in modern commodity DRAM devices. In Proceedings of the 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA), Vienna, Austria, 24–28 February 2018; pp. 194–207. [Google Scholar]
- Papageorgiou, O.; Sedlmeir, J.; Fridgen, G.; Vlachos, I.; Kostopoulos, N.; Damvakeraki, T.; Noszek, Z.; Papoutsoglou, I.; Anania, A.; Belotti, M.; et al. Energy efficiency of blockchain technologies. In Energy Efficiency of Blockchain Technologies; European Union Blockchain Observatory & Forum: Brussels, Belgium, 2021. [Google Scholar]
- Choi, J.; Son, S.; Kwon, D.; Park, Y. A puf-based secure authentication and key agreement scheme for the internet of drones. Sensors 2025, 25, 982. [Google Scholar] [CrossRef]
- Choe, H.; Kang, D. ECC based Authentication Protocol for Military Internet of Drone (IoD): A Holistic Security Framework. IEEE Access 2025, 13, 21503–21519. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, G.; Zhang, Y.; Zheng, Z.; Yuan, T.; Wang, P. A Strong PUF Based Security Protocol to Protect AI Model Parameters against Privacy Information Leakage. IEEE Internet Things J. 2025, 12, 20815–20827. [Google Scholar] [CrossRef]
- Basan, E.; Makarevich, O.; Lapina, M.; Mecella, M. Analysis of the Impact of a GPS Spoofing Attack on a UAV. In Proceedings of the CEUR Workshop Proceedings, Ljubljana, Slovenia, 29 November 2022; Volume 3094, pp. 6–16. [Google Scholar]
- Torba, E.; Jahankhani, H. Securing Systems from Aerial Threats: Cybersecurity in the Drone Era. In Autonomous Revolution: Strategies, Threats and Challenges; Springer: Berlin/Heidelberg, Germany, 2025; pp. 261–306. [Google Scholar]
- Wang, W.; Chen, Q.; Yin, Z.; Srivastava, G.; Gadekallu, T.R.; Alsolami, F.; Su, C. Blockchain and PUF-based lightweight authentication protocol for wireless medical sensor networks. IEEE Internet Things J. 2021, 9, 8883–8891. [Google Scholar] [CrossRef]
- Gao, Y.; Su, Y.; Xu, L.; Ranasinghe, D.C. Lightweight (reverse) fuzzy extractor with multiple reference PUF responses. IEEE Trans. Inf. Forensics Secur. 2018, 14, 1887–1901. [Google Scholar] [CrossRef]
- Ayub, M.F.; Saleem, M.A.; Altaf, I.; Mahmood, K.; Kumari, S. Fuzzy extraction and PUF based three party authentication protocol using USB as mass storage device. J. Inf. Secur. Appl. 2020, 55, 102585. [Google Scholar] [CrossRef]
- Wang, H.; Hao, W.; Tang, Y.; Zhu, B.; Dong, W.; Liu, W. Deep neural network modeling attacks on arbiter-PUF-based designs. Cybersecurity 2025, 8, 11. [Google Scholar] [CrossRef]
- Ebrahimabadi, M.; Lalouani, W.; Younis, M.; Karimi, N. Countering PUF modeling attacks through adversarial machine learning. In Proceedings of the 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Tampa, FL, USA, 7–9 July 2021; pp. 356–361. [Google Scholar]
- Yang, Z.; Zhang, Y.; Zeng, J.; Yang, Y.; Jia, Y.; Song, H.; Lv, T.; Sun, Q.; An, J. AI-Driven safety and security for UAVs: From machine learning to large language models. Drones 2025, 9, 392. [Google Scholar] [CrossRef]
- National Institute of Standards and Technology (NIST). Post-Quantum Cryptography. 2024. Available online: https://csrc.nist.gov/projects/post-quantum-cryptography (accessed on 29 September 2025).
