Recent Advances in Nanomedicine: Cutting-Edge Research on Nano-PROTAC Delivery Systems for Cancer Therapy
Abstract
1. Introduction
2. PROTAC Delivery Strategies via NanoDDSs
Strategy Type | Key Advantages | Limitations | Suitable Target Types | Representative Examples (Refs Simplified) |
---|---|---|---|---|
Physical encapsulation | Simple process, broad carrier choices; improves solubility and stability; sustained release and passive target | Risk of premature release; limited control over drug localization; relatively lower encapsulation precision | Hydrophobic PROTACs; poorly soluble or unstable PROTACs | PEGylated nanoliposomes encapsulated BRD4 PROTAC [47]; Brain-targeted micelle loaded ARV-825 [48] |
Chemical conjugation | Enables stimulus-responsive and tumor-specific release; improves PK; reduces off-target effects | Requires linker design optimization; possible impact on PROTAC activity if linkage affects binding domains | PROTACs targeting TME (e.g., acidic pH, GSH-rich cytosol) | Polymer PROTAC conjugated by pH/cathepsin B sequential responsive release [49]; high level of GSH activated affibody-PROTAC conjugate [50] |
Carrier-free self-assembly | High drug loading efficiency; avoids carrier-related toxicity; easier scale-up | Structural dependency on PROTAC properties; physical stability varies; limited to hydrophobic PROTACs | Hydrophobic or amphiphilic PROTACs; suitable for combination with photosensitizers or chemotherapeutics | CDK4/6 PROTAC with Ce6 formed nanoparticles via self-assembly [51]; self-assembly of Ce6 and dBET57 [52] |
Split-and-mix | Simplifies synthesis by separating ligands; allows multivalency and spatial control; avoids “hook effect” | Complex system design; requires precise control of assembly in vivo; less established clinically | Protein targets with known E3 and POI ligands that can be independently delivered | Gold nanoparticle-based multi-headed PROTACs (EML4-ALK degraders) [53]; the POI/E3 recruitment modules self-assembled into nanoballs [54] |
2.1. Physical Encapsulation
2.2. Chemical Conjugation
2.3. Carrier-Free Self-Assembly
2.4. “Split-And-Mix” Nano-PROTACs
3. Recent Research Advances in Nano-PROTAC Delivery Systems
3.1. Application of Lipid-Based Nanoparticles in PROTACs Delivery
3.2. Application of Polymeric Nanoparticles in PROTACs Delivery
3.3. Application of Inorganic Nanoparticles in PROTACs Delivery
3.4. Application of Biological Carriers in PROTACs Delivery
3.5. Application of Hybrid Nanoparticles in PROTACs Delivery
4. Clinical Translation Challenges and Prospects for Nano-PROTAC Delivery Systems
5. Summary and Outlook
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PROTACs | Proteolysis-targeting chimeras |
TPD | Targeted protein degradation |
POI | Protein of interest |
NanoDDSs | Nanodrug delivery systems |
TME | Tumor microenvironment |
NPs | Nanoparticles |
LBNPs | Lipid-based nanoparticles |
LNPs | Lipid nanoparticles |
PK | Pharmacokinetics |
MMP-2 | Matrix metalloproteinase-2 |
APCs | Antibody–PROTAC conjugates |
ROS | Reactive oxygen species |
CSC | Cancer stem cell |
PDT | Photodynamic therapy |
ICD | Immunogenic cell death |
HTS | High-throughput screening |
RES | Reticuloendothelial system |
HCC | Hepatocellular carcinoma |
EPR | Enhanced permeability and retention |
CatB | Cathepsin B |
PNPs | Polymeric nanoparticles |
GSH | Glutathione |
INPs | Inorganic nanoparticles |
SDT | Sonodynamic therapy |
MNs | Microneedles |
UPS | Ultra-pH-sensitive |
ALL | Acute lymphoblastic leukemia |
BBB | Blood–brain barrier |
MSNs | Mesoporous silica nanoparticles |
MOFs | Metal–organic frameworks |
CMC | Cell membrane-coated |
TEM | Transmission electron microscopy |
References
- Zhang, C.; Liu, Y.; Li, G.; Yang, Z.; Han, C.; Sun, X.; Sheng, C.; Ding, K.; Rao, Y. Targeting the undruggables-the power of protein degraders. Sci. Bull. 2024, 69, 1776–1797. [Google Scholar] [CrossRef]
- Li, X.; Song, Y. Proteolysis-targeting chimera (PROTAC) for targeted protein degradation and cancer therapy. J. Hematol. Oncol. 2020, 13, 50. [Google Scholar] [CrossRef]
- Gadd, M.S.; Testa, A.; Lucas, X.; Chan, K.H.; Chen, W.; Lamont, D.J.; Zengerle, M.; Ciulli, A. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat. Chem. Biol. 2017, 13, 514–521. [Google Scholar] [CrossRef]
- Schwalm, M.P.; Krämer, A.; Dölle, A.; Weckesser, J.; Yu, X.; Jin, J.; Saxena, K.; Knapp, S. Tracking the PROTAC degradation pathway in living cells highlights the importance of ternary complex measurement for PROTAC optimization. Cell Chem. Bio. 2023, 30, 753–765.e8. [Google Scholar] [CrossRef]
- Neklesa, T.K.; Winkler, J.D.; Crews, C.M. Targeted protein degradation by PROTACs. Pharmacol. Ther. 2017, 174, 138–144. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, Q.; Xu, J.; Tang, L.; Zhang, Y.; Du, F.; Zhao, Y.; Wu, X.; Li, M.; Shen, J.; et al. PROTACs in gastrointestinal cancers. Mol. Ther. Oncol. 2022, 27, 204–223. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.E.; O'Keefe, R.A.; Grandis, J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 2018, 15, 234–248. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Song, J.; Zhou, P.; Zhou, J.; Xie, S. Targeting Undruggable Transcription Factors with PROTACs: Advances and Perspectives. J. Med. Chem. 2022, 65, 10183–10194. [Google Scholar] [CrossRef] [PubMed]
- Bondeson, D.P.; Mares, A.; Smith, I.E.; Ko, E.; Campos, S.; Miah, A.H.; Mulholland, K.E.; Routly, N.; Buckley, D.L.; Gustafson, J.L.; et al. Catalytic In Vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 2015, 11, 611–617. [Google Scholar] [CrossRef]
- Salami, J.; Alabi, S.; Willard, R.R.; Vitale, N.J.; Wang, J.; Dong, H.; Jin, M.; McDonnell, D.P.; Crew, A.P.; Neklesa, T.K.; et al. Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Commun. Biol. 2018, 1, 100. [Google Scholar] [CrossRef]
- Sakamoto, K.M.; Kim, K.B.; Kumagai, A.; Mercurio, F.; Crews, C.M.; Deshaies, R.J. Protacs: Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. USA 2001, 98, 8554–8559. [Google Scholar] [CrossRef]
- Li, K.; Crews, C.M. PROTACs: Past, present and future. Chem. Soc. Rev. 2022, 51, 5214–5236. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, Y.; Zhang, T.; Shi, L.; Geng, Z.; Xing, D. Proteolysis-targeting chimaeras (PROTACs) as pharmacological tools and therapeutic agents: Advances and future challenges. J. Enzyme Inhib. Med. Chem. 2022, 37, 1667–1693. [Google Scholar] [CrossRef]
