Comparative Evaluation of β-Cyclodextrin Inclusion Complexes with Eugenol, Eucalyptol, and Clove Essential Oil: Characterisation and Antimicrobial Activity Assessment for Pharmaceutical Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Inclusion Complexes Preparation
2.1.1. Reagents
2.1.2. Extraction of Eugenia caryophyllata Essential Oil
2.1.3. Preparation of β-Cyclodextrin Inclusion Complexes
Kneading Method
Co-Precipitation Method
Lyophilisation Method
Co-Precipitation Followed by Lyophilisation Method (Combined Method)
Lyophilisation Procedure
2.2. Physicochemical Characterisation of Inclusion Complexes
2.2.1. GC-MS Analysis
2.2.2. Study of Host–Guest Equilibrium
Analysis of Stoichiometry of Inclusion Complexes
Determination of Entrapment Efficiency
2.2.3. Differential Scanning Calorimetry (DSC) Analysis
2.2.4. Dynamic Light Scattering Analysis
2.2.5. FTIR Characterisation
2.2.6. Scanning Electron Microscopy
2.3. Antimicrobial Activity
2.3.1. Qualitative Assay of the Antimicrobial Activity
2.3.2. Quantitative Assay of the Antimicrobial Activity
2.3.3. Semiquantitative Assessment of the Microbial Adherence to the Inert Substratum
2.4. Statistical Analysis
3. Results
3.1. Evaluation of Physicochemical Characterisation of Inclusion Complexes
3.1.1. GC-MS and HS-GC-MS
3.1.2. Stoichiometry of Inclusion Complexes
3.1.3. Entrapment Efficiency
3.1.4. Differential Scanning Calorimetry
3.1.5. SEM Analysis of the Inclusion Complexes
3.1.6. Particles Size Distribution
3.1.7. FTIR Analysis Results
3.2. Analysis of Antimicrobial Activity
3.2.1. Qualitative Assessment of the Antimicrobial Activity
3.2.2. Quantitative Assessment of the Antimicrobial Activity
3.2.3. Semiquantitative Assessment of the Microbial Adherence to the Inert Substratum
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
β-CD | β-cyclodextrin |
EG–β-CD | β-Cyclodextrin complex with Eugenol |
E-CD | β-Cyclodextrin complex with eucalyptol |
ECEO-CD | β-Cyclodextrin complex with Eugenia caryophyllata essential oil |
C | Complexes obtained by co-precipitation |
C-L | Complexes obtained by co-precipitation followed by lyophilisation |
DSC | Differential Scanning Calorimetry |
E | Eucalyptol |
EE | Entrapment Efficiency (EE) |
ECEO | Eugenia caryophyllata essential oil (clove essential oil) |
EG | Eugenol |
FTIR | Fourier Transform Infrared Spectroscopy |
GC-MS | Gas Chromatography–Mass Spectrometry |
GIZD | Growth Inhibition Zone Diameter |
HS-GC-MS | Headspace-GC-MS |
K | Complexes obtained by kneading |
L | Complexes obtained by lyophilisation |
MIC | Minimum inhibitory concentration |
MBEC | Minimum Biofilm Eradication Concentration |
SEM | Scanning Electron Microscopy |
References
- Liñán-Atero, R.; Aghababaei, F.; García, S.R.; Hasiri, Z.; Ziogkas, D.; Moreno, A.; Hadidi, M. Clove Essential Oil: Chemical Profile, Biological Activities, Encapsulation Strategies, and Food Applications. Antioxidants 2024, 13, 488. [Google Scholar] [CrossRef] [PubMed]
