A Semi-Mechanistic Mathematical Model of Immune Tolerance Induction to Support Preclinical Studies of Human Monoclonal Antibodies in Rats
Abstract
1. Introduction
2. Materials and Methods
2.1. Studies Providing PK and ADA Data
2.2. Model Development
2.2.1. Population Pharmacokinetic Model
Structural Model
Inter-Individual Variability, Inter-Occasion Variability, and Residual Error Model
Covariates
PK Model Evaluation, Goodness-of-Fit, and Model Qualification
2.2.2. Semi-Mechanistic Immune Cell Dynamics Model
Structural Model
Model Assumptions and Limitations
- Plasma was modeled as the space for immune cells to reside in as a well-stirred approximation, assuming that lymphocyte trafficking between blood and extravascular spaces, such as lymphatic organs, is rapid relative to the rate-limiting steps in mounting an ADA response. Thus, the model did not account for the interactions between immune cells and the mAb that ideally take place in lymphoid organs, such as the spleen, lymph nodes, and bone marrow, where concentrations may not be reflective of plasma levels [16,20].
- Since DCs are the most efficient antigen-presenting cells, they were chosen to represent all antigen-presenting cells in the model [16].
- The model did not capture the internalization, intracellular antigen processing, MHC-II peptide loading, or antigen presentation processes by MD cells.
- Efficient antigen presentation by MD cells leads to the activation and proliferation of both CD4+ T helper and T regulatory cells, as well as B cells. Subsequently, B cells differentiate into plasma cells that secrete ADA [16]. However, in the current model, ADA formation was directly linked to the number of AThlp cells. As in a T cell-dependent immune response, AThlp cells act as the primary driver of B cell activation [29]. Furthermore, the balance between CD4+ T helper cells and T regulatory cells is the rate-limiting step in ADA formation [29]. To simplify this process, a lag time (Tlag) (as shown in Equation (9)) was incorporated to account for the time required for B cell activation, proliferation, and differentiation into plasma cells.
- No immunomodulatory cytokines, such as IL-2, were included in the model [20].
- Since ADA assessment is semi-quantitative, it generally does not provide sufficient information about the presence of a memory immune response. So, a memory immune response could not be captured with the observed ADA S/N data. Therefore, memory CD4+ T helper or memory T regulatory cells were not incorporated into the model.
- In the absence of the availability of some rat-specific parameter values, such as death rate constants for ND, MD, NThlp, NTreg, and ATreg cells (symbolized as β), the maximum activation rate for ND, NThlp, and NTreg cells (symbolized as δ), and the erenumab concentration at which the ND cell activation rate is at the 50% maximum (symbolized as EC50), these were approximated by using the corresponding values in mice as a closely related rodent species, as previously reported in the literature [16].
Statistical Analysis
Sensitivity Analysis
2.3. Modeling Software and Parameter Estimation
3. Results
3.1. Population PK Model for Erenumab and Its Modulation by ADA Formation
3.2. Semi-Mechanistic Immune Cell Model of Immune Tolerance Induction
3.2.1. Scenario 1: Predicted ADA and Simulated Activated CD4+ T Helper and Activated T Regulatory Cells in Animals That Received the Erenumab Monomer Alone Without Immunosuppression
3.2.2. Scenario 2: Predicted ADA and Simulated Activated CD4+ T Helper and Activated T Regulatory Cells in Animals That Received the Erenumab Monomer with Immunosuppression
