Impact of Different Hydrate Forms of Magnesium Stearate as a Flow Control Agent on the Physical Stability and Inhalation Efficiency of Carrier-Based Formulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Physicochemical Properties of Different Magnesium Stearate Hydrate Forms
2.2.1. Powder X-Ray Diffraction
2.2.2. Fourier Transformation-Infrared Spectroscopy
2.2.3. Differential Scanning Calorimetry
2.2.4. Water Content
2.2.5. Particle Size Distribution
2.2.6. Dynamic Vapor Absorption
2.3. Preparation of Lactose Carrier-Based Dry Powder Formulation Using Arformoterol and Budesonide with Various Types of Magnesium Stearate
2.4. High Performance Liquid Chromatography Analysis
2.5. Aerodynamic Performance
2.6. Raman Image of Formulations with Different Magnesium Stearate Hydrate Forms
2.7. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties of Different Mg.st Hydrate Forms
3.2. Aerodynamic Performance of Arformoterol Lactose-Carrier Based Formulations Prepared with Different Mg.st Hydrate Forms
3.3. Aerodynamic Performance of Budesonide Lactose Carrier-Based Formulations Prepared with Different Mg.st Hydrate Forms
3.4. Raman Images of Arformoterol Formulations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ARF | Arformoterol | ||
BUD | Budesonide | ||
Mg.st | Magnesium stearate | ||
Mg.st-AH | Magnesium stearate anhydrate | ||
Mg.st-MH | Magnesium stearate monohydrate | ||
Mg.st-DH | Magnesium stearate dihydrate | ||
DPI | Dry powder inhalation | ||
PXRD | Powder X-ray diffraction | ||
DSC | Differential scanning calorimetry | ||
FT-IR | Fourier-transform infrared spectroscopy | ||
DVA | Dynamic vapor absorption | ||
RH | Relative humidity | ||
FCAs | Force control agents | ||
NGI | Next generation impactor | ||
ID | Induction port | ||
MOC | Micro-orifice collector | ||
ED | Emitted dose | ||
FPF | Fine particle fraction |
References
- Lavorini, F.; Pistolesi, M.; Usmani, O.S.J. Recent advances in capsule-based dry powder inhaler technology. Multidiscip. Respir. Med. 2017, 12, 11. [Google Scholar] [CrossRef] [PubMed]
- Shetty, N.; Cipolla, D.; Park, H.; Zhou, Q.T. Physical stability of dry powder inhaler formulations. Expert Opin. Drug Deliv. 2020, 17, 77–96. [Google Scholar] [CrossRef] [PubMed]
- Stegemann, S.; Faulhammer, E.; Pinto, J.T.; Paudel, A. Focusing on powder processing in dry powder inhalation product development, manufacturing and performance. Int. J. Pharm. 2022, 614, 121445. [Google Scholar] [CrossRef]
- Begat, P.; Price, R.; Harris, H.; Morton, D.A.; Staniforth, J.N. The Influence of force control agents on the cohesive-adhesive balance in dry powder inhaler formulations. KONA 2005, 23, 109–121. [Google Scholar] [CrossRef]
- Labiris, N.R.; Dolovich, M.B. Pulmonary drug delivery. Part II: The role of inhalant delivery devices and drug formulations in therapeutic effectiveness of aerosolized medications. Br. J. Clin. Pharmacol. 2003, 56, 600–612. [Google Scholar] [CrossRef]
- Yang, M.-S.; Kang, J.-H.; Kim, D.-W.; Park, C.-W. Recent developments in dry powder inhalation (DPI) formulations for lung-targeted drug delivery. J. Pharm. Investig. 2024, 54, 113–130. [Google Scholar] [CrossRef]
- Zhou, Q.T.; Armstrong, B.; Larson, I.; Stewart, P.J.; Morton, D.A. Understanding the influence of powder flowability, fluidization and de-agglomeration characteristics on the aerosolization of pharmaceutical model powders. Eur. J. Pharm. Sci. 2010, 40, 412–421. [Google Scholar] [CrossRef]
- Chaurasiya, B.; Zhao, Y.-Y. Dry Powder for pulmonary delivery: A comprehensive review. Pharmaceutics 2020, 13, 31. [Google Scholar] [CrossRef]
- Pasero, L.; Susa, F.; Limongi, T.; Pisano, R. A review on micro and nanoengineering in Powder-Based pulmonary drug delivery. Int. J. Pharm. 2024, 659, 124248. [Google Scholar] [CrossRef]
