Development of Liposomal Formulations for 1,4-bis-L/L Methionine-Conjugated Mitoxantrone–Amino Acid Conjugates to Improve Pharmacokinetics and Therapeutic Efficacy
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Different Types of PEGylated Liposomes Encapsulated with L/LMet-MAC
2.3. Characterization of PEGylated Liposomal L/LMet-MAC
2.4. Stability Assay of PEGylated Liposomal L/LMet-MAC
2.5. Analysis of Cell Viability with MTT Assay
2.6. Animal Experiments in Mice
2.6.1. Pharmacokinetic Studies in Healthy Female BALB/c Mice
2.6.2. In Vivo Therapeutic Effect in C26 Bearing Mice
3. Results and Discussion
3.1. Development and Charcteristerization of Different Types of PEGylated Liposome-Encapsulated L/LMet-MAC
3.2. Storage Stability Test of DSPC/EPG Liposome and Gradient DSPC Liposome with 1.0 mg/mL L/LMet-MAC Loading Dose
3.2.1. Long-Term Storage Stability at Different Temperatures
3.2.2. Liposome Stability in Serum
3.3. In Vitro Cell Viability Assessed Using MTT Assay
3.4. Animal Studies of DSPC/EPG Liposomes and Gradient DSPC Liposome-Encapsulated L/LMet-MAC
3.4.1. Pharmacokinetic Properties in BALB/c Mice
3.4.2. Therapeutic Efficacy in C26 Tumor-Bearing Mice
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pendleton, M.; Lindsey, R.H., Jr.; Felix, C.A.; Grimwade, D.; Osheroff, N. Topoisomerase II and leukemia. Ann. N. Y. Acad. Sci. 2014, 1310, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.C. Cellular roles of DNA topoisomerases: A molecular perspective. Nat. Rev. Mol. Cell Biol. 2002, 3, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Nitiss, J.L. DNA topoisomerase II and its growing repertoire of biological functions. Nat. Rev. Cancer 2009, 9, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Li, T.K.; Chen, A.Y.; Yu, C.; Mao, Y.; Wang, H.; Liu, L.F. Activation of topoisomerase II-mediated excision of chromosomal DNA loops during oxidative stress. Genes Dev. 1999, 13, 1553–1560. [Google Scholar] [CrossRef]
- Li, T.K.; Liu, L.F. Tumor cell death induced by topoisomerase-targeting drugs. Annu. Rev. Pharmacol. Toxicol. 2001, 41, 53–77. [Google Scholar] [CrossRef]
- Vann, K.R.; Oviatt, A.A.; Osheroff, N. Topoisomerase II Poisons: Converting Essential Enzymes into Molecular Scissors. Biochemistry 2021, 60, 1630–1641. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, X.; Bawa-Khalfe, T.; Lu, L.S.; Lyu, Y.L.; Liu, L.F.; Yeh, E.T. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat. Med. 2012, 18, 1639–1642. [Google Scholar] [CrossRef]
- Agudelo, D.; Bourassa, P.; Berube, G.; Tajmir-Riahi, H.A. Review on the binding of anticancer drug doxorubicin with DNA and tRNA: Structural models and antitumor activity. J. Photochem. Photobiol. B 2016, 158, 274–279. [Google Scholar] [CrossRef]
- Chatterjee, K.; Zhang, J.; Honbo, N.; Karliner, J.S. Doxorubicin cardiomyopathy. Cardiology 2010, 115, 155–162. [Google Scholar] [CrossRef]
- Feofanov, A.; Sharonov, S.; Kudelina, I.; Fleury, F.; Nabiev, I. Localization and molecular interactions of mitoxantrone within living K562 cells as probed by confocal spectral imaging analysis. Biophys. J. 1997, 73, 3317–3327. [Google Scholar] [CrossRef] [PubMed]
- Reis-Mendes, A.; Dores-Sousa, J.L.; Padrao, A.I.; Duarte-Araujo, M.; Duarte, J.A.; Seabra, V.; Goncalves-Monteiro, S.; Remiao, F.; Carvalho, F.; Sousa, E.; et al. Inflammation as a Possible Trigger for Mitoxantrone-Induced Cardiotoxicity: An In Vivo Study in Adult and Infant Mice. Pharmaceuticals 2021, 14, 510. [Google Scholar] [CrossRef]
- Lee, C.H.; Hsieh, M.Y.; Hsin, L.W.; Chen, H.C.; Lo, S.C.; Fan, J.R.; Chen, W.R.; Chen, H.W.; Chan, N.L.; Li, T.K. Anthracenedione-methionine conjugates are novel topoisomerase II-targeting anticancer agents with favorable drug resistance profiles. Biochem. Pharmacol. 2012, 83, 1208–1216. [Google Scholar] [CrossRef]
- Liu, P.; Chen, G.; Zhang, J. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules 2022, 27, 1372. [Google Scholar] [CrossRef] [PubMed]