3.2.3. Scenario 3: Predicted ADA and Simulated Activated CD4+ T Helper and Activated T Regulatory Cells in Animals That Received the Erenumab Aggregate Alone Without Immunosuppression
3.2.4. Scenario 4: Predicted ADA and Simulated Activated CD4+ T Helper and Activated T Regulatory Cells in Animals That Received the Erenumab Aggregates with Immunosuppression
3.2.5. Sensitivity Analysis
3.3. Model Application for Immune Tolerance Prediction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crommelin, D.J.A.; Sinderlar, R.D.; Meibohm, B. Pharmaceutical Biotechnology: Fundamentals and Applications, 6th ed.; Springer Nature: Cham, Switzerland, 2024. [Google Scholar]
- Herskovitz, J.; Ryman, J.; Thway, T.; Lee, S.; Zhou, L.; Chirmule, N.; Meibohm, B.; Jawa, V. Immune Suppression During Preclinical Drug Development Mitigates Immunogenicity-Mediated Impact on Therapeutic Exposure. AAPS J. 2017, 19, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, L.P.; Kim, J.; Wu, Y.; Mohanty, S.; Phillips, G.S.; Birmingham, D.J.; Robinson, J.M.; Anderson, C.L. FcgammaRIIb on liver sinusoidal endothelium clears small immune complexes. J. Immunol. 2012, 189, 4981–4988. [Google Scholar] [CrossRef]
- Ryman, J.T.; Meibohm, B. Pharmacokinetics of Monoclonal Antibodies. CPT Pharmacomet. Syst. Pharmacol. 2017, 6, 576–588. [Google Scholar] [CrossRef]
- Hjelm, F.; Carlsson, F.; Getahun, A.; Heyman, B. Antibody-mediated regulation of the immune response. Scand. J. Immunol. 2006, 64, 177–184. [Google Scholar] [CrossRef]
- Bui, H.H.; Sidney, J.; Peters, B.; Sathiamurthy, M.; Sinichi, A.; Purton, K.A.; Mothe, B.R.; Chisari, F.V.; Watkins, D.I.; Sette, A. Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications. Immunogenetics 2005, 57, 304–314. [Google Scholar] [CrossRef]
- Caoili, S.E. Benchmarking B-cell epitope prediction for the design of peptide-based vaccines: Problems and prospects. J. Biomed. Biotechnol. 2010, 2010, 910524. [Google Scholar] [CrossRef]
- Greenbaum, J.A.; Andersen, P.H.; Blythe, M.; Bui, H.H.; Cachau, R.E.; Crowe, J.; Davies, M.; Kolaskar, A.S.; Lund, O.; Morrison, S.; et al. Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools. J. Mol. Recognit. 2007, 20, 75–82. [Google Scholar] [CrossRef]
- Nielsen, M.; Lundegaard, C.; Lund, O. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinform. 2007, 8, 238. [Google Scholar] [CrossRef]
- Reche, P.A.; Glutting, J.P.; Zhang, H.; Reinherz, E.L. Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics 2004, 56, 405–419. [Google Scholar] [CrossRef]
- Wang, P.; Sidney, J.; Dow, C.; Mothe, B.; Sette, A.; Peters, B. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput. Biol. 2008, 4, e1000048. [Google Scholar] [CrossRef]
- Burshtyn, D.N.; Barber, B.H. Dynamics of peptide binding to purified antibody-bound H-2Db and H-2Db beta 2m complexes. J. Immunol. 1993, 151, 3082–3093. [Google Scholar] [CrossRef]
- Justesen, S.; Harndahl, M.; Lamberth, K.; Nielsen, L.L.; Buus, S. Functional recombinant MHC class II molecules and high-throughput peptide-binding assays. Immunome Res. 2009, 5, 2. [Google Scholar] [CrossRef]
- Kruisbeek, A.M.; Shevach, E.; Thornton, A.M. Proliferative assays for T cell function. Curr. Protoc. Immunol. 2004, 60, 3–12. [Google Scholar] [CrossRef]
- Wullner, D.; Zhou, L.; Bramhall, E.; Kuck, A.; Goletz, T.J.; Swanson, S.; Chirmule, N.; Jawa, V. Considerations for optimization and validation of an in vitro PBMC derived T cell assay for immunogenicity prediction of biotherapeutics. Clin. Immunol. 2010, 137, 5–14. [Google Scholar] [CrossRef]
- Chen, X.; Hickling, T.P.; Vicini, P. A mechanistic, multiscale mathematical model of immunogenicity for therapeutic proteins: Part 1-theoretical model. CPT Pharmacomet. Syst. Pharmacol. 2014, 3, e133. [Google Scholar] [CrossRef]