- Khan, M.A.; Javaid, S.; Mohsan, S.A.H.; Tanveer, M.; Ullah, I. Future-proofing security for UAVs with post-quantum cryptography: A review. IEEE Open J. Commun. Soc. 2024, 5, 6849–6871. [Google Scholar] [CrossRef]
- Alagic, G.; Bros, M.; Ciadoux, P.; Cooper, D.; Dang, Q.; Dang, T.; Kelsey, J.; Lichtinger, J.; Liu, Y.K.; Miller, C.; et al. Status Report on the Fourth Round of the Nist Post-Quantum Cryptography Standardization Process; US Department of Commerce, National Institute of Standards and Technology: Gaithersburg, MD, USA, 2025.
- Mauw, S.; Smith, Z.; Toro-Pozo, J.; Trujillo-Rasua, R. Distance-bounding protocols: Verification without time and location. In Proceedings of the 2018 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 20–24 May 2018; pp. 549–566. [Google Scholar]
- Medley, L.; Loe, A.F.; Quaglia, E.A. Sok: Delay-based cryptography. In Proceedings of the 2023 IEEE 36th Computer Security Foundations Symposium (CSF), Dubrovnik, Croatia, 10–14 July 2023; pp. 169–183. [Google Scholar]
- Languell, Z.P.; Gu, Q. Securing ADS-B with multi-point distance-bounding for UAV collision avoidance. In Proceedings of the 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), Monterey, CA, USA, 4–7 November 2019; pp. 145–153. [Google Scholar]
- Wang, B.; Song, H.; Rhee, W.; Wang, Z. Overview of ultra-wideband transceivers—System architectures and applications. Tsinghua Sci. Technol. 2021, 27, 481–494. [Google Scholar] [CrossRef]
- Khan, S.; Thorn, J.; Wahlgren, A.; Gurtov, A. Intrusion detection in automatic dependent surveillance-broadcast (ADS-B) with machine learning. In Proceedings of the 2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC), San Antonio, TX, USA, 3–7 October 2021; pp. 1–10. [Google Scholar]
- Lin, Z.; Castano, L.; Mortimer, E.; Xu, H. Fast 3D collision avoidance algorithm for fixed wing UAS. J. Intell. Robot. Syst. 2020, 97, 577–604. [Google Scholar] [CrossRef]
- Li, S.; Meng, Q.; Bai, Y.; Zhang, C.; Song, Y.; Li, S.; Lu, L. Go beyond rfid: Rethinking the design of rfid sensor tags for versatile applications. In Proceedings of the 29th Annual International Conference on Mobile Computing and Networking, Madrid, Spain, 2–6 October 2023; pp. 1–16. [Google Scholar]
- Kanagala, P. Implementing cryptographic-based DH approach for enterprise network. Optik 2023, 272, 170252. [Google Scholar] [CrossRef]
- Wei, X.; El-Hadedy, M.; Mosanu, S.; Zhu, Z.; Hwu, W.M.; Guo, X. RECO-HCON: A high-throughput reconfigurable compact ascon processor for trusted iot. In Proceedings of the 2022 IEEE 35th International System-on-Chip Conference (SOCC), Belfast, UK, 5–8 September 2022; pp. 1–6. [Google Scholar]
- Hwang, J.; Kale, G.; Patel, P.P.; Vishwakarma, R.; Aliasgari, M.; Hedayatipour, A.; Rezaei, A.; Sayadi, H. Machine learning in chaos-based encryption: Theory, implementations, and applications. IEEE Access 2023, 11, 125749–125767. [Google Scholar] [CrossRef]
- Kalutharage, C.S.; Mohan, S.; Liu, X.; Chrysoulas, C. Enhancing Automotive Intrusion Detection Systems with Capability Hardware Enhanced RISC Instructions-Based Memory Protection. Electronics 2025, 14, 474. [Google Scholar] [CrossRef]
- Loe, A.F.; Medley, L.; O’Connell, C.; Quaglia, E.A. TIDE: A novel approach to constructing timed-release encryption. In Proceedings of the Australasian Conference on Information Security and Privacy, Wollongong, Australia, 28–30 November 2022; pp. 244–264. [Google Scholar]
- Nair, A.S.; Thampi, S.M. A location-aware physical unclonable function and Chebyshev map-based mutual authentication mechanism for internet of surveillance drones. Concurr. Comput. Pract. Exp. 2023, 35, e7564. [Google Scholar] [CrossRef]