- Schneekloth, A.R.; Pucheault, M.; Tae, H.S.; Crews, C.M. Targeted intracellular protein degradation induced by a small molecule: En route to chemical proteomics. Bioorg. Med. Chem. Lett. 2008, 18, 5904–5908. [Google Scholar] [CrossRef]
- Li, X.; Pu, W.; Zheng, Q.; Ai, M.; Chen, S.; Peng, Y. Proteolysis-targeting chimeras (PROTACs) in cancer therapy. Mol. Cancer 2022, 21, 99. [Google Scholar] [CrossRef]
- Bekes, M.; Langley, D.R.; Crews, C.M. PROTAC targeted protein degraders: The past is prologue. Nat. Rev. Drug. Discov. 2022, 21, 181–200. [Google Scholar] [CrossRef]
- Srivastava, A.; Pike, A.; Swedrowska, M.; Nash, S.; Grime, K. In Vitro ADME Profiling of PROTACs: Successes, Challenges, and Lessons Learned from Analysis of Clinical PROTACs from a Diverse Physicochemical Space. J. Med. Chem. 2025, 68, 9584–9593. [Google Scholar] [CrossRef] [PubMed]
- Schapira, M.; Calabrese, M.F.; Bullock, A.N.; Crews, C.M. Targeted protein degradation: Expanding the toolbox. Nat. Rev. Drug. Discov. 2019, 18, 949–963. [Google Scholar] [CrossRef]
- Gui, W.; Giardina, S.F.; Balzarini, M.; Barany, F.; Kodadek, T. Reversible Assembly of Proteolysis Targeting Chimeras. ACS Chem. Biol. 2023, 18, 1582–1593. [Google Scholar] [CrossRef] [PubMed]
- Vikal, A.; Maurya, R.; Patel, B.B.; Sharma, R.; Patel, P.; Patil, U.K.; Das Kurmi, B. Protacs in cancer therapy: Mechanisms, design, clinical trials, and future directions. Drug Deliv. Transl. Res. 2024, 15, 1801–1827. [Google Scholar] [CrossRef]
- Monsen, P.J.; Bommi, P.V.; Grigorescu, A.A.; Lauing, K.L.; Mao, Y.; Berardi, P.; Zhai, L.; Ojo, O.; Penco-Campillo, M.; Koch, T.; et al. Rational Design and Optimization of a Potent IDO1 Proteolysis Targeting Chimera (PROTAC). J. Med. Chem. 2025, 68, 4961–4987. [Google Scholar] [CrossRef]
- Jiang, H.; Xiong, H.; Gu, S.-X.; Wang, M. E3 ligase ligand optimization of Clinical PROTACs. Front. Chem. 2023, 11, 1098331. [Google Scholar] [CrossRef]
- Scott, J.S.; Michaelides, I.N.; Schade, M. Property-based optimisation of PROTACs. RSC Med. Chem. 2024, 16, 449–456. [Google Scholar] [CrossRef]
- Guedeney, N.; Cornu, M.; Schwalen, F.; Kieffer, C.; Voisin-Chiret, A.S. PROTAC technology: A new drug design for chemical biology with many challenges in drug discovery. Drug Discov. Today 2023, 28, 103395. [Google Scholar] [CrossRef]
- Wu, M.; Zhao, Y.; Zhang, C.; Pu, K. Advancing Proteolysis Targeting Chimera (PROTAC) Nanotechnology in Protein Homeostasis Reprograming for Disease Treatment. ACS Nano 2024, 18, 28502–28530. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; He, Y.; Lan, J.; Li, Z.; Gu, D.; Nie, W.; Zhang, T.; Ding, Y. Advancements in nano drug delivery system for liver cancer therapy based on mitochondria-targeting. Biomed. Pharmacother. 2024, 180, 117520. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Li, H.; Hu, T.Y. Recent advances in the bench-to-bedside translation of cancer nanomedicines. Acta Pharm. Sin. B 2025, 15, 97–122. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, T.; Jiang, C. Nanodrug delivery systems for ferroptosis-based cancer therapy. J. Control. Release 2022, 344, 289–301. [Google Scholar] [CrossRef]
- Kou, P.; Levy, E.S.; Nguyen, A.D.; Zhang, D.; Chen, S.; Cui, Y.; Zhang, X.; Broccatelli, F.; Pizzano, J.; Cantley, J.; et al. Development of Liposome Systems for Enhancing the PK Properties of Bivalent PROTACs. Pharmaceutics 2023, 15, 2098. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xu, M.; He, S.; Huang, J.; Xu, C.; Pu, K. Checkpoint Nano-PROTACs for Activatable Cancer Photo-Immunotherapy. Adv. Mater. 2023, 35, e2208553. [Google Scholar] [CrossRef]
- Zhang, K.; Ha, Y.; Gan, Y.; Liu, Y.; Liu, J.; Chen, L.; Li, H. Self-assembled dual-targeting nanoplatform for synergistic photodynamic and PROTAC-mediated metabolic starvation in triple-negative breast cancer. Chem. Eng. 2025, 520, 165815. [Google Scholar] [CrossRef]
- Zhang, N.Y.; Hou, D.Y.; Hu, X.J.; Liang, J.X.; Wang, M.D.; Song, Z.Z.; Yi, L.; Wang, Z.J.; An, H.W.; Xu, W.; et al. Nano Proteolysis Targeting Chimeras (PROTACs) with Anti-Hook Effect for Tumor Therapy. Angew. Chem. Int. Ed. Engl. 2023, 62, e202308049. [Google Scholar] [CrossRef]
- He, H.; Li, F.; Tang, R.; Wu, N.; Zhou, Y.; Cao, Y.; Wang, C.; Wan, L.; Zhou, Y.; Zhuang, H.; et al. Ultrasound Controllable Release of Proteolysis Targeting Chimeras for Triple-Negative Breast Cancer Treatment. Biomater. Res. 2024, 28, 0064. [Google Scholar] [CrossRef]
- He, S.; Fang, Y.; Zhu, Y.; Ma, Z.; Dong, G.; Sheng, C. Drugtamer-PROTAC Conjugation Strategy for Targeted PROTAC Delivery and Synergistic Antitumor Therapy. Adv. Sci. 2024, 11, e2401623. [Google Scholar] [CrossRef]
- Li, Z.; Ren, G.; Wang, X.; Li, X.; Ding, L.; Zhu, J.; Zhang, Y.; Zhang, C.; Zou, J.; Chen, X. Tumor microenvironment responsive nano-PROTAC for BRD4 degradation enhanced cancer photo-immunotherapy. Biomaterials 2025, 322, 123387. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Tai, Y.; Deng, C.; Sun, Y.; Chen, H.; Luo, T.; Lin, J.; Chen, W.; Xu, H.; Song, G.; et al. Innovative sarcoma therapy using multifaceted nano-PROTAC-induced EZH2 degradation and immunity enhancement. Biomaterials 2025, 321, 123344. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Lin, L.; Wang, Y.; Jing, J.; Gong, Q.; Luo, K. Nano drug delivery systems for advanced immune checkpoint blockade therapy. Theranostics 2025, 15, 5440–5480. [Google Scholar] [CrossRef]
- Liang, S.; Liu, Y.; Jin, X.; Liu, G.; Wen, J.; Zhang, L.; Li, J.; Yuan, X.; Chen, I.S.Y.; Chen, W.; et al. Phosphorylcholine polymer nanocapsules prolong the circulation time and reduce the immunogenicity of therapeutic proteins. Nano Res. 2016, 9, 1022–1031. [Google Scholar] [CrossRef]
- Guo, Z.; Ye, J.; Cheng, X.; Wang, T.; Zhang, Y.; Yang, K.; Du, S.; Li, P. Nanodrug Delivery Systems in Antitumor Immunotherapy. Biomater. Res. 2024, 28, 0015. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Y.; Yin, X. Advances in tumor immunomodulation based on nanodrug delivery systems. Front. Immunol. 2023, 14, 1297493. [Google Scholar] [CrossRef]
