The Application of Novel Drug Delivery Systems in the Treatment of Osteoarthritis
Abstract
1. Introduction
2. The Basic Principles of Novel Drug Delivery Systems (NDDS)
2.1. Material Structure and Targeting Mechanism
2.1.1. Liposome
2.1.2. Polymer Microspheres
2.1.3. Nanoparticles
2.1.4. Hydrogel
2.1.5. Bionic Delivery Materials
2.2. Treatment Mechanism
3. Novel Drug Delivery Systems for OA Treatment
3.1. Liposome Delivery System
3.1.1. Overview of Liposome Delivery Systems
3.1.2. Progress in the Application of Liposomes in the Treatment of OA
Anti-Inflammatory Drug Delivery
Cytokine Delivery
Antioxidant Delivery
Gene Drug Delivery
Multifunctional Liposome Delivery
3.1.3. Summary
3.2. Polymer Microsphere Delivery System
3.2.1. Overview of Polymer Microsphere Delivery System
3.2.2. Progress in the Application of Polymer Microspheres in the Treatment of OA
NSAIDs Delivery
Glucocorticoid Delivery
Delivery of Anti-Inflammatory Cytokines
Antioxidant Delivery
Gene Drug Delivery
3.2.3. Summary
3.3. Nanoparticle Delivery System
3.3.1. Overview of Nanoparticle Delivery Systems
3.3.2. Progress in the Application of Nanoparticles in OA Treatment
Delivery of Anti-Inflammatory Drugs
Delivery of Antioxidants
Gene Drug Delivery
Cartilage Repair and Regeneration
3.3.3. Summary
3.4. Hydrogel Delivery Systems
3.4.1. Overview of Hydrogel Delivery Systems
3.4.2. Progress in the Application of Hydrogels in OA Treatment
Hydrogel Delivery of Anti-Inflammatory Drugs
Hydrogel Delivery of Antioxidants
Hydrogel Delivery of Gene Drugs
Hydrogel Delivery of Stem Cells and Growth Factors
Multifunctional Hydrogel Delivery Systems
3.4.3. Summary
3.5. Biomimetic Delivery Systems
3.5.1. Overview of Biomimetic Delivery Systems
3.5.2. Progress in the Application of Biomimetic Delivery Systems in OA Treatment
Cell Membrane-Coated Nanoparticles
Exosome Biomimetic Delivery System
ECM Biomimetic Materials
Biomimetic Protein Delivery System
Biomimetic Delivery Systems for Gene Therapy
3.5.3. Summary
3.6. Other Delivery Systems
3.6.1. Micelles
3.6.2. SLNs and NLCs
4. Challenges and Controversies
4.1. Biocompatibility and Safety Issues
4.2. Individual Differences in Efficacy
4.3. Difficulty in Clinical Translation
4.4. Trade-Off Between Efficacy and Dosage
5. Outlook, Clinical Translation Potential, and Summary
5.1. Outlook
5.2. Clinical Translation Potential
5.3. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DDS | Drug delivery systems |
NDDS | Novel drug delivery systems |
MMPs | Matrix metalloproteinases |
ADAMTS | A disintegrin and metalloproteinase with thrombospondin motifs |
IL-1β | Interleukin-1 beta |
TNF-α | Tumor necrosis factor-alpha |
ROS | Reactive oxygen species |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
MAPK | Mitogen-activated protein kinase |
References
- Hotte, S.J.; Chi, K.N.; Joshua, A.M.; Tu, D.; Macfarlane, R.J.; Gregg, R.W.; Ruether, J.D.; Basappa, N.S.; Finch, D.; Salim, M.; et al. A Phase II Study of PX-866 in Patients with Recurrent or Metastatic Castration-resistant Prostate Cancer: Canadian Cancer Trials Group Study IND205. Clin. Genitourin. Cancer 2019, 17, 201–208.e1. [Google Scholar] [CrossRef]
- Chung, J.R.; Flannery, B.; Gaglani, M.; Smith, M.E.; Reis, E.C.; Hickey, R.W.; Jackson, M.L.; Jackson, L.A.; Belongia, E.A.; McLean, H.Q.; et al. Patterns of Influenza Vaccination and Vaccine Effectiveness Among Young US Children Who Receive Outpatient Care for Acute Respiratory Tract Illness. JAMA Pediatr. 2020, 174, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Bedingfield, S.K.; Colazo, J.M.; Yu, F.; Liu, D.D.; Jackson, M.A.; Himmel, L.E.; Cho, H.; Crofford, L.J.; Hasty, K.A.; Duvall, C.L. Amelioration of post-traumatic osteoarthritis via nanoparticle depots delivering small interfering RNA to damaged cartilage. Nat. Biomed. Eng. 2021, 5, 1069–1083. [Google Scholar] [CrossRef] [PubMed]