- Schellekens, H. Factors influencing the immunogenicity of therapeutic proteins. Nephrol. Dial. Transplant. 2005, 20 (Suppl. S6), vi3–vi9. [Google Scholar] [CrossRef]
- Moticka, E.J. A Historical Perspective on Evidence-Based Immunology, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Chen, X.; Hickling, T.P.; Vicini, P. A mechanistic, multiscale mathematical model of immunogenicity for therapeutic proteins: Part 2-model applications. CPT Pharmacomet. Syst. Pharmacol. 2014, 3, e134. [Google Scholar] [CrossRef]
- Hamuro, L.; Tirucherai, G.S.; Crawford, S.M.; Nayeem, A.; Pillutla, R.C.; DeSilva, B.S.; Leil, T.A.; Thalhauser, C.J. Evaluating a Multiscale Mechanistic Model of the Immune System to Predict Human Immunogenicity for a Biotherapeutic in Phase 1. AAPS J. 2019, 21, 94. [Google Scholar] [CrossRef]
- Perez Ruixo, J.J.; Ma, P.; Chow, A.T. The utility of modeling and simulation approaches to evaluate immunogenicity effect on the therapeutic protein pharmacokinetics. AAPS J. 2013, 15, 172–182. [Google Scholar] [CrossRef]
- Mould, D.R.; Meibohm, B. Drug Development of Therapeutic Monoclonal Antibodies. BioDrugs 2016, 30, 275–293. [Google Scholar] [CrossRef]
- Kloks, C.; Berger, C.; Cortez, P.; Dean, Y.; Heinrich, J.; Bjerring Jensen, L.; Koppenburg, V.; Kostense, S.; Kramer, D.; Spindeldreher, S.; et al. A fit-for-purpose strategy for the risk-based immunogenicity testing of biotherapeutics: A European industry perspective. J. Immunol. Methods 2015, 417, 1–9. [Google Scholar] [CrossRef]
- Yin, L.; Chen, X.; Vicini, P.; Rup, B.; Hickling, T.P. Therapeutic outcomes, assessments, risk factors and mitigation efforts of immunogenicity of therapeutic protein products. Cell Immunol. 2015, 295, 118–126. [Google Scholar] [CrossRef]
- Gupta, P.; Srivastava, A.; Ryman, J.T.; Swanson, M.D.; Kozhich, A.; Jawa, V.; Meibohm, B. Short-Term Immunosuppression in Rats Induces Prolonged Immune Tolerance Towards a Human Monoclonal Antibody, Erenumab. AAPS J. 2025, 27, 94. [Google Scholar] [CrossRef]
- Ryman, J.T. The Development of Methods to Account for Physiologic Dynamic Changes and Their Effects on the Pharmacokinetics of Therapeutic Monoclonal Antibodies and Other Therapeutics. Ph.D. Dissertation, University of Tennessee Health Science Center, Memphis, TN, USA, 2017. [Google Scholar] [CrossRef]
- Mould, D.R.; Upton, R.N. Basic concepts in population modeling, simulation, and model-based drug development-part 2: Introduction to pharmacokinetic modeling methods. CPT Pharmacomet. Syst. Pharmacol. 2013, 2, e38. [Google Scholar] [CrossRef]
- Petitcollin, A.; Bensalem, A.; Verdier, M.C.; Tron, C.; Lemaitre, F.; Paintaud, G.; Bellissant, E.; Ternant, D. Modelling of the Time-Varying Pharmacokinetics of Therapeutic Monoclonal Antibodies: A Literature Review. Clin. Pharmacokinet. 2020, 59, 37–49. [Google Scholar] [CrossRef]
- Jawa, V.; Terry, F.; Gokemeijer, J.; Mitra-Kaushik, S.; Roberts, B.J.; Tourdot, S.; De Groot, A.S. T-Cell Dependent Immunogenicity of Protein Therapeutics Pre-clinical Assessment and Mitigation-Updated Consensus and Review 2020. Front. Immunol. 2020, 11, 1301. [Google Scholar] [CrossRef]
- Velez de Mendizabal, N.; Carneiro, J.; Sole, R.V.; Goni, J.; Bragard, J.; Martinez-Forero, I.; Martinez-Pasamar, S.; Sepulcre, J.; Torrealdea, J.; Bagnato, F.; et al. Modeling the effector—Regulatory T cell cross-regulation reveals the intrinsic character of relapses in Multiple Sclerosis. BMC Syst. Biol. 2011, 5, 114. [Google Scholar] [CrossRef]
- Carneiro, J.; Coutinho, A.; Stewart, J. A model of the immune network with B-T cell co-operation. II—The simulation of ontogenesis. J. Theor. Biol. 1996, 182, 531–547. [Google Scholar] [CrossRef]