- Gao, S.; Tang, G.; Hua, D.; Xiong, R.; Han, J.; Jiang, S.; Zhang, Q.; Huang, C. Stimuli-responsive bio-based polymeric systems and their applications. J. Mater. Chem. B 2019, 7, 709–729. [Google Scholar] [CrossRef]
- Song, C.; Jiao, Z.; Hou, Z.; Xing, Y.; Sha, X.; Wang, Y.; Chen, J.; Liu, S.; Li, Z.; Yin, F. Versatile Split-and-Mix Liposome PROTAC Platform for Efficient Degradation of Target Protein In Vivo. JACS Au 2024, 4, 2915–2924. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xu, X.; Yan, D.; Ren, C.; Zhang, J.; Gu, M.; Wang, Y.; Wu, P.; Li, Z.; Kong, L.; et al. PROTAC Nanoplatform with Targeted Degradation of NAD(P)H:Quinone Oxidoreductase 1 to Enhance Reactive Oxygen Species-Mediated Apoptosis. ACS Appl. Mater. Interfaces 2023, 15, 8946–8957. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Sui, J.; Chang, J.; Liu, J.; Wang, X.; Wang, H.; Chen, W.; Chen, B.; Wang, Y. Cascade-responsive nano-PROTACs for tumor-specific ALK protein degradation and enhanced cancer therapy. Nano Today 2025, 62, 102693. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, Y.; Chen, K.; Huang, Y.; Liu, Y.; Xu, S.; Wang, W. CDK4/6 nano-PROTAC enhances mitochondria-dependent photodynamic therapy and anti-tumor immunity. Nano Today 2023, 50, 101890. [Google Scholar] [CrossRef]
- Song, C.; Jiao, Z.; Hou, Z.; Wang, R.; Lian, C.; Xing, Y.; Luo, Q.; An, Y.; Yang, F.; Wang, Y.; et al. Selective Protein of Interest Degradation through the Split-and-Mix Liposome Proteolysis Targeting Chimera Approach. J. Am. Chem. Soc. 2023, 145, 21860–21870. [Google Scholar] [CrossRef]
- Fu, Y.; Saraswat, A.; Wei, Z.; Agrawal, M.Y.; Dukhande, V.V.; Reznik, S.E.; Patel, K. Development of Dual ARV-825 and Nintedanib-Loaded PEGylated Nano-Liposomes for Synergistic Efficacy in Vemurafnib-Resistant Melanoma. Pharmaceutics 2021, 13, 1005. [Google Scholar] [CrossRef]
- Yang, T.; Hu, Y.; Miao, J.; Chen, J.; Liu, J.; Cheng, Y.; Gao, X. A BRD4 PROTAC nanodrug for glioma therapy via the intervention of tumor cells proliferation, apoptosis and M2 macrophages polarization. Acta Pharm. Sin. B 2022, 12, 2658–2671. [Google Scholar] [CrossRef]
- Jiang, X.; Lai, Y.; Xia, W.; Yang, W.; Wang, J.; Pan, J.; Zhao, Q.; Zhou, F.; Li, S.; Zhang, S.; et al. Self-Oxygenating PROTAC Microneedle for Spatiotemporally-Confined Protein Degradation and Enhanced Glioblastoma Therapy. Adv. Mater. 2025, 37, e2411869. [Google Scholar] [CrossRef]
- Li, Q.; Yang, X.; Zhao, M.; Xia, X.; Gao, W.; Huang, W.; Xia, X.; Yan, D. A self-assembled affibody-PROTAC conjugate nanomedicine for targeted cancer therapy. Nano Res. 2024, 17, 9954–9964. [Google Scholar] [CrossRef]
- Zhang, S.; Lai, Y.; Pan, J.; Saeed, M.; Li, S.; Zhou, H.; Jiang, X.; Gao, J.; Zhu, Y.; Yu, H.; et al. PROTAC Prodrug-Integrated Nanosensitizer for Potentiating Radiation Therapy of Cancer. Adv. Mater. 2024, 36, e2314132. [Google Scholar] [CrossRef]
- Zhao, L.P.; Rao, X.N.; Zheng, R.R.; Huang, C.Y.; Kong, R.J.; Cheng, H.; Li, B.; Li, S.Y. Carrier-Free Nano-PROTACs to Amplify Photodynamic Therapy Induced DNA Damage through BRD4 Degradation. Nano. Lett. 2023, 23, 6193–6201. [Google Scholar] [CrossRef]
- Wang, Z.; Tan, M.; Su, W.; Huang, W.; Zhang, J.; Jia, F.; Cao, G.; Liu, X.; Song, H.; Ran, H.; et al. Persistent Degradation of HER2 Protein by Hybrid nanoPROTAC for Programmed Cell Death. J. Med. Chem. 2023, 66, 6263–6273. [Google Scholar] [CrossRef]
- Yang, F.; Luo, Q.; Wang, Y.; Liang, H.; Wang, Y.; Hou, Z.; Wan, C.; Wang, Y.; Liu, Z.; Ye, Y.; et al. Targeted Biomolecule Regulation Platform: A Split-and-Mix PROTAC Approach. J. Am. Chem. Soc. 2023, 145, 7879–7887. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yuan, F.; Dong, H.; Zhang, J.; Mao, X.; Liu, Y.; Li, H. PTGES3 proteolysis using the liposomal peptide-PROTAC approach. Biol. Direct. 2024, 19, 144. [Google Scholar] [CrossRef] [PubMed]
- Shan, X.; Gong, X.; Li, J.; Wen, J.; Li, Y.; Zhang, Z. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharm. Sin. B 2022, 12, 3028–3048. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Qu, H.; Li, Y. Stimuli-responsive crosslinked nanomedicine for cancer treatment. Exploration 2022, 2, 20210134. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Cao, W.; Tang, D.; Zhang, H.; Yu, Y.; Ding, J.; Karges, J.; Xiao, H. Nanomedomics. ACS Nano 2024, 18, 10979–11024. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, R.; Dong, J.; Xia, X.; Yang, H.; Wei, S.; Fan, L.; Fang, M.; Zou, Y.; Zheng, M.; et al. Targeted protein degradation via cellular trafficking of nanoparticles. Nat. Nanotechnol. 2024, 20, 296–302. [Google Scholar] [CrossRef]
- Zou, Z.F.; Yang, L.; Nie, H.J.; Gao, J.; Lei, S.M.; Lai, Y.; Zhang, F.; Wagner, E.; Yu, H.J.; Chen, X.H.; et al. Tumor-targeted PROTAC prodrug nanoplatform enables precise protein degradation and combination cancer therapy. Acta Pharmacol. Sin. 2024, 45, 1740–1751. [Google Scholar] [CrossRef]
- Gao, J.; Hou, B.; Zhu, Q.; Yang, L.; Jiang, X.; Zou, Z.; Li, X.; Xu, T.; Zheng, M.; Chen, Y.H.; et al. Engineered bioorthogonal POLY-PROTAC nanoparticles for tumour-specific protein degradation and precise cancer therapy. Nat. Commun. 2022, 13, 4318. [Google Scholar] [CrossRef]
- An, K.; Deng, X.; Chi, H.; Zhang, Y.; Li, Y.; Cheng, M.; Ni, Z.; Yang, Z.; Wang, C.; Chen, J.; et al. Stimuli-Responsive PROTACs for Controlled Protein Degradation. Angew. Chem. Int. Ed. 2023, 62, e202306824. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Li, X.; Xie, Y.; Wang, Y. What influences the activity of Degrader−Antibody conjugates (DACs). Eur. J. Med. Chem. 2024, 268, 116216. [Google Scholar] [CrossRef]
- Zhou, D.; Liu, S.; Hu, Y.; Yang, S.; Zhao, B.; Zheng, K.; Zhang, Y.; He, P.; Mo, G.; Li, Y. Tumor-mediated shape-transformable nanogels with pH/redox/enzymatic-sensitivity for anticancer therapy. J. Mater. Chem. B 2020, 8, 3801–3813. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; He, M.; Wang, L.; He, Y.; Rao, Y. Chemistries of bifunctional PROTAC degraders. Chem. Soc. Rev. 2022, 51, 7066–7114. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, Z.; Ding, H.; Yang, S.; Chen, B.; Zhou, M.; Zhu, Y.; Yang, A.; Yan, X.; Liang, C.; et al. Carrier-free nanoparticles-new strategy of improving druggability of natural products. J. Nanobiotechnol. 2025, 23, 108. [Google Scholar] [CrossRef]