- Abdul Aziz, A.H.; Rizkiyah, D.N.; Qomariyah, L.; Irianto, I.; Che Yunus, M.A.; Putra, N.R. Unlocking the Full Potential of Clove (Syzygium Aromaticum) Spice: An Overview of Extraction Techniques, Bioactivity, and Future Opportunities in the Food and Beverage Industry. Processes 2023, 11, 2453. [Google Scholar] [CrossRef]
- Ulanowska, M.; Olas, B. Biological Properties and Prospects for the Application of Eugenol—A Review. Int. J. Mol. Sci. 2021, 22, 3671. [Google Scholar] [CrossRef] [PubMed]
- Zari, A.T.; Zari, T.A.; Hakeem, K.R. Anticancer Properties of Eugenol: A Review. Molecules 2021, 26, 7407. [Google Scholar] [CrossRef]
- Kamatou, G.P.; Vermaak, I.; Viljoen, A.M. Eugenol—From the Remote Maluku Islands to the International Market Place: A Review of a Remarkable and Versatile Molecule. Molecules 2012, 17, 6953–6981. [Google Scholar] [CrossRef]
- Pramod, K.; Ansari, S.H.; Ali, J. Eugenol: A Natural Compound with Versatile Pharmacological Actions. Nat. Prod. Commun. 2010, 5, 1999–2006. [Google Scholar] [CrossRef]
- Nisar, M.F.; Khadim, M.; Rafiq, M.; Chen, J.; Yang, Y.; Wan, C.C. Pharmacological Properties and Health Benefits of Eugenol: A Comprehensive Review. Oxidative Med. Cell. 2021, 2021, 2497354. [Google Scholar] [CrossRef]
- Aiassa, V.; Garnero, C.; Zoppi, A.; Longhi, M.R. Cyclodextrins and Their Derivatives as Drug Stability Modifiers. Pharmaceuticals 2023, 16, 1074. [Google Scholar] [CrossRef]
- Christaki, S.; Spanidi, E.; Panagiotidou, E.; Athanasopoulou, S.; Kyriakoudi, A.; Mourtzinos, I.; Gardikis, K. Cyclodextrins for the Delivery of Bioactive Compounds from Natural Sources: Medicinal, Food and Cosmetics Applications. Pharmaceuticals 2023, 16, 1274. [Google Scholar] [CrossRef]
- Velázquez-Contreras, F.; Zamora-Ledezma, C.; López-González, I.; Meseguer-Olmo, L.; Núñez-Delicado, E.; Gabaldón, J.A. Cyclodextrins in Polymer-Based Active Food Packaging: A Fresh Look at Nontoxic, Biodegradable, and Sustainable Technology Trends. Polymers 2021, 14, 104. [Google Scholar] [CrossRef]
- Musuc, A.M. Cyclodextrins: Advances in Chemistry, Toxicology, and Multifaceted Applications. Molecules 2024, 29, 5319. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Zhang, T.; Chai, X.; Duan, X.; He, D.; Yu, H.; Liu, X.; Tao, Z. Encapsulation Efficiency and Functional Stability of Cinnamon Essential Oil in Modified β-Cyclodextrins: In Vitro and In Silico Evidence. Foods 2022, 12, 45. [Google Scholar] [CrossRef] [PubMed]
- Pante, G.C.; Castro, J.C.; Lini, R.S.; Romoli, J.C.Z.; Pires, T.Y.; Garcia, F.P.; Nakamura, C.V.; Mulati, A.C.N.; Matioli, G.; Machinski Junior, M. Inclusion Complexes of Litsea Cubeba (Lour.) Pers Essential Oil into β-Cyclodextrin: Preparation, Physicochemical Characterization, Cytotoxicity and Antifungal Activity. Molecules 2024, 29, 1626. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Jia, J.; He, J.; Li, J.; Cai, J. Cyclodextrin Inclusion Complexes and Their Application in Food Safety Analysis: Recent Developments and Future Prospects. Foods 2022, 11, 3871. [Google Scholar] [CrossRef]