- Ren, Y.; Li, L.; Kirshner, S.; Wang, Y.; Sahajwalla, C.; Ji, P. A Model-Based Approach to Quantify the Time-Course of Anti-Drug Antibodies for Therapeutic Proteins. Clin. Pharmacol. Ther. 2019, 105, 970–978. [Google Scholar] [CrossRef]
- Hildner, K.; Finotto, S.; Becker, C.; Schlaak, J.; Schirmacher, P.; Galle, P.R.; Marker-Hermann, E.; Neurath, M.F. Tumour necrosis factor (TNF) production by T cell receptor-primed T lymphocytes is a target for low dose methotrexate in rheumatoid arthritis. Clin. Exp. Immunol. 1999, 118, 137–146. [Google Scholar] [CrossRef]
- Liu, D.Y.; Lon, H.K.; Wang, Y.L.; DuBois, D.C.; Almon, R.R.; Jusko, W.J. Pharmacokinetics, pharmacodynamics and toxicities of methotrexate in healthy and collagen-induced arthritic rats. Biopharm. Drug Dispos. 2013, 34, 203–214. [Google Scholar] [CrossRef]
- Vu, M.D.; Qi, S.; Xu, D.; Wu, J.; Fitzsimmons, W.E.; Sehgal, S.N.; Dumont, L.; Busque, S.; Daloze, P.; Chen, H. Tacrolimus (FK506) and sirolimus (rapamycin) in combination are not antagonistic but produce extended graft survival in cardiac transplantation in the rat. Transplantation 1997, 64, 1853–1856. [Google Scholar] [CrossRef]
- Dumont, F.J.; Koprak, S.; Staruch, M.J.; Talento, A.; Koo, G.; DaSilva, C.; Sinclair, P.J.; Wong, F.; Woods, J.; Barker, J.; et al. A tacrolimus-related immunosuppressant with reduced toxicity. Transplantation 1998, 65, 18–26. [Google Scholar] [CrossRef]
- Zager, M.G.; Barton, H.A. A multiscale, mechanism-driven, dynamic model for the effects of 5alpha-reductase inhibition on prostate maintenance. PLoS ONE 2012, 7, e44359. [Google Scholar] [CrossRef]
- Verch, T.; Roselle, C.; Shank-Retzlaff, M. Reduction of dilution error in ELISAs using an internal standard. Bioanalysis 2016, 8, 1451–1464. [Google Scholar] [CrossRef]
- Johnson, J.R. Methods for Handling Concentration Values Below the Limit of Quantification in PK Studies. In Proceedings of the PhUSE US Connect 2018, Raleigh, NC, USA, 3–6 June 2018. [Google Scholar]
- Ette, E.I.; Williams, P.J.; Lane, J.R. Population pharmacokinetics III: Design, analysis, and application of population pharmacokinetic Studies. Ann. Pharmacother. 2004, 38, 2136–2144. [Google Scholar] [CrossRef]
- Shankar, G.; Arkin, S.; Cocea, L.; Devanarayan, V.; Kirshner, S.; Kromminga, A.; Quarmby, V.; Richards, S.; Schneider, C.K.; Subramanyam, M.; et al. Assessment and reporting of the clinical immunogenicity of therapeutic proteins and peptides-harmonized terminology and tactical recommendations. AAPS J. 2014, 16, 658–673. [Google Scholar] [CrossRef]
- Morgan, H.; Tseng, S.Y.; Gallais, Y.; Leineweber, M.; Buchmann, P.; Riccardi, S.; Nabhan, M.; Lo, J.; Gani, Z.; Szely, N.; et al. Evaluation of in vitro Assays to Assess the Modulation of Dendritic Cells Functions by Therapeutic Antibodies and Aggregates. Front. Immunol. 2019, 10, 601. [Google Scholar] [CrossRef]
- Shakhnovich, V.; Meibohm, B.; Rosenberg, A.; Kierzek, A.M.; Hasenkamp, R.; Funk, R.S.; Thalhauser, C.J.; van der Graaf, P.H.; Wang, Y.C.; Hamuro, L. Immunogenicity in Clinical Practice and Drug Development: When is it Significant? Clin. Transl. Sci. 2020, 13, 219–223. [Google Scholar] [CrossRef]
- Xu, Z.; Vu, T.; Lee, H.; Hu, C.; Ling, J.; Yan, H.; Baker, D.; Beutler, A.; Pendley, C.; Wagner, C.; et al. Population pharmacokinetics of golimumab, an anti-tumor necrosis factor-alpha human monoclonal antibody, in patients with psoriatic arthritis. J. Clin. Pharmacol. 2009, 49, 1056–1070. [Google Scholar] [CrossRef]
- Kagan, L.; Turner, M.R.; Balu-Iyer, S.V.; Mager, D.E. Subcutaneous absorption of monoclonal antibodies: Role of dose, site of injection, and injection volume on rituximab pharmacokinetics in rats. Pharm. Res. 2012, 29, 490–499. [Google Scholar] [CrossRef]