- Zhu, F.; Zhong, J.; Hu, J.; Yang, P.; Zhang, J.; Zhang, M.; Li, Y.; Gu, Z. Carrier-Free Deferoxamine Nanoparticles against Iron Overload in Brain. CCS Chem. 2023, 5, 257–270. [Google Scholar] [CrossRef]
- Liu, L.-H.; Zhang, X.-Z. Carrier-free nanomedicines for cancer treatment. Prog. Mater. Sci. 2022, 125, 100919. [Google Scholar] [CrossRef]
- Chung, J.E.; Tan, S.; Gao, S.J.; Yongvongsoontorn, N.; Kim, S.H.; Lee, J.H.; Choi, H.S.; Yano, H.; Zhuo, L.; Kurisawa, M.; et al. Self-assembled micellar nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy. Nat. Nanotechnol. 2014, 9, 907–912. [Google Scholar] [CrossRef]
- Pei, P.; Sun, C.; Tao, W.; Li, J.; Yang, X.; Wang, J. ROS-sensitive thioketal-linked polyphosphoester-doxorubicin conjugate for precise phototriggered locoregional chemotherapy. Biomaterials 2019, 188, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liu, A.; Liu, S.; Ma, Y.; Zhang, X.; Zhang, M.; Zhao, J.; Sun, S.; Sun, X. Application of molecular dynamics simulation in self-assembled cancer nanomedicine. Biomater. Res. 2023, 27, 39. [Google Scholar] [CrossRef] [PubMed]
- Yamankurt, G.; Berns, E.J.; Xue, A.; Lee, A.; Bagheri, N.; Mrksich, M.; Mirkin, C.A. Exploration of the nanomedicine-design space with high-throughput screening and machine learning. Nat. Biomed. Eng. 2019, 3, 318–327. [Google Scholar] [CrossRef]
- Wang, Y.; Han, L.; Liu, F.; Yang, F.; Jiang, X.; Sun, H.; Feng, F.; Xue, J.; Liu, W. Targeted degradation of anaplastic lymphoma kinase by gold nanoparticle-based multi-headed proteolysis targeting chimeras. Colloids Surf. B Biointerfaces 2020, 188, 110795. [Google Scholar] [CrossRef]
- Xie, S.; Zhu, J.; Peng, Y.; Zhan, F.; Zhan, F.; He, C.; Feng, D.; Xie, J.; Liu, J.; Zhu, H.; et al. In Vivo Self-Assembly of PROTACs by Bioorthogonal Chemistry for Precision Cancer Therapy. Angew. Chem. Int. Ed. Engl. 2024, 64, e202421713. [Google Scholar] [CrossRef]
- Chen, N.; Zhang, Z.; Liu, X.; Wang, H.; Guo, R.C.; Wang, H.; Hu, B.; Shi, Y.; Zhang, P.; Liu, Z.; et al. Sulfatase-Induced In Situ Formulation of Antineoplastic Supra-PROTACs. J. Am. Chem. Soc. 2024, 146, 10753–10766. [Google Scholar] [CrossRef]
- Mamuti, M.; Zheng, R.; An, H.-W.; Wang, H. In Vivo self-assembled nanomedicine. Nano Today 2021, 36, 101036. [Google Scholar] [CrossRef]
- Mendes, B.B.; Conniot, J.; Avital, A.; Yao, D.; Jiang, X.; Zhou, X.; Sharf-Pauker, N.; Xiao, Y.; Adir, O.; Liang, H.; et al. Nanodelivery of nucleic acids. Nat. Rev. Methods. Primers 2022, 2, 24. [Google Scholar] [CrossRef]
- Arojojoye, A.S.; Walker, B.; Dawahare, J.C.; Afrifa, M.A.O.; Parkin, S.; Awuah, S.G. Circumventing Physicochemical Barriers of Cyclometalated Gold(III) Dithiocarbamate Complexes with Protein-Based Nanoparticle Delivery to Enhance Anticancer Activity. ACS Appl. Mater. Interfaces 2023, 15, 43607–43620. [Google Scholar] [CrossRef]
- Huang, J.H.; Huang, C.J.; Yu, L.N.; Guan, X.L.; Liang, S.W.; Li, J.H.; Liang, L.; Wei, M.Y.; Zhang, L.M. Bioinspired PROTAC-induced macrophage fate determination alleviates atherosclerosis. Acta Pharmacol. Sin. 2023, 44, 1962–1976. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Liang, C.; Liu, J.; Huang, Y.; Wang, M.; Wang, L. Reactive Oxygen Species─Responsive Lipid Nanoparticles for Effective RNAi and Corneal Neovascularization Therapy. ACS Appl. Mater. Interfaces 2022, 14, 17022–17031. [Google Scholar] [CrossRef] [PubMed]
- Saraswat, A.; Vemana, H.P.; Dukhande, V.V.; Patel, K. Galactose-decorated liver tumor-specific nanoliposomes incorporating selective BRD4-targeted PROTAC for hepatocellular carcinoma therapy. Heliyon 2022, 8, e08702. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Y.; Li, X.; Zhang, Q.; He, J.; Liu, Y.; Li, M.; Luo, Z. Liposomal STAT3-Degrading PROTAC Prodrugs Promote Anti-Hepatocellular Carcinoma Immunity via Chemically Reprogramming Cancer Stem Cells. Nano Lett. 2024, 24, 4858–4868. [Google Scholar] [CrossRef]
- Huang, D.; Zou, Y.; Huang, H.; Yin, J.; Long, S.; Sun, W.; Du, J.; Fan, J.; Chen, X.; Peng, X. A PROTAC Augmenter for Photo-Driven Pyroptosis in Breast Cancer. Adv. Mater. 2024, 36, e2313460. [Google Scholar] [CrossRef]
- Johnson, K.P.; Brooks, B.R.; Cohen, J.A.; Ford, C.C.; Goldstein, J.; Lisak, R.P.; Myers, L.W.; Panitch, H.S.; Rose, J.W.; Schiffer, R.B.; et al. Extended use of glatiramer acetate (Copaxone) is well tolerated and maintains its clinical effect on multiple sclerosis relapse rate and degree of disability. Copolymer 1 Multiple Sclerosis Study Group. Neurology 1998, 50, 701–708. [Google Scholar] [CrossRef]
- Xu, M.; Yun, Y.; Li, C.; Ruan, Y.; Muraoka, O.; Xie, W.; Sun, X. Radiation responsive PROTAC nanoparticles for tumor-specific proteolysis enhanced radiotherapy. J. Mater. Chem. B 2024, 12, 3240–3248. [Google Scholar] [CrossRef] [PubMed]
- Niu, F.; Yang, R.; Feng, H.; Liu, Y.; Liu, R.; Ma, B. A GPX4 non-enzymatic domain and MDM2 targeting peptide PROTAC for acute lymphoid leukemia therapy through ferroptosis induction. Biochem. Biophys. Res. Commun. 2023, 684, 149125. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jiang, T.; Yuan, X.; Li, B.; Wu, C.; Li, Y.; Huang, Y.; Xie, X.; Pan, W.; Ping, Y. Controlled bioorthogonal activation of Bromodomain-containing protein 4 degrader by co-delivery of PROTAC and Pd-catalyst for tumor-specific therapy. J. Control. Release 2024, 374, 441–453. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Zhou, L.; Yu, D.; Zhu, R.; Chen, Y.; Song, M.; Liu, X.; Liao, Y.; Ding, T.; Fan, W.; et al. Near-Infrared-Activatable PROTAC Nanocages for Controllable Target Protein Degradation and On-Demand Antitumor Therapy. J. Med. Chem. 2023, 66, 10458–10472. [Google Scholar] [CrossRef]
- Cho, H.; Jeon, S.I.; Shim, M.K.; Ahn, C.H.; Kim, K. In Situ albumin-binding and esterase-specifically cleaved BRD4-degrading PROTAC for targeted cancer therapy. Biomaterials 2023, 295, 122038. [Google Scholar] [CrossRef]
- Nathani, A.; Aare, M.; Sun, L.; Bagde, A.; Li, Y.; Rishi, A.; Singh, M. Unlocking the Potential of Camel Milk-Derived Exosomes as Novel Delivery Systems: Enhanced Bioavailability of ARV-825 PROTAC for Cancer Therapy. Pharmaceutics 2024, 16, 1070. [Google Scholar] [CrossRef]