- Nair, A.S.; Thampi, S.M. PUFloc: PUF and location based hierarchical mutual authentication protocol for surveillance drone networks. In Proceedings of the Inernational Conference on Ubiquitous Security, Guangzhou, China, 28–31 December 2021; pp. 66–89. [Google Scholar]
- Sindiramutty, S.R.; Jhanjhi, N.Z.; Tan, C.E.; Yun, K.J.; Manchuri, A.R.; Ashraf, H.; Murugesan, R.K.; Tee, W.J.; Hussain, M. Data security and privacy concerns in drone operations. In Cybersecurity Issues and Challenges in the Drone Industry; IGI Global Scientific Publishing: Hershey, PA, USA, 2024; pp. 236–290. [Google Scholar]
- Jones, T. International Commercial Drone Regulation and Drone Delivery Services; Technical Report; RAND: Santa Monica, CA, USA, 2017. [Google Scholar]
- Stöcker, C.; Bennett, R.; Nex, F.; Gerke, M.; Zevenbergen, J. Review of the current state of UAV regulations. Remote Sens. 2017, 9, 459. [Google Scholar]
- International Civil Aviation Organization. Unmanned Aircraft Systems (UAS): Report on the Global Regulatory & Standards Situation—2022; Technical Report; International Civil Aviation Organization: Montreal, QC, Canada, 2022. [Google Scholar]
- Sipos, A. ICAO Standards and Recommended Practices (SARPs). In International Aviation Law: Regulations in Three Dimensions; Springer: Berlin/Heidelberg, Germany, 2024; pp. 203–231. [Google Scholar]
- Janke, C.; de Haag, M.U. Implementation of European drone regulations-status quo and assessment. J. Intell. Robot. Syst. 2022, 106, 33. [Google Scholar] [CrossRef]
- Rauhala, A.; Tuomela, A.; Leviäkangas, P. An overview of unmanned aircraft systems (UAS) governance and regulatory frameworks in the European Union (EU). In Unmanned Aerial Systems in Agriculture; Academic Press: Cambridge, MA, USA, 2023; pp. 269–285. [Google Scholar]
- Olumba, E.E. The necropolitics of drone bases and use in the African context. Crit. Stud. Terror. 2025, 18, 139–161. [Google Scholar] [CrossRef]
- Watney, M. Ethical and Legal Aspects Pertaining to law Enforcement use of Drones. In Proceedings of the International Conference on Cyber Warfare and Security, Albany, NY, USA, 17–18 March 2022; Volume 17, pp. 358–365. [Google Scholar]
- AL-Dosari, K.; Hunaiti, Z.; Balachandran, W. Systematic review on civilian drones in safety and security applications. Drones 2023, 7, 210. [Google Scholar] [CrossRef]
- Bassi, E. European drones regulation: Today’s legal challenges. In Proceedings of the 2019 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 11–14 June 2019; pp. 443–450. [Google Scholar]
- van der Sluijs, J.; Saiet, E.; Bakelaar, C.N.; Wentworth, A.; Fraser, R.H.; Kokelj, S.V. Beyond visual-line-of-sight (BVLOS) drone operations for environmental and infrastructure monitoring: A case study in northwestern Canada. Drone Syst. Appl. 2023, 11, 1–15. [Google Scholar] [CrossRef]
- Phadke, A.; Medrano, F.A. Towards resilient UAV swarms—A breakdown of resiliency requirements in UAV swarms. Drones 2022, 6, 340. [Google Scholar] [CrossRef]
- Ariante, G.; Del Core, G. Unmanned aircraft systems (UASs): Current state, emerging technologies, and future trends. Drones 2025, 9, 59. [Google Scholar] [CrossRef]
- Kucharczyk, M.; Hugenholtz, C.H. Remote sensing of natural hazard-related disasters with small drones: Global trends, biases, and research opportunities. Remote Sens. Environ. 2021, 264, 112577. [Google Scholar] [CrossRef]