- Mould, D.R.; Baumann, A.; Kuhlmann, J.; Keating, M.J.; Weitman, S.; Hillmen, P.; Brettman, L.R.; Reif, S.; Bonate, P.L. Population pharmacokinetics-pharmacodynamics of alemtuzumab (Campath) in patients with chronic lymphocytic leukaemia and its link to treatment response. Br. J. Clin. Pharmacol. 2007, 64, 278–291. [Google Scholar] [CrossRef]
- Sun, Y.N.; Lu, J.F.; Joshi, A.; Compton, P.; Kwon, P.; Bruno, R.A. Population pharmacokinetics of efalizumab (humanized monoclonal anti-CD11a antibody) following long-term subcutaneous weekly dosing in psoriasis subjects. J. Clin. Pharmacol. 2005, 45, 468–476. [Google Scholar] [CrossRef]
- Zhu, Y.; Hu, C.; Lu, M.; Liao, S.; Marini, J.C.; Yohrling, J.; Yeilding, N.; Davis, H.M.; Zhou, H. Population pharmacokinetic modeling of ustekinumab, a human monoclonal antibody targeting IL-12/23p40, in patients with moderate to severe plaque psoriasis. J. Clin. Pharmacol. 2009, 49, 162–175. [Google Scholar] [CrossRef]
- Kloft, C.; Graefe, E.U.; Tanswell, P.; Scott, A.M.; Hofheinz, R.; Amelsberg, A.; Karlsson, M.O. Population pharmacokinetics of sibrotuzumab, a novel therapeutic monoclonal antibody, in cancer patients. Investig. New Drugs 2004, 22, 39–52. [Google Scholar] [CrossRef]
- Fasanmade, A.A.; Adedokun, O.J.; Ford, J.; Hernandez, D.; Johanns, J.; Hu, C.; Davis, H.M.; Zhou, H. Population pharmacokinetic analysis of infliximab in patients with ulcerative colitis. Eur. J. Clin. Pharmacol. 2009, 65, 1211–1228. [Google Scholar] [CrossRef]
- Kuester, K.; Kovar, A.; Lupfert, C.; Brockhaus, B.; Kloft, C. Population pharmacokinetic data analysis of three phase I studies of matuzumab, a humanised anti-EGFR monoclonal antibody in clinical cancer development. Br. J. Cancer 2008, 98, 900–906. [Google Scholar] [CrossRef]
- Vande Casteele, N.; Mould, D.R.; Coarse, J.; Hasan, I.; Gils, A.; Feagan, B.; Sandborn, W.J. Accounting for Pharmacokinetic Variability of Certolizumab Pegol in Patients with Crohn’s Disease. Clin. Pharmacokinet. 2017, 56, 1513–1523. [Google Scholar] [CrossRef]
- Viola, M.; Sequeira, J.; Seica, R.; Veiga, F.; Serra, J.; Santos, A.C.; Ribeiro, A.J. Subcutaneous delivery of monoclonal antibodies: How do we get there? J. Control. Release 2018, 286, 301–314. [Google Scholar] [CrossRef]
- Benacerraf, B.; Sebestyen, M.; Cooper, N.S. The clearance of antigen antibody complexes from the blood by the reticuloendothelial system. J. Immunol. 1959, 82, 131–137. [Google Scholar] [CrossRef]
- Boer, M.C.; Joosten, S.A.; Ottenhoff, T.H. Regulatory T-Cells at the Interface between Human Host and Pathogens in Infectious Diseases and Vaccination. Front. Immunol. 2015, 6, 217. [Google Scholar] [CrossRef]
- Joosten, S.A.; Ottenhoff, T.H. Human CD4 and CD8 regulatory T cells in infectious diseases and vaccination. Hum. Immunol. 2008, 69, 760–770. [Google Scholar] [CrossRef]
- Miller, S.D.; Turley, D.M.; Podojil, J.R. Antigen-specific tolerance strategies for the prevention and treatment of autoimmune disease. Nat. Rev. Immunol. 2007, 7, 665–677. [Google Scholar] [CrossRef]
- Sakaguchi, S.; Yamaguchi, T.; Nomura, T.; Ono, M. Regulatory T cells and immune tolerance. Cell 2008, 133, 775–787. [Google Scholar] [CrossRef]
- Takahashi, T.; Kuniyasu, Y.; Toda, M.; Sakaguchi, N.; Itoh, M.; Iwata, M.; Shimizu, J.; Sakaguchi, S. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: Induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 1998, 10, 1969–1980. [Google Scholar] [CrossRef]
- von Herrath, M.G.; Harrison, L.C. Antigen-induced regulatory T cells in autoimmunity. Nat. Rev. Immunol. 2003, 3, 223–232. [Google Scholar] [CrossRef]