- Stabrauskiene, J.; Pudziuvelyte, L.; Bernatoniene, J. Optimizing Encapsulation: Comparative Analysis of Spray-Drying and Freeze-Drying for Sustainable Recovery of Bioactive Compounds from Citrus x Paradisi L. Peels. Pharmaceuticals 2024, 17, 596. [Google Scholar] [CrossRef]
- Christaki, S.; Kelesidou, R.; Pargana, V.; Tzimopoulou, E.; Hatzikamari, M.; Mourtzinos, I. Inclusion Complexes of β-Cyclodextrin with Salvia Officinalis Bioactive Compounds and Their Antibacterial Activities. Plants 2023, 12, 2518. [Google Scholar] [CrossRef]
- Marques, C.S.; Carvalho, S.G.; Bertoli, L.D.; Villanova, J.C.O.; Pinheiro, P.F.; dos Santos, D.C.M.; Yoshida, M.I.; de Freitas, J.C.C.; Cipriano, D.F.; Bernardes, P.C. β-Cyclodextrin Inclusion Complexes with Essential Oils: Obtention, Characterization, Antimicrobial Activity and Potential Application for Food Preservative Sachets. Food Res. Int. 2019, 119, 499–509. [Google Scholar] [CrossRef]
- Mayrs, E. British Pharmacopoeia Appendix 9; Medicines & Healthcare products Regulatory Agency: London, UK, 2017; Volume IV, p. A238. [Google Scholar]
- Bhandari, B.R.; D’Arc, B.R.; Padukka, I. Encapsulation of Lemon Oil by Paste Method Using β-Cyclodextrin: Encapsulation Efficiency and Profile of Oil Volatiles. J. Agric. Food Chem. 1999, 47, 5194–5197. [Google Scholar] [CrossRef]
- Estrada Cano, C.; Anaya Castro, M.A.; Castellanos, L.M.; Antonio Garcia Triana, N.A.O.; Ochoa, L.H. Antifungal Activity of Microcapsulated Clove (Eugenia Caryophyllata) and Mexican Oregano (Lippia Berlandieri) Essential Oils against Fusarium Oxysporum. J. Microb. Biochem. Technol. 2017, 9. [Google Scholar] [CrossRef]
- Recio-Cázares, S.L.; Comett-Figueroa, P.I.; Navarro-Amador, R.; López-Malo, A.; Palou, E. β-Cyclodextrin Inclusion Complex with Essential Oil from Lippia (Aloysia Citriodora): Preparation, Physicochemical Characterization, and Its Application on Beef. ACS Food Sci. Technol. 2024, 4, 3076–3087. [Google Scholar] [CrossRef]
- Uchôa Lopes, C.; Saturnino de Oliveira, J.; Holanda, V.; Rodrigues, A.; Martins da Fonseca, C.; Galvão Rodrigues, F.; Camilo, C.; Lima, V.; Coutinho, H.; Kowalski, R.; et al. GC-MS Analysis and Hemolytic, Antipyretic and Antidiarrheal Potential of Syzygium Aromaticum (Clove) Essential Oil. Separations 2020, 7, 35. [Google Scholar] [CrossRef]
- Amelia, B.; Saepudin, E.; Cahyana, A.H.; Rahayu, D.U.; Sulistyoningrum, A.S.; Haib, J. GC-MS Analysis of Clove (Syzygium Aromaticum) Bud Essential Oil from Java and Manado. AIP Conf. Proc. 2017, 1862, 030082. [Google Scholar]