- Venditto, V.J.; Szoka, F.C., Jr. Cancer nanomedicines: So many papers and so few drugs! Adv. Drug Deliv. Rev. 2013, 65, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Krishna, R.; Webb, M.S.; St Onge, G.; Mayer, L.D. Liposomal and nonliposomal drug pharmacokinetics after administration of liposome-encapsulated vincristine and their contribution to drug tissue distribution properties. J. Pharmacol. Exp. Ther. 2001, 298, 1206–1212. [Google Scholar] [CrossRef]
- Lee, H.; Larson, R.G. Adsorption of Plasma Proteins onto PEGylated Lipid Bilayers: The Effect of PEG Size and Grafting Density. Biomacromolecules 2016, 17, 1757–1765. [Google Scholar] [CrossRef] [PubMed]
- Mross, K.; Niemann, B.; Massing, U.; Drevs, J.; Unger, C.; Bhamra, R.; Swenson, C.E. Pharmacokinetics of liposomal doxorubicin (TLC-D99; Myocet) in patients with solid tumors: An open-label, single-dose study. Cancer Chemother. Pharmacol. 2004, 54, 514–524. [Google Scholar] [CrossRef]
- Bartlett, G.R. Phosphorus assay in column chromatography. J. Biol. Chem. 1959, 234, 466–468. [Google Scholar] [CrossRef]
- Soundararajan, A.; Bao, A.; Phillips, W.T.; Perez, R., 3rd; Goins, B.A. [186Re]Liposomal doxorubicin (Doxil): In vitro stability, pharmacokinetics, imaging and biodistribution in a head and neck squamous cell carcinoma xenograft model. Nucl. Med. Biol. 2009, 36, 515–524. [Google Scholar] [CrossRef]
- Angius, F.; Floris, A. Liposomes and MTT cell viability assay: An incompatible affair. Toxicol Vitr. 2015, 29, 314–319. [Google Scholar] [CrossRef]
- Zhang, Y.; Huo, M.; Zhou, J.; Xie, S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Methods Programs Biomed. 2010, 99, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.J.; Masin, D.; Madden, T.D.; Bally, M.B. Influence of drug release characteristics on the therapeutic activity of liposomal mitoxantrone. J. Pharmacol. Exp. Ther. 1997, 281, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Hong, R.L.; Tseng, Y.L. Phase I and pharmacokinetic study of a stable, polyethylene-glycolated liposomal doxorubicin in patients with solid tumors: The relation between pharmacokinetic property and toxicity. Cancer 2001, 91, 1826–1833. [Google Scholar] [CrossRef]
- Haran, G.; Cohen, R.; Bar, L.K.; Barenholz, Y. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim. Biophys. Acta 1993, 1151, 201–215. [Google Scholar] [CrossRef] [PubMed]
- Shibata, H.; Saito, H.; Yomota, C.; Kawanishi, T. Ammonium ion level in serum affects doxorubicin release from liposomes. Pharmazie 2010, 65, 251–253. [Google Scholar]
- Chountoulesi, M.; Naziris, N.; Pippa, N.; Demetzos, C. The significance of drug-to-lipid ratio to the development of optimized liposomal formulation. J. Liposome Res. 2018, 28, 249–258. [Google Scholar] [CrossRef]
- Johnston, M.J.; Edwards, K.; Karlsson, G.; Cullis, P.R. Influence of drug-to-lipid ratio on drug release properties and liposome integrity in liposomal doxorubicin formulations. J. Liposome Res. 2008, 18, 145–157. [Google Scholar] [CrossRef]
- Johnston, M.J.; Semple, S.C.; Klimuk, S.K.; Edwards, K.; Eisenhardt, M.L.; Leng, E.C.; Karlsson, G.; Yanko, D.; Cullis, P.R. Therapeutically optimized rates of drug release can be achieved by varying the drug-to-lipid ratio in liposomal vincristine formulations. Biochim. Biophys. Acta 2006, 1758, 55–64. [Google Scholar] [CrossRef]
- Volinsky, R.; Cwiklik, L.; Jurkiewicz, P.; Hof, M.; Jungwirth, P.; Kinnunen, P.K. Oxidized phosphatidylcholines facilitate phospholipid flip-flop in liposomes. Biophys. J. 2011, 101, 1376–1384. [Google Scholar] [CrossRef]
- Branzoi, I.V.; Iordoc, M.; Branzoi, F.; Vasilescu-Mirea, R.; Sbarcea, G. Influence of diamond-like carbon coating on the corrosion resistance of the NITINOL shape memory alloy. Surf. Interface Anal. 2010, 42, 502–509. [Google Scholar] [CrossRef]