- Schwartz, R.H. Historical overview of immunological tolerance. Cold Spring Harb. Perspect. Biol. 2012, 4, a006908. [Google Scholar] [CrossRef]
- Szczepanik, M. Mechanisms of immunological tolerance to the antigens of the central nervous system. Skin-induced tolerance as a new therapeutic concept. J. Physiol. Pharmacol. 2011, 62, 159–165. [Google Scholar]
- Baltcheva, I.; Codarri, L.; Pantaleo, G.; Le Boudec, J.Y. Lifelong dynamics of human CD4+CD25+ regulatory T cells: Insights from in vivo data and mathematical modeling. J. Theor. Biol. 2010, 266, 307–322. [Google Scholar] [CrossRef]
- de Pillis, L.; Caldwell, T.; Sarapata, E.; Williams, H. Mathematical modeling of regulatory T cell effects on renal cell carcinoma treatment. Discret. Contin. Dyn. Syst.-B 2013, 18, 915–943. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, C.; Dong, Y.; Takeuchi, Y. Mathematical Modelling of the Inhibitory Role of Regulatory T Cells in Tumor Immune Response. Complexity 2020, 2020, 4834165. [Google Scholar] [CrossRef]
- Tian, H.; Cronstein, B.N. Understanding the mechanisms of action of methotrexate: Implications for the treatment of rheumatoid arthritis. Bull. NYU Hosp. Jt. Dis. 2007, 65, 168–173. [Google Scholar]
- Avdeeva, A.; Rubtsov, Y.; Dyikanov, D.; Popkova, T.; Nasonov, E. Regulatory T cells in patients with early untreated rheumatoid arthritis: Phenotypic changes in the course of methotrexate treatment. Biochimie 2020, 174, 9–17. [Google Scholar] [CrossRef]
- Hendrikx, T.K.; van Gurp, E.A.; Sewgobind, V.D.; Mol, W.M.; Schoordijk, W.; Klepper, M.; Velthuis, J.H.; Geel, A.; Ijzermans, J.N.; Weimar, W.; et al. Generation of donor-specific regulatory T-cell function in kidney transplant patients. Transplantation 2009, 87, 376–383. [Google Scholar] [CrossRef]
- Miroux, C.; Morales, O.; Ghazal, K.; Othman, S.B.; de Launoit, Y.; Pancre, V.; Conti, F.; Delhem, N. In vitro effects of cyclosporine A and tacrolimus on regulatory T-cell proliferation and function. Transplantation 2012, 94, 123–131. [Google Scholar] [CrossRef]
- Prior, H.; Clarke, D.O.; Jones, D.; Salicru, E.; Schutten, M.M.; Sewell, F. Exploring the Definition of “Similar Toxicities”: Case Studies Illustrating Industry and Regulatory Interpretation of ICH S6(R1) for Long-Term Toxicity Studies in One or Two Species. Int. J. Toxicol. 2022, 41, 171–181. [Google Scholar] [CrossRef]
- Inci, A.; Ezgu, F.S.; Tumer, L. Advances in Immune Tolerance Induction in Enzyme Replacement Therapy. Paediatr. Drugs 2024, 26, 287–308. [Google Scholar] [CrossRef]
- Kishnani, P.S.; Dickson, P.I.; Muldowney, L.; Lee, J.J.; Rosenberg, A.; Abichandani, R.; Bluestone, J.A.; Burton, B.K.; Dewey, M.; Freitas, A.; et al. Immune response to enzyme replacement therapies in lysosomal storage diseases and the role of immune tolerance induction. Mol. Genet. Metab. 2016, 117, 66–83. [Google Scholar] [CrossRef]
- Messinger, Y.H.; Mendelsohn, N.J.; Rhead, W.; Dimmock, D.; Hershkovitz, E.; Champion, M.; Jones, S.A.; Olson, R.; White, A.; Wells, C.; et al. Successful immune tolerance induction to enzyme replacement therapy in CRIM-negative infantile Pompe disease. Genet. Med. 2012, 14, 135–142. [Google Scholar] [CrossRef]
- Furukawa, A.; Wisel, S.A.; Tang, Q. Impact of Immune-Modulatory Drugs on Regulatory T Cell. Transplantation 2016, 100, 2288–2300. [Google Scholar] [CrossRef]
- Sun, B.; Bird, A.; Young, S.P.; Kishnani, P.S.; Chen, Y.T.; Koeberl, D.D. Enhanced response to enzyme replacement therapy in Pompe disease after the induction of immune tolerance. Am. J. Hum. Genet. 2007, 81, 1042–1049. [Google Scholar] [CrossRef]
- Dominguez-Villar, M.; Hafler, D.A. Regulatory T cells in autoimmune disease. Nat. Immunol. 2018, 19, 665–673. [Google Scholar] [CrossRef]