- Scherließ, R.; Bock, S.; Bungert, N.; Neustock, A.; Valentin, L. Particle engineering in dry powders for inhalation. Eur. J. Pharm. Sci. 2022, 172, 106158. [Google Scholar] [CrossRef]
- Park, H.; Ha, E.-S.; Kim, M.-S. Surface modification strategies for high-dose dry powder inhalers. J. Pharm. Investig. 2021, 51, 635–668. [Google Scholar] [CrossRef]
- Singh, D.J.; Jain, R.R.; Soni, P.S.; Abdul, S.; Darshana, H.; Gaikwad, R.V.; Menon, M.D. Preparation and evaluation of surface modified lactose particles for improved performance of fluticasone propionate dry powder inhaler. J. Aerosol Med. Pulm. Drug Deliv. 2015, 28, 254–267. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.M.; Martin, G.P.; Marriott, C.; Pritchard, J. The influence of carrier morphology on drug delivery by dry powder inhalers. Int. J. Pharm. 2000, 200, 93–106. [Google Scholar] [CrossRef]
- Hebbink, G.A.; Jaspers, M.; Peters, H.J.; Dickhoff, B.H. Recent developments in lactose blend formulations for carrier-based dry powder inhalation. Adv. Drug Deliv. Rev. 2022, 189, 114527. [Google Scholar] [CrossRef]
- Abiona, O.; Wyatt, D.; Koner, J.; Mohammed, A. The Optimisation of carrier selection in dry powder inhaler formulation and the role of surface energetics. Biomedicines 2022, 10, 2707. [Google Scholar] [CrossRef]
- Begat, P.; Morton, D.A.; Shur, J.; Kippax, P.; Staniforth, J.N.; Price, R. The role of force control agents in high-dose dry powder inhaler formulations. J. Pharm. Sci. 2009, 98, 2770–2783. [Google Scholar] [CrossRef]
- Rajala, R.; Laine, E. The effect of moisture on the structure of magnesium stearate. Thermochim. Acta 1995, 248, 177–188. [Google Scholar] [CrossRef]
- Calahan, J.L.; Paul, S.; Yanez, E.G.; DeNeve, D.; Sun, C.C.; Munson, E.J. The impact of solid-state form, water content and surface area of magnesium stearate on lubrication efficiency, tabletability, and dissolution. Pharm. Dev. Technol. 2021, 26, 150–156. [Google Scholar] [CrossRef]
- Yamamoto, K.; Tamura, T.; Yoshihashi, Y.; Terada, K.; Yonemochi, E. Effect of magnesium stearate mono- and dihydrate dispersibilities on physical properties of tablets. Chem. Pharm. Bull. 2017, 65, 1028–1034. [Google Scholar] [CrossRef]
- Sun, C.C.; Kleinebudde, P. Mini review: Mechanisms to the loss of tabletability by dry granulation. Eur. J. Pharm. Biopharm. 2016, 106, 9–14. [Google Scholar] [CrossRef]
- Oh, D.-W.; Choi, J.H.; Yu, G.H.; Kim, B.K.; Cho, S.M.; Choi, Y.W.; Jeong, J.-H.; Kang, J.-H.; Kim, D.-W.; Park, C.-W. Formulation and evaluation of carrier-based dry powders containing budesonide and arformoterol for inhalation therapy. Pharm. Dev. Technol. 2024, 29, 966–975. [Google Scholar] [CrossRef] [PubMed]
- Khaki, A.; Garmabi, H.; Javadi, A.; Yahyaee, N. Effect of crystallinity, crystal polymorphism, and graphene oxide nanosheets on the barrier properties of poly (l-lactic acid). Eur. Polym. J. 2019, 118, 53–63. [Google Scholar] [CrossRef]
- Mikhailov, E.; Vlasenko, S.; Martin, S.; Koop, T.; Pöschl, U. Amorphous and crystalline aerosol particles interacting with water vapor-Part 1: Microstructure, phase transitions, hygroscopic growth and kinetic limitations. Atmos. Chem. Phys. 2009, 9, 9491–9522. [Google Scholar] [CrossRef]
- Tian, F.; Qu, H.; Zimmermann, A.; Munk, T.; Jørgensen, A.C.; Rantanen, J. Factors affecting crystallization of hydrates. J. Pharm. Pharmacol. 2010, 62, 1534–1546. [Google Scholar] [CrossRef]
- Sharpe, S.A.; Celik, M.; Newman, A.W.; Brittain, H.G. Physical characterization of the polymorphic variations of magnesium stearate and magnesium palmitate hydrate species. Struct. Chem. 1997, 8, 73–84. [Google Scholar] [CrossRef]
- Al-Mohaya, M.M. Effect of Synthesis Conditions of Magnesium Stearate on Its Lubrication Properties. Ph.D. Thesis, Near East University, Nicosia, Cyprus, 2018. [Google Scholar]