- Yan, S.; Yan, J.; Liu, D.; Li, X.; Kang, Q.; You, W.; Zhang, J.; Wang, L.; Tian, Z.; Lu, W.; et al. A nano-predator of pathological MDMX construct by clearable supramolecular gold(I)-thiol-peptide complexes achieves safe and potent anti-tumor activity. Theranostics 2021, 11, 6833–6846. [Google Scholar] [CrossRef]
- Zhu, H.; Gao, F.; Li, Y.; Jiang, M.; Zhang, Y.; Kan, C.; Han, L.; Xue, S.; Wang, K.; Fan, Q.; et al. MOF-based nanoparticles for tumor-targeted protein degradation and photodynamic therapy induce enhanced anti-tumor immunity. Nano Today 2024, 56, 102308. [Google Scholar] [CrossRef]
- Xu, Q.; Hu, X.; Ullah, I.; Lin, T.; Liu, Y.; Dong, H.; Zong, Q.; Yuan, Y.; Wang, J. Biomimetic Hybrid PROTAC Nanovesicles Block Multiple DNA Repair Pathways to Overcome Temozolomide Resistance Against Orthotopic Glioblastoma. Adv. Mater. 2025, 37, e2504253. [Google Scholar] [CrossRef]
- Waheed, I.; Ali, A.; Tabassum, H.; Khatoon, N.; Lai, W.F.; Zhou, X. Lipid-based nanoparticles as drug delivery carriers for cancer therapy. Front. Oncol. 2024, 14, 1296091. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chen, Y.; Guo, J.; Huang, Q. Liposomes for Tumor Targeted Therapy: A Review. Int. J. Mol. Sci. 2023, 24, 2643. [Google Scholar] [CrossRef]
- Xu, Y.; Fourniols, T.; Labrak, Y.; Préat, V.; Beloqui, A.; des Rieux, A. Surface Modification of Lipid-Based Nanoparticles. ACS Nano 2022, 16, 7168–7196. [Google Scholar] [CrossRef] [PubMed]
- Gyanani, V.; Goswami, R. Key Design Features of Lipid Nanoparticles and Electrostatic Charge-Based Lipid Nanoparticle Targeting. Pharmaceutics 2023, 15, 1184. [Google Scholar] [CrossRef]
- Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics 2017, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Thi, T.T.H.; Suys, E.J.A.; Lee, J.S.; Nguyen, D.H.; Park, K.D.; Truong, N.P. Lipid-Based Nanoparticles in the Clinic and Clinical Trials: From Cancer Nanomedicine to COVID-19 Vaccines. Vaccines 2021, 9, 359. [Google Scholar] [CrossRef]
- Vyas, D.; Patel, M.; Wairkar, S. Strategies for active tumor targeting-an update. Eur. J. Pharmacol. 2022, 915, 174512. [Google Scholar] [CrossRef]
- Fu, Y.; Rathod, D.; Patel, K. Protein kinase C inhibitor anchored BRD4 PROTAC PEGylated nanoliposomes for the treatment of vemurafenib-resistant melanoma. Exp. Cell Res. 2020, 396, 112275. [Google Scholar] [CrossRef]
- Vartak, R.; Saraswat, A.; Yang, Y.; Chen, Z.S.; Patel, K. Susceptibility of Lung Carcinoma Cells to Nanostructured Lipid Carrier of ARV-825, a BRD4 Degrading Proteolysis Targeting Chimera. Pharm. Res. 2022, 39, 2745–2759. [Google Scholar] [CrossRef]
- Chen, X.; Li, F.; Cui, B.; Yan, Q.; Qiu, C.; Zhu, Z.; Wen, L.; Chen, W. Liposomes-mediated enhanced antitumor effect of docetaxel with BRD4-PROTAC as synergist for breast cancer chemotherapy/immunotherapy. Int. J. Pharm. 2025, 668, 124973. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Jin, Y.; Wang, J.; Gu, M.; Wang, Y.; Zhang, X.; Zhang, Y.; Yu, W.; Liu, Y.; Yuan, W.E.; et al. Co-delivery of PROTAC and siRNA via novel liposomes for the treatment of malignant tumors. J. Colloid Interface Sci. 2025, 678, 896–907. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Wang, X.; Li, X.; Liu, X.; Zhang, X.; Liu, S. Establishment and validation of a sensitive LC-MS/MS method for the quantification of KRAS(G12C) protein PROTAC molecule LC-2 in rat plasma and its application to In Vivo pharmacokinetic studies of LC-2 PEGylated liposomes. Biomed. Chromatogr. 2023, 37, e5629. [Google Scholar] [CrossRef]
- Luo, T.; Zheng, Q.; Shao, L.; Ma, T.; Mao, L.; Wang, M. Intracellular Delivery of Glutathione Peroxidase Degrader Induces Ferroptosis In Vivo. Angew. Chem. Int. Ed. Engl. 2022, 61, e202206277. [Google Scholar] [CrossRef] [PubMed]
- Ding, R.; Li, Z.; Wang, J.; Zhu, X.; Zhao, Z.; Wang, M. Design and Synthesis of Galactose-Biotin Lipid Materials for Liposomes to Promote the Hepatoma Cell-Targeting Effect. J. Pharm. Sci. 2019, 108, 3074–3081. [Google Scholar] [CrossRef]
- Vartak, R.; Patel, K. Targeted nanoliposomes of oncogenic protein degraders: Significant inhibition of tumor in lung-cancer bearing mice. J. Control. Release 2024, 376, 502–517. [Google Scholar] [CrossRef]
- Yao, L.; Yang, N.; Zhou, W.; Akhtar, M.H.; Zhou, W.; Liu, C.; Song, S.; Li, Y.; Han, W.; Yu, C. Exploiting Cancer Vulnerabilities by Blocking of the DHODH and GPX4 Pathways: A Multifunctional Bodipy/PROTAC Nanoplatform for the Efficient Synergistic Ferroptosis Therapy. Adv. Healthc. Mater. 2023, 12, e2300871. [Google Scholar] [CrossRef]
- Chan, A.; Haley, R.M.; Najar, M.A.; Gonzalez-Martinez, D.; Bugaj, L.J.; Burslem, G.M.; Mitchell, M.J.; Tsourkas, A. Lipid-mediated intracellular delivery of recombinant bioPROTACs for the rapid degradation of undruggable proteins. Nat. Commun. 2024, 15, 5808. [Google Scholar] [CrossRef]
- Zhang, F.; Cui, K.; Zhou, Y.; Niu, B.; Zhang, S.; Zhao, S.; Liu, X.; Shi, T.; Kong, L.; Yang, C.; et al. An immunogenic cell death dual-nanoamplifier for the reverse of chemotherapy resistance and immune escape in metastatic colon cancer. Nano Today 2025, 62, 102678. [Google Scholar] [CrossRef]
- Beach, M.A.; Nayanathara, U.; Gao, Y.; Zhang, C.; Xiong, Y.; Wang, Y.; Such, G.K. Polymeric Nanoparticles for Drug Delivery. Chem. Rev. 2024, 124, 5505–5616. [Google Scholar] [CrossRef]
- Floyd, T.G.; Gurnani, P.; Rho, J.Y. Characterisation of polymeric nanoparticles for drug delivery. Nanoscale 2025, 17, 7738–7752. [Google Scholar] [CrossRef]
- Banerjee, S.S.; Aher, N.; Patil, R.; Khandare, J. Poly(ethylene glycol)-Prodrug Conjugates: Concept, Design, and Applications. J. Drug Deliv. 2012, 2012, 103973. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Miller, L.; Richman, S.; Hitchman, S.; Glick, G.; Liu, S.; Zhu, Y.; Crossman, M.; Nestorov, I.; Gronke, R.S.; et al. A novel PEGylated interferon beta-1a for multiple sclerosis: Safety, pharmacology, and biology. J. Clin. Pharmacol. 2012, 52, 798–808. [Google Scholar] [CrossRef] [PubMed]
- Ing, M.; Gupta, N.; Teyssandier, M.; Maillère, B.; Pallardy, M.; Delignat, S.; Lacroix-Desmazes, S. Immunogenicity of long-lasting recombinant factor VIII products. Cell. Immunol. 2016, 301, 40–48. [Google Scholar] [CrossRef]