- Hincha, D.K. Effects of calcium-induced aggregation on the physical stability of liposomes containing plant glycolipids. Biochim. Biophys. Acta 2003, 1611, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Hirano, A.; Yoshikawa, H.; Matsushita, S.; Yamada, Y.; Shiraki, K. Adsorption and disruption of lipid bilayers by nanoscale protein aggregates. Langmuir 2012, 28, 3887–3895. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, E.; Benet, L.Z. General treatment of mean residence time, clearance, and volume parameters in linear mammillary models with elimination from any compartment. J. Pharmacokinet. Biopharm. 1988, 16, 475–492. [Google Scholar] [CrossRef] [PubMed]
- Gabizon, A.; Papahadjopoulos, D. The role of surface charge and hydrophilic groups on liposome clearance in vivo. Biochim. Biophys. Acta 1992, 1103, 94–100. [Google Scholar] [CrossRef]
- Smith, D.A.; Beaumont, K.; Maurer, T.S.; Di, L. Volume of Distribution in Drug Design. J. Med. Chem. 2015, 58, 5691–5698. [Google Scholar] [CrossRef]
- Pijl, H.; Meinders, A.E. Bodyweight change as an adverse effect of drug treatment. Mechanisms and management. Drug Saf. 1996, 14, 329–342. [Google Scholar] [CrossRef]
- Onzi, G.; Guterres, S.S.; Pohlmann, A.R.; Frank, L.A. Passive targeting and the enhanced permeability and retention (EPR) effect. In The ADME Encyclopedia: A Comprehensive Guide on Biopharmacy and Pharmacokinetics; Springer: Berlin/Heidelberg, Germany, 2022; pp. 753–766. [Google Scholar]
Types | Molar Ratio of Lipid Composition (DSPC/EPG/Chol/DSPE-PEG 2000) | Loading Dose (mg/mL) | Encapsulation Efficiency (%) | Particle Size (nm) | PDI | Lipid Recovery (%) | Drug-to-Lipid Ratio (w/w) |
---|---|---|---|---|---|---|---|
Conventional DSPC liposome | 10:0:5:0.2 | 0.5 | 20.28 ± 0.17 | 104.0 ± 3.7 | 0.090 ± 0.034 | 94.88 ± 3.46 | 0.013 ± 0.001 |
DSPC/EPG liposome | 9:1:5:0.2 | 0.5 | 25.39 ± 0.68 | 115.0 ± 2.3 | 0.090 ± 0.053 | 94.55 ± 1.64 | 0.016 ± 0.001 |
5:5:5:0.2 | 0.5 | 77.37 ± 1.46 | 115.4 ± 1.2 | 0.063 ± 0.021 | 87.16 ± 2.94 | 0.056 ± 0.001 | |
5:5:5:0.2 * | 1.0 | 68.31 ± 5.68 | 132.1 ± 3.0 | 0.072 ± 0.022 | 79.25 ± 4.26 | 0.109 ± 0.004 | |
Gradient DSPC liposome | 10:0:5:0.2 | 0.5 | 98.70 ± 0.65 | 111.4 ± 1.5 | 0.071 ± 0.043 | 84.45 ± 3.18 | 0.074 ± 0.001 |
10:0:5:0.2 * | 1.0 | 89.89 ± 2.25 | 115.6 ± 2.4 | 0.077 ± 0.040 | 73.45 ± 1.94 | 0.155 ± 0.002 |
Free-Form L/LMet MAC | DSPC/EPG Liposome | Gradient DSPC Liposome | |
---|---|---|---|
t1/2 | 23.89 min | 1.32 h | 17.30 h |
AUC 0-inf | 2.05 μg·min/mL | 0.40 μg·h/mL | 43.91 μg·h/mL |
AUMC 0-inf | 66.97 μg·min2/mL | 0.50 μg·h2/mL | 926.79 μg·h2/mL |
MRT 0-inf | 32.74 min | 1.24 h | 21.10 h |
Cl | 2.44 L/kg/min | 12.42 L/kg/h | 0.11 L/kg/h |
Vdss | 80.04 L/kg | 15.36 L/kg | 2.40 L/kg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.-L.; Li, T.-K.; Chen, C.-T. Development of Liposomal Formulations for 1,4-bis-L/L Methionine-Conjugated Mitoxantrone–Amino Acid Conjugates to Improve Pharmacokinetics and Therapeutic Efficacy. Pharmaceutics 2025, 17, 1226. https://doi.org/10.3390/pharmaceutics17091226
Yang T-L, Li T-K, Chen C-T. Development of Liposomal Formulations for 1,4-bis-L/L Methionine-Conjugated Mitoxantrone–Amino Acid Conjugates to Improve Pharmacokinetics and Therapeutic Efficacy. Pharmaceutics. 2025; 17(9):1226. https://doi.org/10.3390/pharmaceutics17091226
Chicago/Turabian StyleYang, Ting-Lun, Tsai-Kun Li, and Chin-Tin Chen. 2025. "Development of Liposomal Formulations for 1,4-bis-L/L Methionine-Conjugated Mitoxantrone–Amino Acid Conjugates to Improve Pharmacokinetics and Therapeutic Efficacy" Pharmaceutics 17, no. 9: 1226. https://doi.org/10.3390/pharmaceutics17091226
APA StyleYang, T.-L., Li, T.-K., & Chen, C.-T. (2025). Development of Liposomal Formulations for 1,4-bis-L/L Methionine-Conjugated Mitoxantrone–Amino Acid Conjugates to Improve Pharmacokinetics and Therapeutic Efficacy. Pharmaceutics, 17(9), 1226. https://doi.org/10.3390/pharmaceutics17091226