- Saha, S.; Roy, A.; Roy, K.; Roy, M.N. Study to Explore the Mechanism to Form Inclusion Complexes of β-Cyclodextrin with Vitamin Molecules. Sci. Rep. 2016, 6, 35764. [Google Scholar] [CrossRef] [PubMed]
- Adjali, A.; Pontillo, A.R.N.; Kavetsou, E.; Katopodi, A.; Tzani, A.; Grigorakis, S.; Loupassaki, S.; Detsi, A. Clove Essential Oil–Hydroxypropyl-β-Cyclodextrin Inclusion Complexes: Preparation, Characterization and Incorporation in Biodegradable Chitosan Films. Micro 2022, 2, 212–224. [Google Scholar] [CrossRef]
- Ilie, C.-I.; Spoiala, A.; Geana, E.; Chircov, C.; Ficai, A.; Ditu, L.; Oprea, E. Bee Bread: A Promising Source of Bioactive Compounds with Antioxidant Properties—First Report on Some Antimicrobial Features. Antioxidants 2024, 13, 353. [Google Scholar] [CrossRef]
- Stancu, A.I.; Oprea, E.; Dițu, L.M.; Ficai, A.; Ilie, C.-I.; Badea, I.A.; Buleandra, M.; Brîncoveanu, O.; Ghica, M.V.; Avram, I.; et al. Development, Optimization, and Evaluation of New Gel Formulations with Cyclodextrin Complexes and Volatile Oils with Antimicrobial Activity. Gels 2024, 10, 645. [Google Scholar] [CrossRef]
- Renny, J.S.; Tomasevich, L.L.; Tallmadge, E.H.; Collum, D.B. Method of Continuous Variations: Applications of Job Plots to the Study of Molecular Associations in Organometallic Chemistry. Angew. Chem. Int. Ed. 2013, 52, 11998–12013. [Google Scholar] [CrossRef]
- Gatiatulin, A.K.; Grishin, I.A.; Buzyurov, A.V.; Mukhametzyanov, T.A.; Ziganshin, M.A.; Gorbatchuk, V.V. Determination of Melting Parameters of Cyclodextrins Using Fast Scanning Calorimetry. Int. J. Mol. Sci. 2022, 23, 13120. [Google Scholar] [CrossRef]
- Loftsson, T.; Duchene, D. Cyclodextrins and Their Pharmaceutical Applications. Int. J. Pharm. 2007, 329, 1–11. [Google Scholar] [CrossRef]
- Astray, G.; Gonzalez-Barreiro, C.; Mejuto, J.C.; Rial-Otero, R.; Simal-Gándara, J. A Review on the Use of Cyclodextrins in Foods. Food Hydrocoll. 2009, 23, 1631–1640. [Google Scholar] [CrossRef]
- Sun, W.; She, M.-Y.; Yang, Z.; Zhu, Y.-L.; Ma, S.-Y.; Shi, Z.; Li, J.-L. Study on the Inclusion Behaviour and Solid Inclusion Complex of Lomustine with Cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 2016, 86, 45–54. [Google Scholar] [CrossRef]
- Long, D.A. Infrared and Raman Characteristic Group Frequencies. Tables and Charts George Socrates John Wiley and Sons, Ltd., Chichester, Third Edition, 2001. Price £135. J. Raman Spectrosc. 2004, 35, 905. [Google Scholar] [CrossRef]
- Jansook, P.; Ogawa, N.; Loftsson, T. Cyclodextrins: Structure, Physicochemical Properties and Pharmaceutical Applications. Int. J. Pharm. 2018, 535, 272–284. [Google Scholar] [CrossRef] [PubMed]
- Pawar, V.C.; Thaker, V.S. In Vitro Efficacy of 75 Essential Oils against Aspergillus Niger. Mycoses 2006, 49, 316–323. [Google Scholar] [CrossRef]
- Chaieb, K.; Hajlaoui, H.; Zmantar, T.; Kahla-Nakbi, A.B.; Rouabhia, M.; Mahdouani, K.; Bakhrouf, A. The Chemical Composition and Biological Activity of Clove Essential Oil, Eugenia Caryophyllata (Syzigium Aromaticum L. Myrtaceae): A Short Review. Phytother. Res. 2007, 21, 501–506. [Google Scholar] [CrossRef]