- Saraswat, A.; Patki, M.; Fu, Y.; Barot, S.; Dukhande, V.V.; Patel, K. Nanoformulation of PROteolysis TArgeting Chimera targeting ‘undruggable’ c-Myc for the treatment of pancreatic cancer. Nanomedicine 2020, 15, 1761–1777. [Google Scholar] [CrossRef]
- Cimas, F.J.; Niza, E.; Juan, A.; Noblejas-Lopez, M.D.M.; Bravo, I.; Lara-Sanchez, A.; Alonso-Moreno, C.; Ocana, A. Controlled Delivery of BET-PROTACs: In Vitro Evaluation of MZ1-Loaded Polymeric Antibody Conjugated Nanoparticles in Breast Cancer. Pharmaceutics 2020, 12, 986. [Google Scholar] [CrossRef]
- He, Y.; Zan, X.; Miao, J.; Wang, B.; Wu, Y.; Shen, Y.; Chen, X.; Gou, H.; Zheng, S.; Huang, N.; et al. Enhanced anti-glioma efficacy of doxorubicin with BRD4 PROTAC degrader using targeted nanoparticles. Mater. Today Bio 2022, 16, 100423. [Google Scholar] [CrossRef]
- Huang, J.; Yao, Z.; Li, B.; Ping, Y. Targeted delivery of PROTAC-based prodrug activated by bond-cleavage bioorthogonal chemistry for microneedle-assisted cancer therapy. J. Control. Release 2023, 361, 270–279. [Google Scholar] [CrossRef]
- Cheng, X.; Hu, S.; Cheng, K. Microneedle Patch Delivery of PROTACs for Anti-Cancer Therapy. ACS Nano 2023, 17, 11855–11868. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.J.; Chen, W.; Wu, G.; Zhou, J.; Liu, C.; Tang, Z.; Huang, X.; Gao, J.; Xiao, Y.; Kong, N.; et al. Glutathione-Scavenging Nanoparticle-Mediated PROTACs Delivery for Targeted Protein Degradation and Amplified Antitumor Effects. Adv. Sci. 2023, 10, e2207439. [Google Scholar] [CrossRef]
- Zhang, C.; Zeng, Z.; Cui, D.; He, S.; Jiang, Y.; Li, J.; Huang, J.; Pu, K. Semiconducting polymer nano-PROTACs for activatable photo-immunometabolic cancer therapy. Nat. Commun. 2021, 12, 2934. [Google Scholar] [CrossRef]
- Zhang, C.; He, S.; Zeng, Z.; Cheng, P.; Pu, K. Smart Nano-PROTACs Reprogram Tumor Microenvironment for Activatable Photo-metabolic Cancer Immunotherapy. Angew. Chem. Int. Ed. Engl. 2022, 61, e202114957. [Google Scholar] [CrossRef]
- Wang, F.; Dong, G.; Ding, M.; Yu, N.; Sheng, C.; Li, J. Dual-Programmable Semiconducting Polymer NanoPROTACs for Deep-Tissue Sonodynamic-Ferroptosis Activatable Immunotherapy. Small 2024, 20, e2306378. [Google Scholar] [CrossRef]
- Yang, L.; Yang, Y.; Zhang, J.; Li, M.; Yang, L.; Wang, X.; Chen, M.; Zhang, H.; He, B.; Wang, X.; et al. Sequential responsive nano-PROTACs for precise intracellular delivery and enhanced degradation efficacy in colorectal cancer therapy. Signal Transduc. Target. Ther. 2024, 9, 275. [Google Scholar] [CrossRef]
- Wang, S.; Feng, Z.; Qu, C.; Yu, S.; Zhang, H.; Deng, R.; Luo, D.; Pu, C.; Zhang, Y.; Li, R. Novel Amphiphilic PROTAC with Enhanced Pharmacokinetic Properties for ALK Protein Degradation. J. Med. Chem. 2024, 67, 9842–9856. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhu, C.; Zhang, B.; Feng, Y.; Zhang, Y.; Li, J. Self-Assembled Nano-PROTAC Enables Near-Infrared Photodynamic Proteolysis for Cancer Therapy. J. Am. Chem. Soc. 2023, 145, 16642–16649. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Park, B.; Park, J.Y.; Shin, D.; Lee, S.; Yoon, H.Y.; Kim, K.; Kim, S.H.; Kim, Y.; Yang, Y.; et al. Light-Triggered PROTAC Nanoassemblies for Photodynamic IDO Proteolysis in Cancer Immunotherapy. Adv. Mater. 2024, 36, e2405475. [Google Scholar] [CrossRef]
- Wang, X.; Yan, J.; Zhao, Y.; Li, S.; Ma, Z.; Duan, X.; Wang, Y.; Jiao, J.; Gu, C.; Zhang, G. Targeted Degradation of EGFR Mutations via Self-Delivery Nano-PROTACs for Boosting Tumor Synergistic Immunotherapy. ACS Appl. Mater. Interfaces 2025, 17, 20943–20956. [Google Scholar] [CrossRef]
- Moon, Y.; Cho, H.; Kim, J.; Song, S.; Yeon Park, J.; Young Min, J.; Hee Han, E.; Kim, Y.; Seong, J.K.; Kyu Shim, M.; et al. Self-Assembled Peptide-Derived Proteolysis-Targeting Chimera (PROTAC) Nanoparticles for Tumor-Targeted and Durable PD-L1 Degradation in Cancer Immunotherapy. Angew. Chem. Int. Ed. Engl. 2024, 64, e202414146. [Google Scholar] [CrossRef]
- Lu, X.; Jin, J.; Wu, Y.; Lin, J.; Zhang, X.; Lu, S.; Zhang, J.; Zhang, C.; Ren, M.; Chen, H.; et al. Self-assembled PROTACs enable protein degradation to reprogram the tumor microenvironment for synergistically enhanced colorectal cancer immunotherapy. Bioact. Mater. 2025, 43, 255–272. [Google Scholar] [CrossRef]
- Ma, J.; Zhu, R.; Li, M.; Jiao, H.; Fan, S.; Ma, X.; Xiang, G. Proteolysis-targeting chimera-doxorubicin conjugate nanoassemblies for dual treatment of EGFR-TKI sensitive and resistant non-small cell lung cancer. Acta Biomater. 2025, 195, 421–435. [Google Scholar] [CrossRef]
- Ma, J.; Fang, L.; Sun, Z.; Li, M.; Fan, T.; Xiang, G.; Ma, X. Folate-PEG-PROTAC Micelles for Enhancing Tumor-Specific Targeting Proteolysis In Vivo. Adv. Healthc. Mater. 2024, 13, e2400109. [Google Scholar] [CrossRef] [PubMed]
- Tong, F.; Wang, Y.; Xu, Y.; Zhou, Y.; He, S.; Du, Y.; Yang, W.; Lei, T.; Song, Y.; Gong, T.; et al. MMP-2-triggered, mitochondria-targeted PROTAC-PDT therapy of breast cancer and brain metastases inhibition. Nat. Commun. 2024, 15, 10382. [Google Scholar] [CrossRef] [PubMed]
- Kopeček, J.; Yang, J. Polymer nanomedicines. Adv. Drug Delivr. Rev. 2020, 156, 40–64. [Google Scholar] [CrossRef]
- Huang, H.; Feng, W.; Chen, Y.; Shi, J. Inorganic nanoparticles in clinical trials and translations. Nano Today 2020, 35, 100972. [Google Scholar] [CrossRef]
- Liu, Q.; Kim, Y.J.; Im, G.B.; Zhu, J.; Wu, Y.; Liu, Y.; Bhang, S.H. Inorganic Nanoparticles Applied as Functional Therapeutics. Adv. Funct. Mater. 2021, 31, 2008171. [Google Scholar] [CrossRef]
- Rahimkhoei, V.; Alzaidy, A.H.; Abed, M.J.; Rashki, S.; Salavati-Niasari, M. Advances in inorganic nanoparticles-based drug delivery in targeted breast cancer theranostics. Adv. Colloid Interface Sci. 2024, 329, 103204. [Google Scholar] [CrossRef]
- Ma, B.; Fan, Y.; Zhang, D.; Wei, Y.; Jian, Y.; Liu, D.; Wang, Z.; Gao, Y.; Ma, J.; Chen, Y.; et al. De Novo Design of an Androgen Receptor DNA Binding Domain-Targeted peptide PROTAC for Prostate Cancer Therapy. Adv. Sci. 2022, 9, e2201859. [Google Scholar] [CrossRef]