- Whitmire, R.E.; Scott Wilson, D.; Singh, A.; Levenston, M.E.; Murthy, N.; García, A.J. Self-assembling nanoparticles for intra-articular delivery of anti-inflammatory proteins. Biomaterials 2012, 33, 7665–7675. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, Y.; Zhu, S.; Tong, Y.; Ji, L.; Zhang, W.; Zhang, Q.; Bi, Q. The application prospect of metal/metal oxide nanoparticles in the treatment of osteoarthritis. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2021, 394, 1991–2002. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, D.; Liu, Z.; Zhou, F.; Dai, J.; Wu, B.; Zhou, J.; Heng, B.C.; Zou, X.H.; Ouyang, H.; et al. Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem Cell Res. Ther. 2017, 8, 189. [Google Scholar] [CrossRef]
- Selig, D.J.; Kress, A.T.; Horton, I.M.; Livezey, J.R.; Sadik, E.J.; DeLuca, J.P. Pharmacokinetics, safety and efficacy of intra-articular non-steroidal anti-inflammatory drug injections for the treatment of osteoarthritis: A narrative review. J. Clin. Pharm. Ther. 2022, 47, 1122–1133. [Google Scholar] [CrossRef]
- Ishijima, M.; Nakamura, T.; Shimizu, K.; Hayashi, K.; Kikuchi, H.; Soen, S.; Omori, G.; Yamashita, T.; Uchio, Y.; Chiba, J.; et al. Intra-articular hyaluronic acid injection versus oral non-steroidal anti-inflammatory drug for the treatment of knee osteoarthritis: A multi-center, randomized, open-label, non-inferiority trial. Arthritis Res. Ther. 2014, 16, R18. [Google Scholar] [CrossRef]
- Mehta, S.; He, T.; Bajpayee, A.G. Recent advances in targeted drug delivery for treatment of osteoarthritis. Curr. Opin. Rheumatol. 2021, 33, 94–109. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, X.; Xu, L.; Prasadam, I.; Duan, L.; Xiao, Y.; Xia, J. Non-surgical osteoarthritis therapy, intra-articular drug delivery towards clinical applications. J. Drug Target. 2021, 29, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Xu, X.; Xu, L.; Chen, H.; Li, X.; Alahdal, M.; Xiao, Y.; Liang, Y.; Xia, J. Exosome-Mediated Drug Delivery for Cell-Free Therapy of Osteoarthritis. Curr. Med. Chem. 2021, 28, 6458–6483. [Google Scholar] [CrossRef]
- Dong, J.; Jiang, D.; Wang, Z.; Wu, G.; Miao, L.; Huang, L. Intra-articular delivery of liposomal celecoxib–hyaluronate combination for the treatment of osteoarthritis in rabbit model. Int. J. Pharm. 2013, 441, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Pontes, A.P.; Welting, T.J.M.; Rip, J.; Creemers, L.B. Polymeric Nanoparticles for Drug Delivery in Osteoarthritis. Pharmaceutics 2022, 14, 2639. [Google Scholar] [CrossRef]
- Sood, N.; Bhardwaj, A.; Mehta, S.; Mehta, A. Stimuli-responsive hydrogels in drug delivery and tissue engineering. Drug Deliv. 2016, 23, 748–770. [Google Scholar] [CrossRef]
- Ciolacu, D.E.; Nicu, R.; Ciolacu, F. Cellulose-Based Hydrogels as Sustained Drug-Delivery Systems. Materials 2020, 13, 5270. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.; Kumar, S.; Sharma, B. Intra-articular targeting of nanomaterials for the treatment of osteoarthritis. Acta Biomater. 2019, 93, 239–257. [Google Scholar] [CrossRef]
- Narain, A.; Asawa, S.; Chhabria, V.; Patil-Sen, Y. Cell Membrane Coated Nanoparticles: Next-generation Therapeutics. Nanomedicine 2017, 12, 2677–2692. [Google Scholar] [CrossRef] [PubMed]