- Hill, L.E.; Gomes, C.; Taylor, T.M. Characterization of Beta-Cyclodextrin Inclusion Complexes Containing Essential Oils (Trans-Cinnamaldehyde, Eugenol, Cinnamon Bark, and Clove Bud Extracts) for Antimicrobial Delivery Applications. LWT—Food Sci. Technol. 2013, 51, 86–93. [Google Scholar] [CrossRef]
- Ma, S.; Zhao, Z.; Liu, P. Optimization of Preparation Process of β-Cyclodextrin Inclusion Compound of Clove Essential Oil and Evaluation of Heat Stability and Antioxidant Activities in Vitro. J. Food Meas. Charact. 2018, 12, 2057–2067. [Google Scholar] [CrossRef]
- Anaya-Castro, M.A.; Ayala-Zavala, J.F.; Muñoz-Castellanos, L.; Hernández-Ochoa, L.; Peydecastaing, J.; Durrieu, V. β-Cyclodextrin Inclusion Complexes Containing Clove (Eugenia Caryophyllata) and Mexican Oregano (Lippia Berlandieri) Essential Oils: Preparation, Physicochemical and Antimicrobial Characterization. Food Packag. Shelf Life 2017, 14, 96–101. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef]
- Bhattacharjee, S. DLS and Zeta Potential—What They Are and What They Are Not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef]
- Babick, F. Dynamic Light Scattering (DLS). In Characterization of Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2020; pp. 137–172. [Google Scholar]
- Bonini, M.; Rossi, S.; Karlsson, G.; Almgren, M.; Lo Nostro, P.; Baglioni, P. Self-Assembly of β-Cyclodextrin in Water. Part 1: Cryo-TEM and Dynamic and Static Light Scattering. Langmuir 2006, 22, 1478–1484. [Google Scholar] [CrossRef] [PubMed]
- Parthipan, P.; AlSalhi, M.S.; Devanesan, S.; Rajasekar, A. Evaluation of Syzygium Aromaticum Aqueous Extract as an Eco-Friendly Inhibitor for Microbiologically Influenced Corrosion of Carbon Steel in Oil Reservoir Environment. Bioprocess Biosyst. Eng. 2021, 44, 1441–1452. [Google Scholar] [CrossRef] [PubMed]
- Marchese, A.; Barbieri, R.; Coppo, E.; Orhan, I.E.; Daglia, M.; Nabavi, S.F.; Izadi, M.; Abdollahi, M.; Nabavi, S.M.; Ajami, M. Antimicrobial Activity of Eugenol and Essential Oils Containing Eugenol: A Mechanistic Viewpoint. Crit. Rev. Microbiol. 2017, 43, 668–689. [Google Scholar] [CrossRef] [PubMed]
- Kowalewska, A.; Majewska-Smolarek, K. Eugenol-Based Polymeric Materials—Antibacterial Activity and Applications. Antibiotics 2023, 12, 1570. [Google Scholar] [CrossRef]
- Elbestawy, M.K.M.; El-Sherbiny, G.M.; Moghannem, S.A. Antibacterial, Antibiofilm and Anti-Inflammatory Activities of Eugenol Clove Essential Oil against Resistant Helicobacter Pylori. Molecules 2023, 28, 2448. [Google Scholar] [CrossRef]
- Hu, Q.; Zhou, M.; Wei, S. Progress on the Antimicrobial Activity Research of Clove Oil and Eugenol in the Food Antisepsis Field. J. Food Sci. 2018, 83, 1476–1483. [Google Scholar] [CrossRef]