- Zhan, J.; Li, X.; Mu, Y.; Yao, H.; Zhu, J.J.; Zhang, J. A photoactivatable upconverting nanodevice boosts the lysosomal escape of PROTAC degraders for enhanced combination therapy. Biomater. Sci. 2024, 12, 3686–3699. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Zhu, R.; Li, M.; Ma, J.; Fan, S.; He, X.; Yang, Z.; Yan, Y.; Ma, X.; Xiang, G. Silica-based EGFR-degrading nano-PROTACs for efficient therapy of non-small cell lung cancer. Eur. J. Pharm. Biopharm. 2025, 210, 114699. [Google Scholar] [CrossRef]
- Huang, L.; Sun, X.; Zuo, Q.; Song, T.; Liu, N.; Liu, Z.; Xue, W. A pH-responsive PROTAC-based nanosystem triggers tumor-specific ferroptosis to construct in situ tumor vaccines. Mater. Today Bio 2025, 31, 101523. [Google Scholar] [CrossRef]
- Li, Y.; Vulpe, C.; Lammers, T.; Pallares, R.M. Assessing inorganic nanoparticle toxicity through omics approaches. Nanoscale 2024, 16, 15928–15945. [Google Scholar] [CrossRef]
- Saleh, R.; Elkord, E. Exosomes: Biological Carriers and Promising Tools for Cancer Immunotherapy. Vaccines 2020, 8, 390. [Google Scholar] [CrossRef]
- Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, eaau6977. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Xia, X.; Huang, W.; Xia, X.; Yan, D. Highly efficient tumor-targeted nanomedicine assembled from affibody-drug conjugate for colorectal cancer therapy. Nano Res. 2022, 16, 5256–5264. [Google Scholar] [CrossRef]
- Hassanin, I.; Elzoghby, A. Albumin-based nanoparticles: A promising strategy to overcome cancer drug resistance. Cancer Drug Resist. 2020, 3, 930–946. [Google Scholar] [CrossRef]
- Jiang, Q.; Hu, Y.; Liu, Q.; Tang, Y.; Wu, X.; Liu, J.; Tu, G.; Li, G.; Lin, X.; Qu, M.; et al. Albumin-encapsulated HSP90-PROTAC BP3 nanoparticles not only retain protein degradation ability but also enhance the antitumour activity of BP3 In Vivo. J. Drug Target. 2023, 31, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, W.; Kwon, S.; Wang, Y.; Li, Z.; Hu, Q. Small-Molecule Ferritin Degrader as a Pyroptosis Inducer. J. Am. Chem. Soc. 2023, 145, 9815–9824. [Google Scholar] [CrossRef]
- Hu, Z.; Li, R.; Cui, X.; Hu, C.; Chen, Z. Tailoring albumin-based theranostic PROTACs nanoparticles for enhanced NIR-II bioimaging and synergistic cancer chemo-phototherapy. Chem. Eng. J. 2023, 469, 143883. [Google Scholar] [CrossRef]
- Montrose, K.; Krissansen, G.W. Design of a PROTAC that antagonizes and destroys the cancer-forming X-protein of the hepatitis B virus. Biochem. Biophys. Res. Commun. 2014, 453, 735–740. [Google Scholar] [CrossRef]
- Naganuma, M.; Ohoka, N.; Hirano, M.; Watanabe, D.; Tsuji, G.; Inoue, T.; Demizu, Y. Hydrophobic CPP/HDO conjugates: A new frontier in oligonucleotide-warheaded PROTAC delivery. RSC Med. Chem. 2024, 15, 3695–3703. [Google Scholar] [CrossRef]
- Pillow, T.H.; Adhikari, P.; Blake, R.A.; Chen, J.; Del Rosario, G.; Deshmukh, G.; Figueroa, I.; Gascoigne, K.E.; Kamath, A.V.; Kaufman, S.; et al. Antibody Conjugation of a Chimeric BET Degrader Enables In Vivo Activity. ChemMedChem 2020, 15, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Dragovich, P.S.; Pillow, T.H.; Blake, R.A.; Sadowsky, J.D.; Adaligil, E.; Adhikari, P.; Bhakta, S.; Blaquiere, N.; Chen, J.; Dela Cruz-Chuh, J.; et al. Antibody-Mediated Delivery of Chimeric BRD4 Degraders. Part 1: Exploration of Antibody Linker, Payload Loading, and Payload Molecular Properties. J. Med. Chem. 2021, 64, 2534–2575. [Google Scholar] [CrossRef] [PubMed]
- Dragovich, P.S.; Pillow, T.H.; Blake, R.A.; Sadowsky, J.D.; Adaligil, E.; Adhikari, P.; Chen, J.; Corr, N.; Dela Cruz-Chuh, J.; Del Rosario, G.; et al. Antibody-Mediated Delivery of Chimeric BRD4 Degraders. Part 2: Improvement of In Vitro Antiproliferation Activity and In Vivo Antitumor Efficacy. J. Med. Chem. 2021, 64, 2576–2607. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, P.; Kong, Y.; Li, J.; Li, Y.; Zhang, Y.; Ran, J.; Zhou, J.; Chen, Y.; Xie, S. Inducible Degradation of Oncogenic Nucleolin Using an Aptamer-Based PROTAC. J. Med. Chem. 2023, 66, 1339–1348. [Google Scholar] [CrossRef]
- Shih, P.C.; Naganuma, M.; Tsuji, G.; Demizu, Y.; Naito, M. Development of decoy oligonucleotide-warheaded chimeric molecules targeting STAT3. Bioorg. Med. Chem. 2023, 95, 117507. [Google Scholar] [CrossRef]
- Zhang, L.; Li, L.; Wang, X.; Liu, H.; Zhang, Y.; Xie, T.; Zhang, H.; Li, X.; Peng, T.; Sun, X.; et al. Development of a novel PROTAC using the nucleic acid aptamer as a targeting ligand for tumor selective degradation of nucleolin. Mol. Ther. Nucleic Acids 2022, 30, 66–79. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Gao, F.; Ma, J.; Ma, H.; Dong, G.; Sheng, C. Aptamer-PROTAC Conjugates (APCs) for Tumor-Specific Targeting in Breast Cancer. Angew. Chem. Int. Ed. Engl. 2021, 60, 23299–23305. [Google Scholar] [CrossRef]
- Li, S.; Zeng, T.; Wu, Z.; Huang, J.; Cao, X.; Liu, Y.; Bai, S.; Chen, Q.; Li, C.; Lu, C.; et al. DNA Tetrahedron-Driven Multivalent Proteolysis-Targeting Chimeras: Enhancing Protein Degradation Efficiency and Tumor Targeting. J. Am. Chem. Soc. 2025, 147, 2168–2181. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.A.; Al-Othman, A.; Al-Sayah, M.H. Multifunctional stimuli-responsive hybrid nanogels for cancer therapy: Current status and challenges. J. Control. Release 2022, 351, 476–503. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Li, X.; Cheng, L.; Long, X.; Cao, G.; Yu, S.; Ran, H.; Feng, H.; Wang, H. Augmenting Protein Degradation Capacity of PROTAC through Energy Metabolism Regulation and Targeted Drug Delivery. Adv. Mater. 2025, 37, e2412837. [Google Scholar] [CrossRef]
- Chen, Y.; Pal, S.; Li, W.; Liu, F.; Yuan, S.; Hu, Q. Engineered platelets as targeted protein degraders and application to breast cancer models. Nat. Biotechnol. 2024; ahead of print. [Google Scholar] [CrossRef]
- Zheng, X.; Yan, J.; You, W.; Li, F.; Diao, J.; He, W.; Yao, Y. De Novo Nano-Erythrocyte Structurally Braced by Biomimetic Au(I)-peptide Skeleton for MDM2/MDMX Predation toward Augmented Pulmonary Adenocarcinoma Immunotherapy. Small 2021, 17, 2100394. [Google Scholar] [CrossRef] [PubMed]
- Fan, R.; He, S.; Wang, Y.; Qiao, J.; Liu, H.; Galstyan, L.; Ghazaryan, A.; Cai, H.; Shini Feng, P.N.; Dong, G.; et al. Targeted delivery of a PROTAC induced PDEδ degrader by a biomimetic drug delivery system for enhanced cytotoxicity against pancreatic cancer cells. Am. J. Cancer Res. 2022, 12, 1027–1041. [Google Scholar]