- Nsairat, H.; Khater, D.; Sayed, U.; Odeh, F.; Al Bawab, A.; Alshaer, W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022, 8, e09394. [Google Scholar] [CrossRef]
- Gatto, M.S.; Johnson, M.P.; Najahi-Missaoui, W. Targeted Liposomal Drug Delivery: Overview of the Current Applications and Challenges. Life 2024, 14, 672. [Google Scholar] [CrossRef]
- Pan, Q.; Su, W.; Yao, Y. Progress in microsphere-based scaffolds in bone/cartilage tissue engineering. Biomed. Mater. 2023, 18, 062004. [Google Scholar] [CrossRef]
- Lee, Y.J.; Kim, M.S. Advances in drug-loaded microspheres for targeted, controlled, and sustained drug delivery: Potential, applications, and future directions. Biomed. Pharmacother. 2025, 189, 118244. [Google Scholar] [CrossRef]
- Zhang, G.; Zhen, C.; Yang, J.; Wang, J.; Wang, S.; Fang, Y.; Shang, P. Recent advances of nanoparticles on bone tissue engineering and bone cells. Nanoscale Adv. 2024, 6, 1957–1973. [Google Scholar] [CrossRef]
- Zhou, X.; Cornel, E.J.; He, S.; Du, J. Recent advances in bone-targeting nanoparticles for biomedical applications. Mater. Chem. Front. 2021, 5, 6735–6759. [Google Scholar] [CrossRef]
- Li, W.; Hu, J.; Chen, C.; Li, X.; Zhang, H.; Xin, Y.; Tian, Q.; Wang, S. Emerging advances in hydrogel-based therapeutic strategies for tissue regeneration. Regen. Ther. 2023, 24, 459–471. [Google Scholar] [CrossRef] [PubMed]
- He, X.; He, S.; Xiang, G.; Deng, L.; Zhang, H.; Wang, Y.; Li, J.; Lu, H. Precise Lubrication and Protection of Cartilage Damage by Targeting Hydrogel Microsphere. Adv. Mater. 2024, 36, 2405943. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, M.; Huang, B.; Jiang, Y.; Su, J. Advances in cell membrane-coated nanoparticles and their applications for bone therapy. Biomater. Adv. 2023, 144, 213232. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Yang, Y.; Guo, L.; Chen, M.; Zhou, X.; Zhao, Y.; Nie, D.; Gan, Y.; Zhang, X. Cell Membrane-Camouflaged Nanocarriers with Biomimetic Deformability of Erythrocytes for Ultralong Circulation and Enhanced Cancer Therapy. ACS Nano 2022, 16, 6527–6540. [Google Scholar] [CrossRef]
- Maudens, P.; Jordan, O.; Allémann, E. Recent advances in intra-articular drug delivery systems for osteoarthritis therapy. Drug Discov. Today 2018, 23, 1761–1775. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Du, H.; Zhai, G. Progress in Intra-Articular Drug Delivery Systems for Osteoarthritis. Curr. Drug Targets 2014, 15, 888–900. [Google Scholar] [CrossRef]
- Edwards, S.H.R. Intra-articular drug delivery: The challenge to extend drug residence time within the joint. Vet. J. 2011, 190, 15–21. [Google Scholar] [CrossRef]
- Huang, H.; Lou, Z.; Zheng, S.; Wu, J.; Yao, Q.; Chen, R.; Kou, L.; Chen, D. Intra-articular drug delivery systems for osteoarthritis therapy: Shifting from sustained release to enhancing penetration into cartilage. Drug Deliv. 2022, 29, 767–791. [Google Scholar] [CrossRef]
- Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef]
- He, K.; Huang, X.; Shan, R.; Yang, X.; Song, R.; Xie, F.; Huang, G. Intra-articular Injection of Lornoxicam and MicroRNA-140 Co-loaded Cationic Liposomes Enhanced the Therapeutic Treatment of Experimental Osteoarthritis. AAPS PharmSciTech 2021, 23, 9. [Google Scholar] [CrossRef]
- Teng, H.; Chen, S.; Fan, K.; Wang, Q.; Xu, B.; Chen, D.; Zhao, F.; Wang, T. Dexamethasone Liposomes Alleviate Osteoarthritis in miR-204/-211-Deficient Mice by Repolarizing Synovial Macrophages to M2 Phenotypes. Mol. Pharm. 2023, 20, 3843–3853. [Google Scholar] [CrossRef]
