In Vitro Antifungal Activity of Amphotericin B-Encapsulated Silk Fibroin-Chitosan Nanoparticles Against Fusarium solani Isolates from Keratitis Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Silk Fibroin Extraction
2.3. Preparation of AmB-Loaded Fibroin Nanoparticles Coated with Chitosan
2.4. Physicochemical Characterization of AmB-SFNs
2.4.1. Morphology
2.4.2. Particle Size and Surface Charge
2.4.3. Drug Entrapment Efficiency
2.5. Clinical Isolates
2.6. Fungal Morphology
2.7. Molecular Characterization
2.8. Antifungal Susceptibility
2.9. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties
3.2. Entrapment Efficacy and Dissolution Profile of Amphotericin B
3.3. Morphological Identification of Fungal Isolates
3.4. Molecular Characterization and Phylogenetic Analysis
3.5. Antifungal Efficacy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PEG400 | Polyethylene glycol 400 |
SF | Silk fibroin |
CS | Chitosan |
DI | Deionized water |
AmB | amphotericin-B |
AmB-SFNs | AmB-loaded fibroin nanoparticles coated with chitosan |
SEM | Scanning electron microscopy |
DLS | Dynamic light scattering |
EE | Entrapment efficiency |
SDA | Sabouraud dextrose agar |
NCBI | National Center for Biotechnology Institute |
CLSI | Clinical and Laboratory Standards Institute |
MS | Mean size |
PI | Polydispersity index |
ZP | Zeta potential |
SD | Standard deviation |
References
- Brown, L.; Leck, A.K.; Gichangi, M.; Burton, M.J.; Denning, D.W. The global incidence and diagnosis of fungal keratitis. Lancet Infect. Dis. 2021, 21, e49–e57. [Google Scholar] [CrossRef]
- Thomas, P.A. Fungal infections of the cornea. Eye 2003, 17, 852–862. [Google Scholar] [CrossRef]
- Kailasam, V.; Sai Veda Koduganti, S.; Dasgupta, O.; Garg, P.; Nirmal, J. Ocular delivery of Amphotericin B: Current challenges and future perspectives. Expert Opin. Drug Deliv. 2024, 21, 1793–1805. [Google Scholar] [CrossRef]
- Srikajorn, C.; Tiyaboonchai, W.; Srinivas, S.P.; Thongsuk, W. Mucoadhesive Silk Fibroin Nanoparticles for Drug Delivery to the Ocular Surface. J. Ocul. Pharmacol. Ther. 2025. [Google Scholar] [CrossRef]
- Chaiyasan, W.; Srinivas, S.P.; Tiyaboonchai, W. Development and Characterization Of Topical Ophthalmic Formulations Containing Lutein-Loaded Mucoadhesive Nanoparticles. Int. J. Pharm. Pharm. Sci. 2016, 8, 261–266. [Google Scholar]
- Chaiyasan, W.; Srinivas, S.P.; Tiyaboonchai, W. Mucoadhesive chitosan-dextran sulfate nanoparticles for sustained drug delivery to the ocular surface. J. Ocul. Pharmacol. Ther. 2013, 29, 200–207. [Google Scholar] [CrossRef]
- Reginatto, P.; Agostinetto, G.J.; Fuentefria, R.D.N.; Marinho, D.R.; Pizzol, M.D.; Fuentefria, A.M. Eye fungal infections: A mini review. Arch. Microbiol. 2023, 205, 236. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Chen, N.; Dong, X.G.; Yuan, G.Q.; Yu, B.; Xie, L.X. Surgical management of fungal endophthalmitis resulting from fungal keratitis. Int. J. Ophthalmol. 2016, 9, 848–853. [Google Scholar] [CrossRef] [PubMed]
- Chomchalao, P.; Nimtrakul, P.; Pham, D.T.; Tiyaboonchai, W. Development of amphotericin B-loaded fibroin nanoparticles: A novel approach for topical ocular application. J. Mater. Sci. 2020, 55, 5268–5279. [Google Scholar] [CrossRef]
- Pham, D.T.; Tiyaboonchai, W. Fibroin nanoparticles: A promising drug delivery system. Drug Deliv. 2020, 27, 431–448. [Google Scholar] [CrossRef] [PubMed]