- Roth-Walter, F.; Adcock, I.M.; Benito-Villalvilla, C.; Bianchini, R.; Bjermer, L.; Boyman, O.; Caramori, G.; Cari, L.; Fan Chung, K.; Diamant, Z.; et al. Immune modulation via T regulatory cell enhancement: Disease-modifying therapies for autoimmunity and their potential for chronic allergic and inflammatory diseases—An EAACI position paper of the Task Force on Immunopharmacology (TIPCO). Allergy 2021, 76, 90–113. [Google Scholar] [CrossRef]
- Gunn, G.R., 3rd; Sealey, D.C.; Jamali, F.; Meibohm, B.; Ghosh, S.; Shankar, G. From the bench to clinical practice: Understanding the challenges and uncertainties in immunogenicity testing for biopharmaceuticals. Clin. Exp. Immunol. 2016, 184, 137–146. [Google Scholar] [CrossRef]
- Merad, M.; Manz, M.G. Dendritic cell homeostasis. Blood 2009, 113, 3418–3427. [Google Scholar] [CrossRef]
- Lee, H.Y.; Topham, D.J.; Park, S.Y.; Hollenbaugh, J.; Treanor, J.; Mosmann, T.R.; Jin, X.; Ward, B.M.; Miao, H.; Holden-Wiltse, J.; et al. Simulation and prediction of the adaptive immune response to influenza A virus infection. J. Virol. 2009, 83, 7151–7165. [Google Scholar] [CrossRef]
- Saito, Y.; Yanagawa, Y.; Kikuchi, K.; Iijima, N.; Iwabuchi, K.; Onoe, K. Low-dose lipopolysaccharide modifies the production of IL-12 by dendritic cells in response to various cytokines. J. Clin. Exp. Hematop. 2006, 46, 31–36. [Google Scholar] [CrossRef]
- Diao, J.; Winter, E.; Cantin, C.; Chen, W.; Xu, L.; Kelvin, D.; Phillips, J.; Cattral, M.S. In situ replication of immediate dendritic cell (DC) precursors contributes to conventional DC homeostasis in lymphoid tissue. J. Immunol. 2006, 176, 7196–7206. [Google Scholar] [CrossRef]
- Hataye, J.; Moon, J.J.; Khoruts, A.; Reilly, C.; Jenkins, M.K. Naive and memory CD4+ T cell survival controlled by clonal abundance. Science 2006, 312, 114–116. [Google Scholar] [CrossRef]
- Kohler, B. Mathematically modeling dynamics of T cell responses: Predictions concerning the generation of memory cells. J. Theor. Biol. 2007, 245, 669–676. [Google Scholar] [CrossRef]
- Bergman, I.; Burckart, G.J.; Pohl, C.R.; Venkataramanan, R.; Barmada, M.A.; Griffin, J.A.; Cheung, N.K. Pharmacokinetics of IgG and IgM anti-ganglioside antibodies in rats and monkeys after intrathecal administration. J. Pharmacol. Exp. Ther. 1998, 284, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.N.; Zhang, B.K.; Li, J.; Zuo, X.C.; Yuan, H.; Yang, G.P.; Cheng, Z.N.; Liu, Z.; Li, P.J.; Tan, H.Y.; et al. Effect of amlodipine on the pharmacokinetics of tacrolimus in rats. Xenobiotica 2013, 43, 699–704. [Google Scholar] [CrossRef] [PubMed]
- Scheufler, E.; Zetler, G.; Iven, H. Pharmacokinetics and organ distribution of methotrexate in the rat. Pharmacology 1981, 23, 75–81. [Google Scholar] [CrossRef] [PubMed]
Parameter | Estimate (% RSE) | IIV (%) | IOV (%) | Non-Parametric Bootstrap Median (90% CI; n = 1000) |
---|---|---|---|---|
Base CL/F, mL/day | 1.83 (3.82) | 17.8 | 1.81 (1.72, 1.93) | |
Base Vd/F, mL | 32.6 (3.74) | 86.9 (Study 1) 21.2 (Study 2) | 32.4 (28.0, 35.6) | |
Ka, day−1 | 0.91 (7.94) | 183.0 | 0.94 (0.80, 1.15) | |
θaggregation, CL | 2.40 (5.60) | 2.50 (2.24, 2.80) | ||
θaggregation, Ka | 0.12 (13.6) | 0.11 (0.08, 0.15) | ||
θADA Exponent in ADA effect on CL/F | 0.37 (3.27) | 0.38 (0.32, 0.45) | ||
Additive residual error (Study 1) | 0.09 (22.2) | 0.1 (0.06, 0.37) | ||
Proportional residual error (Study 1) | 0.29 (2.40) | 0.28 (0.25, 0.32) | ||
Additive residual error (Study 2) | 0.12 (12.4) | 0.12 (0.06, 0.18) | ||
Proportional residual error (Study 2) | 0.13 (3.45) | 0.13 (0.11, 0.16) |
Parameter | Description | Unit | Value (%RSE) | IIV (%) |