- Liu, X.; Dai, H.; Wang, Z.; Huang, C.; Huang, K. Polyethylene glycol-stabilized cationic liposome encapsulating glucosamine sulfate: A promising nanoformulation for osteoarthritis therapy. AIP Adv. 2024, 14, 189591. [Google Scholar] [CrossRef]
- Jiang, L.; Ayre, W.N.; Melling, G.E.; Song, B.; Wei, X.; Sloan, A.J.; Chen, X. Liposomes loaded with transforming growth factor β1 promote odontogenic differentiation of dental pulp stem cells. J. Dent. 2020, 103, 103501. [Google Scholar] [CrossRef]
- Li, J.; Ding, F.; Qian, X.; Sun, J.; Ge, Z.; Yang, L.; Cheng, Z. Anti-inflammatory cytokine IL10 loaded cRGD liposomes for the targeted treatment of atherosclerosis. J. Microencapsul. 2021, 38, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Li, L.; Zhang, Y.; He, Z.; Chen, X.; Liu, Y.; Shi, B.; Liu, Y. Targeting Synovial Macrophages with Astaxanthin-Loaded Liposomes for Antioxidant Treatment of Osteoarthritis. ACS Biomater. Sci. Eng. 2024, 10, 7191–7205. [Google Scholar] [CrossRef]
- He, Y.; Sun, M.; Wang, J.; Yang, X.; Lin, C.; Ge, L.; Ying, C.; Xu, K.; Liu, A.; Wu, L. Chondroitin sulfate microspheres anchored with drug-loaded liposomes play a dual antioxidant role in the treatment of osteoarthritis. Acta Biomater. 2022, 151, 512–527. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Chen, X.; Chen, H. Injectable Hydrogel Containing RNA-Loaded Liposomes Alleviates Chondrocyte Inflammation by Disrupting BAK1-Mediated mtDNA Maintenance. ACS Appl. Nano Mater. 2023, 6, 17491–17500. [Google Scholar] [CrossRef]
- Xue, L.; Gong, N.; Shepherd, S.J.; Xiong, X.; Liao, X.; Han, X.; Zhao, G.; Song, C.; Huang, X.; Zhang, H.; et al. Rational Design of Bisphosphonate Lipid-like Materials for mRNA Delivery to the Bone Microenvironment. J. Am. Chem. Soc. 2022, 144, 9926–9937. [Google Scholar] [CrossRef]
- Li, G.; Liu, S.; Chen, Y.; Zhao, J.; Xu, H.; Weng, J.; Yu, F.; Xiong, A.; Udduttula, A.; Wang, D.; et al. An injectable liposome-anchored teriparatide incorporated gallic acid-grafted gelatin hydrogel for osteoarthritis treatment. Nat. Commun. 2023, 14, 3159. [Google Scholar] [CrossRef]
- Chen, L.; Yang, J.; Cai, Z.; Huang, Y.; Xiao, P.; Chen, H.; Luo, X.; Huang, W.; Cui, W.; Hu, N. Mitochondrial-Oriented Injectable Hydrogel Microspheres Maintain Homeostasis of Chondrocyte Metabolism to Promote Subcellular Therapy in Osteoarthritis. Research 2024, 7, 0306. [Google Scholar] [CrossRef] [PubMed]
- Bozdag, S.; Calis, S.; Kas, H.S.; Ercan, M.T.; Peksoy, I.; Hincal, A.A. In vitro evaluation and intra-articular administration of biodegradable microspheres containing naproxen sodium. J. Microencapsul. 2001, 18, 443–456. [Google Scholar] [CrossRef]
- Yurtdaş-Kırımlıoğlu, G.; Süzen-Demircioğlu, Y.; Berkman, M.S.; Metinoğlu-Örüm, S.; Altun, E. Synthesis, spectroscopic, thermal properties, in vitro release, and stability studies of ibuprofen-loaded microspheres cross-linked with hexachlorocyclotriphosphazene/octachlorocyclotetraphosphazene. Polym. Bull. 2021, 78, 6221–6250. [Google Scholar] [CrossRef]
- Qi, X.; Qin, X.; Yang, R.; Qin, J.; Li, W.; Luan, K.; Wu, Z.; Song, L. Intra-articular Administration of Chitosan Thermosensitive In Situ Hydrogels Combined With Diclofenac Sodium–Loaded Alginate Microspheres. J. Pharm. Sci. 2016, 105, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Roach, B.L.; Kelmendi-Doko, A.; Balutis, E.C.; Marra, K.G.; Ateshian, G.A.; Hung, C.T. Dexamethasone Release from Within Engineered Cartilage as a Chondroprotective Strategy Against Interleukin-1α. Tissue Eng. 2016, 22, 621–632. [Google Scholar] [CrossRef]