- Chomchalao, P.; Saelim, N.; Lamlertthon, S.; Sisopa, P.; Tiyaboonchai, W. Mucoadhesive Hybrid System of Silk Fibroin Nanoparticles and Thermosensitive In Situ Hydrogel for Amphotericin B Delivery: A Potential Option for Fungal Keratitis Treatment. Polymers 2024, 16, 148. [Google Scholar] [CrossRef]
- Mottaghitalab, F.; Farokhi, M.; Shokrgozar, M.A.; Atyabi, F.; Hosseinkhani, H. Silk fibroin nanoparticle as a novel drug delivery system. J. Control. Release 2015, 206, 161–176. [Google Scholar] [CrossRef]
- Espinel-Ingroff, A.; Canton, E.; Fothergill, A.; Ghannoum, M.; Johnson, E.; Jones, R.N.; Ostrosky-Zeichner, L.; Schell, W.; Gibbs, D.L.; Wang, A.; et al. Quality control guidelines for amphotericin B, Itraconazole, posaconazole, and voriconazole disk diffusion susceptibility tests with nonsupplemented Mueller-Hinton Agar (CLSI M51-A document) for nondermatophyte Filamentous Fungi. J. Clin. Microbiol. 2011, 49, 2568–2571. [Google Scholar] [CrossRef]
- Ayala, V.; Herrera, A.P.; Latorre-Esteves, M.; Torres-Lugo, M.; Rinaldi, C. Effect of surface charge on the colloidal stability and in vitro uptake of carboxymethyl dextran-coated iron oxide nanoparticles. J. Nanopart. Res. 2013, 15, 1874. [Google Scholar] [CrossRef]
- Jung, S.H.; Lim, D.H.; Jung, S.H.; Lee, J.E.; Jeong, K.-S.; Seong, H.; Shin, B.C. Amphotericin B-entrapping lipid nanoparticles and their in vitro and in vivo characteristics. Eur. J. Pharm. Sci. 2009, 37, 313–320. [Google Scholar] [CrossRef]
- Li, S.; Chen, L.; Fu, Y. Nanotechnology-based ocular drug delivery systems: Recent advances and future prospects. J. Nanobiotechnology 2023, 21, 232. [Google Scholar] [CrossRef]
- Peppas, N.A.; Huang, Y. Nanoscale technology of mucoadhesive interactions. Adv. Drug Deliv. Rev. 2004, 56, 1675–1687. [Google Scholar] [CrossRef] [PubMed]
- Gratieri, T.; Gelfuso, G.M.; de Freitas, O.; Rocha, E.M.; Lopez, R.F. Enhancing and sustaining the topical ocular delivery of fluconazole using chitosan solution and poloxamer/chitosan in situ forming gel. Eur. J. Pharm. Biopharm. 2011, 79, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Gupta, H.; Aqil, M.; Khar, R.K.; Ali, A.; Bhatnagar, A.; Mittal, G. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine 2010, 6, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Morsi, N.; Ghorab, D.; Refai, H.; Teba, H. Ketoroloac tromethamine loaded nanodispersion incorporated into thermosensitive in situ gel for prolonged ocular delivery. Int. J. Pharm. 2016, 506, 57–67. [Google Scholar] [CrossRef]
- Sharaf, M.G.; Cetinel, S.; Heckler, L.; Damji, K.; Unsworth, L.; Montemagno, C. Nanotechnology-Based Approaches for Ophthalmology Applications: Therapeutic and Diagnostic Strategies. Asia Pac. J. Ophthalmol. 2014, 3, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Leslie, J.F.; Summerell, B.A. The Fusarium Laboratory Manual; Blackwell Publishing: Carlton, Australia, 2006; pp. 111–119. [Google Scholar]
- Thomas, P.A.; Kaliamurthy, J. Mycotic keratitis: Epidemiology, diagnosis and management. Clin. Microbiol. Infect. 2013, 19, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Dallé da Rosa, P.; Nunes, A.; Borges, R.; Batista, B.; Meneghello Fuentefria, A.; Goldani, L.Z. In vitro susceptibility and multilocus sequence typing of Fusarium isolates causing keratitis. J. Med. Mycol. 2018, 28, 482–485. [Google Scholar] [CrossRef] [PubMed]