- Pu, C.; Wall, A.; Choo, K.K.R.; Ahmed, I.; Lim, S. A lightweight and privacy-preserving mutual authentication and key agreement protocol for Internet of Drones environment. IEEE Internet Things J. 2022, 9, 9918–9933. [Google Scholar] [CrossRef]
Ref. | Approach | Solutions | Limitations | Performance |
---|---|---|---|---|
[34] | Sparse autoencoder + micro-Doppler | 5G-based auth in urban setting | Needs LoS & training; costly | 99% precision |
[33] | Esalsa encryption for military ops | High error sensitivity results | Not integrated; pre-set params | 1.0 ms cipher time |
[124] | ECC in WSN with UAV sinks | Mutual auth & key agreement | Informal security analysis | Low energy & bandwidth use |
[80] | Proxy signature delegation | Post-disaster mesh auth | Unclear threats & timing | Reduced auth time |
[122] | RFID + PUF for military auth | Resists MITM & eavesdropping | High exec time | 14.58 ms (server), 1.48 ms (UAV) |
[35] | ID & aggregate signature (CDHP) | Fast & secure framework | Informal task synergy eval | Enc/Dec: 194/167 ms; Key: 40/35 ms |
[123] | PUF-based inter-drone auth | Lightweight & attack-resilient | Single CRP; SRAM variation | 340 s auth time |
[22] | ID-based auth in HetNets | Confidential & trusted network | Energy use not addressed | Robust & secure |
[87] | Grouped auth for new drones | Scalable drone classification | Threshold limits apply | 1.2 ms auth; 10 ms data share |
[24] | Blockchain for edge IoD | Lightweight & secure ops | Simulated; delay with scale | Low cost & overhead |
[125] | Bio-inspired leader election | Efficient cluster formation | No freq/security analysis | Effective multi-drone comms |
[138] | LTE-based control system | Real-time GPS & data link | Limited aerial coverage | 20 dBm signal; 94 ms latency |
[126] | HECC signcryption with ROM | Low cost & privacy-preserving | Threat robustness unclear | 3.36 comp cost; 1184-bit comm |
[134] | FL-based swarm offloading | Real-time field detection | No collision coordination | 0.26–0.28 ms latency; 92–98% fairness |
[32] | RF + ML for swarm detection | Unsupervised drone ID | External data; unclear countermeasures | 95% accuracy (AWGN) |
[27] | Mutual auth between fog and edge drones | Key revocation post-mission | Fog drone is single point of failure | 14–20× faster than PKI; may degrade with scale |
[36] | Lightweight drone-to-drone comm | Trust-based secure messaging | sLTME lacks encryption; trust mgmt complexity | Low overhead; robust but vulnerable to advanced attacks |
Drone Attacks | Tools/Mechanisms | Impact | Security Requirements | Attack Surfaces |
---|---|---|---|---|
Traffic Analysis and Network Stalking | SNMP, Packet sniffer, NetFlow | Privacy | Anti-spyware and packet filters | Z2 |
Interception | Drone Monitoring Equipment, Acoustic Sensors | Privacy | Encryption technique | Z1, Z2, Z3, Z4 |
Data Capturing and Forensics | Using serial connection, ExtractDJI, Datcon, Prodiscover Basic | Privacy | Encryption technique | Z1, Z2, Z3, Z4 |
Location Tracing | Drone Monitoring Equipment, Acoustic Sensors, Radar | Integrity | Utilize counter-drone techniques | Z1, Z2 |
Data/Information Leakage | Substitution and alteration, Modification, Duplication | Integrity | Secure channel switching and encrypted data | Z1, Z2, Z3, Z4, Z5 |
ACL Modifications | Dronesploit, hacking tools | Integrity | Validate user-controllable input | Z1 |
Man-In-Middle Attacks | WiFi attack, Remote-AT-Commands, WiFi Pineapple Nano, Raspberry Pi 3, Maldrone, SkyJack | Integrity | Trusted CA-signed public key, encrypted link, mutual authentication, secure key exchange | Z2, Z3 |