- Zhang, H.T.; Peng, R.; Chen, S.; Shen, A.; Zhao, L.; Tang, W.; Wang, X.H.; Li, Z.Y.; Zha, Z.G.; Yi, M.; et al. Versatile Nano-PROTAC-Induced Epigenetic Reader Degradation for Efficient Lung Cancer Therapy. Adv. Sci. 2022, 9, e2202039. [Google Scholar] [CrossRef]
- Wu, Y.; Chang, X.; Yang, G.; Chen, L.; Wu, Q.; Gao, J.; Tian, R.; Mu, W.; Gooding, J.J.; Chen, X.; et al. A Physiologically Responsive Nanocomposite Hydrogel for Treatment of Head and Neck Squamous Cell Carcinoma via Proteolysis-Targeting Chimeras Enhanced Immunotherapy. Adv. Mater. 2023, 35, e2210787. [Google Scholar] [CrossRef]
- Guan, X.; Xu, X.; Tao, Y.; Deng, X.; He, L.; Lin, Z.; Chang, J.; Huang, J.; Zhou, D.; Yu, X.; et al. Dual targeting and bioresponsive nano-PROTAC induced precise and effective lung cancer therapy. J. Nanobiotechnol. 2024, 22, 692. [Google Scholar] [CrossRef]
- Hua, S.; de Matos, M.B.C.; Metselaar, J.M.; Storm, G. Current Trends and Challenges in the Clinical Translation of Nanoparticulate Nanomedicines: Pathways for Translational Development and Commercialization. Front. Pharmacol. 2018, 9, 790. [Google Scholar] [CrossRef]
- Monopoli, M.P.; Aberg, C.; Salvati, A.; Dawson, K.A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 2012, 7, 779–786. [Google Scholar] [CrossRef]
- Tripathi, D.; Pandey, P.; Sharma, S.; Rai, A.K.; Prabhu, B.H.M. Advances in nanomaterials for precision drug delivery: Insights into pharmacokinetics and toxicity. BioImpacts 2024, 15, 30573. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Qi, Y.; Liu, G.; Song, Y.; Jiang, X.; Du, B. Size-Dependent In Vivo Transport of Nanoparticles: Implications for Delivery, Targeting, and Clearance. ACS Nano 2023, 17, 20825–20849. [Google Scholar] [CrossRef] [PubMed]
Delivery System | PROTAC | POI | E3 Ligase | Loading Method | Release Behavior | Cancer/Cell Lines | Improvement | Ref. |
---|---|---|---|---|---|---|---|---|
Lipid NPs | dGPX4 | GPX4 | CRBN | Physical encapsulation | ROS responsive | HT-1080 cells | Improved tumor targeting and treatment safety | [80] |
Galactosylated nanoliposomes | ARV-825 | BRD4 | CRBN | Physical encapsulation | Carrier dissociation | Hepatocellular carcinoma | Enhanced the uptake of tumor cells and the ability for active targeting | [81] |
Folate-modified liposomes | DQ | NQO1 | CRBN | Physical encapsulation | Carrier dissociation | A549 cells/lung cancer | Increased the solubility and the uptake of tumor cell | [43] |
cRGD-modified cationic liposomes | inS3-TEG-VL | STAT3 | VHL | Physical encapsulation (prodrug) | ROS responsive | Hepatocellular carcinoma | Enhanced the CSC-targeted delivery and lysosomal escape | [82] |
Liposomes | MZ-1 | BRD4 | VHL | Physical encapsulation | Carrier dissociation | MCF-7/breast cancer | Improved the cell penetration and bioavailability of PROTAC | [83] |
Polymeric micelle | ARV-825 | BRD4 | CRBN | Physical encapsulation | Carrier dissociation | Glioma | Enhanced the brain target ability | [48] |
Polymeric NPs | ARV-771 | BRD4 | VHL | Physical encapsulation | GSH-responsive | Melanoma | Improved the pharmacokinetic profile of free PROTAC, facilitated accumulation in tumor cells | [84] |
Polymeric NPs | ARV-771 | BRD4 | VHL | Self-assembly | Acid and light dual-activatable | Glioblastoma | Enhanced cellular uptake and accumulation at the tumor site | [49] |
Nanomicelle | MZ-1 | BRD4 | VHL | Self-assembly | X-ray-responsive | Breast cancer | Accumulated at the tumor site owing to the EPR effect | [85] |
Au nanoparticles | PROTAC peptide | GPX4 | MDM2 | Chemical conjugation | GSH responsive | Acute lymphoid leukemia | Facilitated intracellular action | [86] |
Gold nanocages | dBET1 | BRD4 | CRBN | Physical encapsulation (prodrug) | Phase transfer | MCF-7/breast cancer | Precise control release in tumor tissue, leading to effective tumor accumulation | [87] |
UCNP@mSiO2 NPs | dBET1 | BRD4 | CRBN | Physical encapsulation (prodrug) | NIR light-triggered | MV-4-11 cells | Spatiotemporal activation | [88] |
Albumin-binding | ARV-771 | BRD4 | VHL | Chemical conjugation | Esterase-cleavable | 4T1 cells/breast cancer | Improved pharmacokinetic properties and high accumulation in tumor tissue | [89] |
Affibody-conjugate | MZ-1 | BRD4 | VHL | Self-assembly | GSH responsive | SKOV-3 cells/breast cancer | Accumulated in tumor site and then internalized by tumor cells | [50] |
Camel milk-derived exosomes | ARV-825 | BRD4 | CRBN | Physical encapsulation | Carrier dissociation | Lung cancer cells | Conducive to stability and cellular uptake | [90] |
PSI-coated gold-derived nanocluster | MP | MDMX | VHL | Chemical conjugation | pH/GSH responsive | Retinoblastoma/pancreatic cancer | Increased the blood-circulation time and tumor-specific accumulation | [91] |
MOF-based nanoplatform | MZ-1 | BRD4 | VHL | Physical encapsulation | pH responsive | 4T1 cells/breast cancer | Improved the intra-tumoral accumulation ability and prolonged their blood circulation time | [92] |
Biomimetic hybrid nanovesicle | pro | BRD4 | VHL | Physical encapsulation | pH/GSH responsive | U251MG-R/GBM | Homotypic tumor targeting capabilities and superior BBB penetration | [93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Shu, Y.; Zheng, Y.; Zhang, P.; Cong, H.; Zou, Y.; Cai, H.; Zha, Z. Recent Advances in Nanomedicine: Cutting-Edge Research on Nano-PROTAC Delivery Systems for Cancer Therapy. Pharmaceutics 2025, 17, 1037. https://doi.org/10.3390/pharmaceutics17081037
Wu X, Shu Y, Zheng Y, Zhang P, Cong H, Zou Y, Cai H, Zha Z. Recent Advances in Nanomedicine: Cutting-Edge Research on Nano-PROTAC Delivery Systems for Cancer Therapy. Pharmaceutics. 2025; 17(8):1037. https://doi.org/10.3390/pharmaceutics17081037
Chicago/Turabian StyleWu, Xiaoqing, Yueli Shu, Yao Zheng, Peichuan Zhang, Hanwen Cong, Yingpei Zou, Hao Cai, and Zhengyu Zha. 2025. "Recent Advances in Nanomedicine: Cutting-Edge Research on Nano-PROTAC Delivery Systems for Cancer Therapy" Pharmaceutics 17, no. 8: 1037. https://doi.org/10.3390/pharmaceutics17081037
APA StyleWu, X., Shu, Y., Zheng, Y., Zhang, P., Cong, H., Zou, Y., Cai, H., & Zha, Z. (2025). Recent Advances in Nanomedicine: Cutting-Edge Research on Nano-PROTAC Delivery Systems for Cancer Therapy. Pharmaceutics, 17(8), 1037. https://doi.org/10.3390/pharmaceutics17081037