---|---|---|---|---|
A. Model Calibration | ||||
EC50aggregate | Erenumab aggregate concentration at which the naïve dendritic cell activation rate is 50% maximum | μg/mL | 2.02 | |
ρAThlp | Maximum proliferation rate for activated CD4+ T helper cells | Day−1 | 2.45 | |
βAThlp | Death rate for activated CD4+ T helper cells | Day−1 | 0.05 | |
B. Model Fitting | ||||
ρATreg | Maximum proliferation rate for activated T regulatory cells | Day−1 | 3.02 (3.01) | 15.3 |
ATreg50 | Number of activated T regulatory cells required for half-maximal suppression of activated CD4+ T helper cells | Cells/μL | 1000 | 3.4 |
Tlag | Lag time for ADA formation | Day | 28.3 (2.19) | 53 |
C. Published Literature | ||||
βND | Death rate for naïve dendritic cells | Day−1 | 0.0924 | |
ND0 | Initial number of naïve dendritic cells | Cells/μL | 3700 | |
δND | Maximum activation rate for naïve dendritic cells | Day−1 | 1.5 | |
EC50monomer | Erenumab monomer concentration at which naïve dendritic cell activation rate is at the 50% maximum | μg/mL | 9.85 | |
βMD | Death rate for mature dendritic cells | Day−1 | 0.2310 | |
NThlp,0 | Initial number of naïve CD4+ T helper cells | Cells/μL | 723 | |
βNThlp | Death rate for naïve CD4+ T helper cells | Day−1 | 0.0056 | |
δNThlp | Maximum activation rate for naïve CD4+ T helper cells | Day−1 | 1.5 | |
NTreg,0 | Initial number of naïve T regulatory cells | Cells/μL | 62 | |
βATreg | Death rate for activated T regulatory cells | Day−1 | 0.18 | |
βNTreg | Death rate for naïve T regulatory cells | Day−1 | 0.0056 | |
δNTreg | Maximum activation rate for naïve T regulatory cells | Day−1 | 1.5 | |
α | Secretion rate of antibodies | nM/day | 77 | |
KADA | Elimination rate of antibodies | Day−1 | 0.138 |
Parameter | Parameter Description | CCmax |
---|---|---|
ρATreg | Maximum proliferation rate for activated T regulatory cells | −85.0 |
ρAThlp | Maximum proliferation rate for activated CD4+ T helper cells | +83.2 |
NT0reg | Initial number of naïve T regulatory cells | −10.2 |
ATreg50 | Number of activated T regulatory cells required for half-maximal suppression of activated CD4+ T helper cells | +10.1 |
NT0hlp | Initial number of naïve CD4+ T helper cells | +10.0 |
EC50 | Erenumab concentration at which naïve dendritic cell activation rate is at the 50% maximum | −9.35 |
βAThlp | Death rate of activated CD4+ T helper cells | −5.12 |
δNThlp | Maximum activation rate for naïve CD4+ T helper cells | +2.35 |
Elimination rate constant of antibodies | −2.05 | |
α | Secretion rate of antibodies | +2.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, P.; Ryman, J.T.; Jawa, V.; Meibohm, B. A Semi-Mechanistic Mathematical Model of Immune Tolerance Induction to Support Preclinical Studies of Human Monoclonal Antibodies in Rats. Pharmaceutics 2025, 17, 845. https://doi.org/10.3390/pharmaceutics17070845
Gupta P, Ryman JT, Jawa V, Meibohm B. A Semi-Mechanistic Mathematical Model of Immune Tolerance Induction to Support Preclinical Studies of Human Monoclonal Antibodies in Rats. Pharmaceutics. 2025; 17(7):845. https://doi.org/10.3390/pharmaceutics17070845
Chicago/Turabian StyleGupta, Paridhi, Josiah T. Ryman, Vibha Jawa, and Bernd Meibohm. 2025. "A Semi-Mechanistic Mathematical Model of Immune Tolerance Induction to Support Preclinical Studies of Human Monoclonal Antibodies in Rats" Pharmaceutics 17, no. 7: 845. https://doi.org/10.3390/pharmaceutics17070845
APA StyleGupta, P., Ryman, J. T., Jawa, V., & Meibohm, B. (2025). A Semi-Mechanistic Mathematical Model of Immune Tolerance Induction to Support Preclinical Studies of Human Monoclonal Antibodies in Rats. Pharmaceutics, 17(7), 845. https://doi.org/10.3390/pharmaceutics17070845