- Vanathi, M.; Naik, R.; Sidhu, N.; Ahmed, N.H.; Gupta, N.; Tandon, R. Evaluation of antifungal susceptibility and clinical characteristics in fungal keratitis in a tertiary care center in North India. Indian J. Ophthalmol. 2022, 70, 4270–4283. [Google Scholar] [CrossRef]
Formulation | Initial AmpB Concentration (mg/mL) | MS ± SD (nm) | PI ± SD | ZP ± SD (mV) | EE ± SD (%) |
---|---|---|---|---|---|
AmB-SFNs-1 | 0.04 | 271.0 ± 13.9 a *** | 0.21 ± 0.02 a ** | 34.35 ± 1.18 a *** | 74.45 ± 1.23 a *** |
AmB-SFNs-2 | 0.08 | 263.2 ± 28.3 a *** | 0.20 ± 0.02 a ** | 39.68 ± 0.75 b *** | 50.00 ± 1.82 b *** |
AmB-SFNs-3 | 0.16 | 283.8 ± 15.5 ab *** | 0.21 ± 0.03 a ** | 41.59 ± 1.04 b *** | 67.24 ± 0.71 c *** |
AmB-SFNs-4 | 0.31 | 333.9 ± 25.6 c *** | 0.26 ± 0.05 b ** | 43.11 ± 1.24 b *** | 60.09 ± 1.15 d *** |
AmB-SFNs-5 | 0.45 | 325.4 ± 12.7 bc *** | 0.25 ± 0.04 b ** | 53.31 ± 0.28 c *** | 53.91 ± 0.51 b *** |
Isolate | Concentration (µg) | AmB Solution (mm) | AmB-SFNs (mm) |
---|---|---|---|
E1 | 50 | 7.0 ± 0.0 | 0.0 ± 0.0 |
100 | 7.5 ± 0.7 | 7.0 ± 0.0 | |
150 | 7.5 ± 0.7 | 7.0 ± 0.0 | |
200 | 12.5 ± 2.1 | 7.0 ± 0.0 | |
E2 | 50 | 7.0 ± 0.0 | 0.0 ± 0.0 |
100 | 7.5 ± 0.7 | 7.0 ± 0.0 | |
150 | 8.5 ± 2.1 | 7.5 ± 0.7 | |
200 | 13.0 ± 1.4 | 8.5 ± 2.1 | |
E3 | 50 | 7.0 ± 0.0 | 0.0 ± 0.0 |
100 | 8.5 ± 0.7 | 7.0 ± 0.0 | |
150 | 12.5 ± 0.7 | 9.0 ± 1.4 | |
200 | 16.0 ± 0.0 | 10.0 ± 1.4 | |
E4 | 50 | 7.0 ± 0.0 | 7.0 ± 0.0 |
100 | 9.0 ± 0.0 | 8.5 ± 2.1 | |
150 | 10.0 ± 0.0 | 8.5 ± 2.1 | |
200 | 10.0 ± 0.0 | 9.5 ± 2.1 | |
E5 | 50 | 8.0 ± 0.0 | 8.0 ± 0.0 |
100 | 10.0 ± 0.0 | 9.0 ± 1.4 | |
150 | 11.5 ± 2.1 | 10.0 ± 0.0 | |
200 | 13.0 ± 4.2 | 10.0 ± 0.0 |
Formulation | Source of Variation | Sum of Squares (SS) | df | F-Value | p-Value |
---|---|---|---|---|---|
AmB Solution | Isolate | 43.04 | 4 | 9.17 | <0.001 |
Concentration | 212.85 | 3 | 60.44 | <0.001 | |
Isolate × Concentration | 71.32 | 12 | 5.06 | <0.001 | |
Residual | 46.95 | 40 | |||
AmB-SFNs | Isolate | 129.15 | 4 | 21.77 | <0.001 |
Concentration | 321.13 | 3 | 72.18 | <0.001 | |
Isolate × Concentration | 134.24 | 12 | 7.54 | <0.001 | |
Residual | 59.32 | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khotcharrat, R.; Srinivas, S.P.; Thongsri, Y.; Thongsuk, W. In Vitro Antifungal Activity of Amphotericin B-Encapsulated Silk Fibroin-Chitosan Nanoparticles Against Fusarium solani Isolates from Keratitis Patients. Pharmaceutics 2025, 17, 1170. https://doi.org/10.3390/pharmaceutics17091170
Khotcharrat R, Srinivas SP, Thongsri Y, Thongsuk W. In Vitro Antifungal Activity of Amphotericin B-Encapsulated Silk Fibroin-Chitosan Nanoparticles Against Fusarium solani Isolates from Keratitis Patients. Pharmaceutics. 2025; 17(9):1170. https://doi.org/10.3390/pharmaceutics17091170
Chicago/Turabian StyleKhotcharrat, Rossukon, Sangly P. Srinivas, Yordhathai Thongsri, and Wanachat Thongsuk. 2025. "In Vitro Antifungal Activity of Amphotericin B-Encapsulated Silk Fibroin-Chitosan Nanoparticles Against Fusarium solani Isolates from Keratitis Patients" Pharmaceutics 17, no. 9: 1170. https://doi.org/10.3390/pharmaceutics17091170
APA StyleKhotcharrat, R., Srinivas, S. P., Thongsri, Y., & Thongsuk, W. (2025). In Vitro Antifungal Activity of Amphotericin B-Encapsulated Silk Fibroin-Chitosan Nanoparticles Against Fusarium solani Isolates from Keratitis Patients. Pharmaceutics, 17(9), 1170. https://doi.org/10.3390/pharmaceutics17091170