- Nuñez, L.; D’Aquino, M. Microbicide Activity of Clove Essential Oil (Eugenia Caryophyllata). Braz. J. Microbiol. 2012, 43, 1255–1260. [Google Scholar] [CrossRef]
- Alanazi, A.K.; Alqasmi, M.H.; Alrouji, M.; Kuriri, F.A.; Almuhanna, Y.; Joseph, B.; Asad, M. Antibacterial Activity of Syzygium Aromaticum (Clove) Bud Oil and Its Interaction with Imipenem in Controlling Wound Infections in Rats Caused by Methicillin-Resistant Staphylococcus Aureus. Molecules 2022, 27, 8551. [Google Scholar] [CrossRef]
- Fu, Y.; Chen, L.; Zu, Y.; Liu, Z.; Liu, X.; Liu, Y.; Yao, L.; Efferth, T. The Antibacterial Activity of Clove Essential Oil Against Propionibacterium Acnes and Its Mechanism of Action. Arch. Dermatol. 2009, 145. [Google Scholar] [CrossRef]
- Sun, X.; Sui, S.; Ference, C.; Zhang, Y.; Sun, S.; Zhou, N.; Zhu, W.; Zhou, K. Antimicrobial and Mechanical Properties of β-Cyclodextrin Inclusion with Essential Oils in Chitosan Films. J. Agric. Food Chem. 2014, 62, 8914–8918. [Google Scholar] [CrossRef]
- Vanin, A.B.; Orlando, T.; Piazza, S.P.; Puton, B.M.S.; Cansian, R.L.; Oliveira, D.; Paroul, N. Antimicrobial and Antioxidant Activities of Clove Essential Oil and Eugenyl Acetate Produced by Enzymatic Esterification. Appl. Biochem. Biotechnol. 2014, 174, 1286–1298. [Google Scholar] [CrossRef] [PubMed]
- Dahham, S.; Tabana, Y.; Iqbal, M.; Ahamed, M.; Ezzat, M.; Majid, A.; Majid, A. The Anticancer, Antioxidant and Antimicrobial Properties of the Sesquiterpene β-Caryophyllene from the Essential Oil of Aquilaria Crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef] [PubMed]
- Nissen, L.; Zatta, A.; Stefanini, I.; Grandi, S.; Sgorbati, B.; Biavati, B.; Monti, A. Characterization and Antimicrobial Activity of Essential Oils of Industrial Hemp Varieties (Cannabis Sativa L.). Fitoterapia 2010, 81, 413–419. [Google Scholar] [CrossRef] [PubMed]
Compounds | RT (min.) 1 | RI 2 | UV 3 | K 4 | L 5 | C-L 6 | C 7 |
---|---|---|---|---|---|---|---|
Relative Area % | |||||||
Eugenol | 12.84 | 1358 | 90.67 ± 1.15 | 94.71 ± 1.37 | 93.81 ± 1.33 | 96.30 ± 1.69 | 90.99 ± 1.49 |
Vanillin | 13.29 | 1391 | n.d. | 0.20 ± 0.01 | 0.30 ± 0.02 | 0.26 ± 0.01 | 1.90 ± 0.04 |
(E)-β-Caryophyllene | 13.63 | 1417 | 3.98 ± 0.09 | 0.33 ± 0.03 | 0.63 ± 0.03 | 0.50 ± 0.07 | 2.01 ± 0.04 |
Humulene | 14.03 | 1449 | 0.41 ± 0.03 | 0.06 ± 0.00 | 0.10 ± 0.00 | 0.08 ± 0.00 | 0.27 ± 0.01 |
Eugenyl acetate | 14.84 | 1513 | 4.77 ± 0.15 | 4.66 ± 0.20 | 5.16 ± 0.13 | 2.81 ± 0.04 | 4.68 ± 0.05 |
Caryophyllene oxide | 15.66 | 1582 | 0.17 ± 0.02 | 0.04 ± 0.00 | n.d. | 0.05 ± 0.00 | 0.14 ± 0.00 |
Identified compounds | - | - | 100 | 100 | 100 | 100 | 100 |
Compounds | RT (min.) 1 | RI 2 | Relative Area (%) | ||||
---|---|---|---|---|---|---|---|
ECEO 3 | K 4 | L 5 | C-L 6 | C 7 | |||
p-Cymene | 7.49 | 1012 | 0.10 ± 0.00 | 0.70 ± 0.03 | 0.84 ± 0.04 | 1.57 ± 0.04 | 1.32 ± 0.07 |