- Begat, P.; Morton, D.A.; Staniforth, J.N.; Price, R. The cohesive-adhesive balances in dry powder inhaler formulations I: Direct quantification by atomic force microscopy. Pharm. Res. 2004, 21, 1591–1597. [Google Scholar] [CrossRef]
- Begat, P.; Morton, D.A.V.; Staniforth, J.N.; Price, R. The cohesive-adhesive balances in dry powder inhaler formulations II: Influence on fine particle delivery characteristics. Pharm. Res. 2004, 21, 1826–1833. [Google Scholar] [CrossRef]
Formulation | ARF | ARF Mg.st-AH | ARF Mg.st-MH | ARF Mg.st-DH | BUD | BUD Mg.st-AH | BUD Mg.st-MH | BUD Mg.st-DH |
---|---|---|---|---|---|---|---|---|
ARF | 5 | 5 | 5 | 5 | - | - | - | - |
BUD | - | - | - | - | 5 | 5 | 5 | 5 |
Inhalac 251 | 95 | 90 | 90 | 90 | 95 | 90 | 90 | 90 |
Mg.st-AH | - | 5 | - | - | - | 5 | - | - |
Mg.st-MH | - | - | 5 | - | - | - | 5 | - |
Mg.st-DH | - | - | - | 5 | - | - | - | 5 |
Formulation | ARF | ARF Mg.st-AH | ARF Mg.st-MH | ARF Mg.st-DH | |
---|---|---|---|---|---|
ED (%) | Initial | 2.58 | 0.71 | 1.87 | 1.65 |
1 week | 3.88 | 1.63 ** | 1.46 ** | 0.67 ** | |
2 weeks | 0.70 | 2.19 ** | 0.97 # | 0.64 # | |
FPF (%) | Initial | 1.97 | 4.71 | 5.16 **,# | 6.08 |
1 week | 7.15 | 1.78 ** | # | 3.01 | |
2 weeks | 7.66 | 8.81 | # | 2.67 | |
MMAD (μm) | Initial | 0.14 | 0.01 * | 0.09 | 0.09 |
1 week | 0.04 | 0.01 | 0.09 *,## | 0.03 **,## | |
2 weeks | 0.15 | 0.06 | 0.07 | 0.04 * | |
GSD | Initial | 0.05 | 0.09 | 0.06 | 0.10 |
1 week | 0.06 | 0.09 | 0.07 | 0.01 | |
2 weeks | 0.06 | 0.11 | 0.03 | 0.05 |
Formulation | BUD | BUD Mg.st-AH | BUD Mg.st-MH | BUD Mg.st-DH | |
---|---|---|---|---|---|
ED (%) | Initial | 0.49 | 3.75 | 0.85 | 0.57 |
1 week | 1.20 | 0.53 | 2.48 ***,##,!! | 0.14 | |
2 weeks | 1.44 | 0.61 *,! | 0.91 | ||
FPF (%) | Initial | 3.86 | 8.11 * | 4.09 **,#,! | 1.11 * |
1 week | 1.20 | 7.82 ** | 1.34 ***,##,! | 1.65 *** | |
2 weeks | 3.74 | 0.73 *** | 6.21 ***,##,!! | 2.75 ** | |
MMAD (μm) | Initial | 0.35 | 0.19 | 0.05 ** | 0.02 ** |
1 week | 0.09 | 0.03 *** | 0.005 *** | 0.09 *** | |
2 weeks | 0.19 | 0.03 *** | 0.10 *** | 0.02 *** | |
GSD | Initial | 0.13 | 0.06 ** | 0.07 ** | 0.04 ** |
1 week | 0.05 | 0.04 ** | 0.10 *** | 0.05 ** | |
2 weeks | 0.12 | 0.07 ** | 0.01 *** | 0.02 * |
Formulation | ARF Mg.st-AH | ARF Mg.st-MH | ARF Mg.st-DH |
---|---|---|---|
D10 (μm) | 0.24 | 0.24 | 0.24 |
D50 (μm) | 1.43 | 0.47 | 1.15 |
D90 (μm) | 1.39 | 3.39 | 10.01 |
Span | 0.48 | 0.51 | 1.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, J.-H.; Son, J.; Kwon, J.-H.; Han, C.-S.; Park, C.-W. Impact of Different Hydrate Forms of Magnesium Stearate as a Flow Control Agent on the Physical Stability and Inhalation Efficiency of Carrier-Based Formulations. Pharmaceutics 2025, 17, 711. https://doi.org/10.3390/pharmaceutics17060711
Jeong J-H, Son J, Kwon J-H, Han C-S, Park C-W. Impact of Different Hydrate Forms of Magnesium Stearate as a Flow Control Agent on the Physical Stability and Inhalation Efficiency of Carrier-Based Formulations. Pharmaceutics. 2025; 17(6):711. https://doi.org/10.3390/pharmaceutics17060711
Chicago/Turabian StyleJeong, Jin-Hyuk, Jaewoon Son, Ji-Hyeon Kwon, Chang-Soo Han, and Chun-Woong Park. 2025. "Impact of Different Hydrate Forms of Magnesium Stearate as a Flow Control Agent on the Physical Stability and Inhalation Efficiency of Carrier-Based Formulations" Pharmaceutics 17, no. 6: 711. https://doi.org/10.3390/pharmaceutics17060711
APA StyleJeong, J.-H., Son, J., Kwon, J.-H., Han, C.-S., & Park, C.-W. (2025). Impact of Different Hydrate Forms of Magnesium Stearate as a Flow Control Agent on the Physical Stability and Inhalation Efficiency of Carrier-Based Formulations. Pharmaceutics, 17(6), 711. https://doi.org/10.3390/pharmaceutics17060711