Message Forgery | Dronesploit Remote-AT-Commands | Integrity | Secure channel switching and encrypted data | Z1, Z5 |
Identity Spoofing and Key Exploitations | Side-channel attacks, weak configuration, vulnerability exploitations | Confidentiality | Robust protocols with strong authentication | Z1, Z2, Z3, Z4, Z5 |
Unauthorized Access Controls | Drone Monitoring Equipment, Dronesploit, hacking tools, WiFi attack | Confidentiality | Strong passwords | Z1, Z2, Z3, Z4, Z5 |
Replay Attacks | Protocol manipulation | Confidentiality | Robust protocols, strong authentication, fresh message requests | Z2 |
Incident/Source | Description | Attack Mode | Reference |
---|---|---|---|
Naval Swarm Overflights (2019) | Coordinated drones circled U.S. naval ships. | Unauthorized presence | [175] |
Sofia, Bulgaria (2025) | Air traffic was halted due to an unauthorized drone, leading to delays and an emergency declaration | Disruption | [176] |
Langley & UK Airbase Swarm (2023) | Multi-drone incursion into military airspace with unknown controllers | Coordinated swarm intrusion | [175] |
Nashville Substation Plot (2024) | Man arrested for planning drone attack with C-4 explosives on power infrastructure | Weaponized payload threat | [177] |
Pinyon Plain Uranium Mine (2025) | Drone crashed into safety wires, disrupting operations and leading to arrest | Industrial disruption | [178] |
Refs. | Primitive | Summary | Key Metrics |
---|---|---|---|
[51,167,185,189] | PUFs | Microscopic manufacturing variations, key-less device identities at very low cost. Environmental drift and modeling attacks limit reliability. Underpin IoT authentication and secure boot. | Entropy: 0.89–0.98; BER: 5–15%; Modeling Resistance: Medium |
[19,53,54] | TRNGs | High-entropy randomness for cryptographic protocols. Require post-processing, sensitive to environmental conditions. Underpin TLS/SSL session-key negotiation. | Entropy: ≈1.0; NIST SP800-22: Pass; Throughput: 10–100 Mbps |
[190,191,192] | Logic Locking & Obfuscation | Protects IP from reverse engineering and overproduction. Area/power overhead, vulnerable to SAT- and side-channel attacks. | Area: 5–15%; Power: 8–12%; SAT Attack: >106 s |
[193,194,195,196,197] | Tamper-Resistant Hardware | Detect/respond to physical attacks to safeguard assets. Expensive, high-assurance systems. Smartcards, HSMs use conductive meshes. | FIPS 140-3 Level 3–4; Cost: High |
[189,198,199] | Emerging Primitives | Novel entropy sources at ultra-low power. Integration challenges, limited standardization. Target next-gen IoT security. | Power: <10 W; Entropy: 0.95; Standardization: Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, S.M.; Samie, M.; Honarvar Shakibaei Asli, B. Building Trust in Autonomous Aerial Systems: A Review of Hardware-Rooted Trust Mechanisms. Future Internet 2025, 17, 466. https://doi.org/10.3390/fi17100466
Ahmad SM, Samie M, Honarvar Shakibaei Asli B. Building Trust in Autonomous Aerial Systems: A Review of Hardware-Rooted Trust Mechanisms. Future Internet. 2025; 17(10):466. https://doi.org/10.3390/fi17100466
Chicago/Turabian StyleAhmad, Sagir Muhammad, Mohammad Samie, and Barmak Honarvar Shakibaei Asli. 2025. "Building Trust in Autonomous Aerial Systems: A Review of Hardware-Rooted Trust Mechanisms" Future Internet 17, no. 10: 466. https://doi.org/10.3390/fi17100466
APA StyleAhmad, S. M., Samie, M., & Honarvar Shakibaei Asli, B. (2025). Building Trust in Autonomous Aerial Systems: A Review of Hardware-Rooted Trust Mechanisms. Future Internet, 17(10), 466. https://doi.org/10.3390/fi17100466