Limonene | 7.56 | 1016 | 0.30 ± 0.01 | 0.73 ± 0.03 | 0.75 ± 0.02 | 2.55 ± 0.12 | 1.29 ± 0.06 |
Eucalyptol | 7.64 | 1020 | 0.36 ± 0.03 | 5.10 ± 0.17 | 2.45 ± 0.20 | 6.63 ± 0.20 | 4.00 ± 0.38 |
Eugenol | 12.72 | 1349 | 86.46 ± 0.89 | 91.44 ± 1.91 | 92.63 ± 1.84 | 85.57 ± 1.40 | 88.75 ± 1.75 |
Vanillin | 13.27 | 1390 | n.d. | n.d. | n.d. | n.d. | 0.32 ± 0.03 |
(E)-β-Caryophyllene | 13.58 | 1415 | 10.96 ± 0.30 | 0.37 ± 0.02 | 0.26 ± 0.00 | 0.17 ± 0.00 | 0.30 ± 0.03 |
Humulene | 14.01 | 1455 | 0.85 ± 0.03 | n.d. | n.d. | n.d. | n.d. |
Caryophyllene oxide± | 14.79 | 1509 | 0.98 ± 0.04 | 1.67 ± 0.05 | 3.07 ± 0.20 | 3.52 ± 0.20 | 4.03 ± 0.29 |
Identified compounds | 7.49 | 1012 | 0.10 ± 0.00 | 0.70 ± 0.03 | 0.84 ± 0.04 | 1.57 ± 0.04 | 1.32 ± 0.07 |
Compound Name | |||
---|---|---|---|
Eugenol | Eucalyptol | (E)-β-Caryophyllene | Eugenyl Acetate |
Complexation Method | EE (%) | ||
---|---|---|---|
Eucalyptol | Eugenol | ECEO | |
K | 90.06 ± 3.3 | 99.38 ± 5.2 | 99.40 ± 1.9 |
C | 48.68 ± 2.8 | 55.01 ± 4.7 | 69.26 ± 2.4 |
L | n.d. | 77.66 ± 4.9 | 79.02 ± 2.0 |
C-L | 95.62 ± 3.7 | 53.96 ± 4.4 | 60.48 ± 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stancu, A.I.; Mititelu, M.; Ficai, A.; Ditu, L.-M.; Buleandră, M.; Badea, I.A.; Pincu, E.; Stoian, M.C.; Brîncoveanu, O.; Boldeiu, A.; et al. Comparative Evaluation of β-Cyclodextrin Inclusion Complexes with Eugenol, Eucalyptol, and Clove Essential Oil: Characterisation and Antimicrobial Activity Assessment for Pharmaceutical Applications. Pharmaceutics 2025, 17, 852. https://doi.org/10.3390/pharmaceutics17070852
Stancu AI, Mititelu M, Ficai A, Ditu L-M, Buleandră M, Badea IA, Pincu E, Stoian MC, Brîncoveanu O, Boldeiu A, et al. Comparative Evaluation of β-Cyclodextrin Inclusion Complexes with Eugenol, Eucalyptol, and Clove Essential Oil: Characterisation and Antimicrobial Activity Assessment for Pharmaceutical Applications. Pharmaceutics. 2025; 17(7):852. https://doi.org/10.3390/pharmaceutics17070852
Chicago/Turabian StyleStancu, Alina Ionela, Magdalena Mititelu, Anton Ficai, Lia-Mara Ditu, Mihaela Buleandră, Irinel Adriana Badea, Elena Pincu, Marius Constantin Stoian, Oana Brîncoveanu, Adina Boldeiu, and et al. 2025. "Comparative Evaluation of β-Cyclodextrin Inclusion Complexes with Eugenol, Eucalyptol, and Clove Essential Oil: Characterisation and Antimicrobial Activity Assessment for Pharmaceutical Applications" Pharmaceutics 17, no. 7: 852. https://doi.org/10.3390/pharmaceutics17070852
APA StyleStancu, A. I., Mititelu, M., Ficai, A., Ditu, L.-M., Buleandră, M., Badea, I. A., Pincu, E., Stoian, M. C., Brîncoveanu, O., Boldeiu, A., & Oprea, E. (2025). Comparative Evaluation of β-Cyclodextrin Inclusion Complexes with Eugenol, Eucalyptol, and Clove Essential Oil: Characterisation and Antimicrobial Activity Assessment for Pharmaceutical Applications. Pharmaceutics, 17(7), 852. https://doi.org/10.3390/pharmaceutics17070852