- Fang, W.; Yang, F.; Li, W.; Hu, Q.; Chen, W.; Yang, M.; Chen, J.; Qiu, L. Dexamethasone microspheres and celecoxib microcrystals loaded into injectable gels for enhanced knee osteoarthritis therapy. Int. J. Pharm. 2022, 622, 121802. [Google Scholar] [CrossRef]
- Zhang, Y.; Pizzute, T.; Pei, M. Anti-inflammatory strategies in cartilage repair. Tissue Eng. Part B Rev. 2014, 20, 655–668. [Google Scholar] [CrossRef]
- Wojdasiewicz, P.; Poniatowski Ł, A.; Szukiewicz, D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediat. Inflamm. 2014, 2014, 561459. [Google Scholar] [CrossRef]
- Park, E.; Hart, M.L.; Rolauffs, B.; Stegemann, J.P.; Annamalai, R.T. Bioresponsive microspheres for on-demand delivery of anti-inflammatory cytokines for articular cartilage repair. J. Biomed. Mater. Res. Part A 2020, 108, 722–733. [Google Scholar] [CrossRef]
- Jin, J.; Liu, Y.; Jiang, C.; Shen, Y.; Chu, G.; Liu, C.; Jiang, L.; Huang, G.; Qin, Y.; Zhang, Y.; et al. Arbutin-modified microspheres prevent osteoarthritis progression by mobilizing local anti-inflammatory and antioxidant responses. Mater. Today Bio 2022, 16, 100370. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, W.; Shafiq, M.; Song, D.; Wang, T.; Yuan, Z.; Xie, X.; Yu, X.; Shen, Y.; Sun, B.; et al. Injectable nanofiber microspheres modified with metal phenolic networks for effective osteoarthritis treatment. Acta Biomater. 2023, 157, 593–608. [Google Scholar] [CrossRef] [PubMed]
- Raisin, S.; Belamie, E.; Morille, M. Non-viral gene activated matrices for mesenchymal stem cells based tissue engineering of bone and cartilage. Biomaterials 2016, 104, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.K.; Park, T.G. siRNA delivery systems for cancer treatment. Adv. Drug Deliv. Rev. 2009, 61, 850–862. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Kim, K.S.; Kang, Y.M.; Kim, E.S.; Hwang, S.J.; Lee, H.B.; Min, B.H.; Kim, J.H.; Kim, M.S. In vivo efficacy of paclitaxel-loaded injectable in situ-forming gel against subcutaneous tumor growth. Int. J. Pharm. 2010, 392, 51–56. [Google Scholar] [CrossRef]
- Sun, Y.; You, Y.; Wu, Q.; Hu, R.; Dai, K. Senescence-targeted MicroRNA/Organoid composite hydrogel repair cartilage defect and prevention joint degeneration via improved chondrocyte homeostasis. Bioact. Mater. 2024, 39, 427–442. [Google Scholar] [CrossRef]
- McMillan, A.; Nguyen, M.K.; Huynh, C.T.; Sarett, S.M.; Ge, P.; Chetverikova, M.; Nguyen, K.; Grosh, D.; Duvall, C.L.; Alsberg, E. Hydrogel microspheres for spatiotemporally controlled delivery of RNA and silencing gene expression within scaffold-free tissue engineered constructs. Acta Biomater. 2021, 124, 315–326. [Google Scholar] [CrossRef]
- Aminu, N.; Bello, I.; Umar, N.M.; Tanko, N.; Aminu, A.; Audu, M.M. The influence of nanoparticulate drug delivery systems in drug therapy. J. Drug Deliv. Sci. Technol. 2020, 60, 101961. [Google Scholar] [CrossRef]
- Edgar, J.Y.C.; Wang, H. Introduction for Design of Nanoparticle Based Drug Delivery Systems. Curr. Pharm. Des. 2017, 23, 2108–2112. [Google Scholar] [CrossRef]
- Kang, M.L.; Ko, J.-Y.; Kim, J.E.; Im, G.-I. THU0463 Polymeric Nanoparticles with Thermally Responsive Dual Release Profiles for Combined Therapy of Osteoarthritis. Ann. Rheum. Dis. 2015, 74, 367–368. [Google Scholar] [CrossRef]
- Zhong, G.; Yang, X.; Jiang, X.; Kumar, A.; Long, H.; Xie, J.; Zheng, L.; Zhao, J. Dopamine-melanin nanoparticles scavenge reactive oxygen and nitrogen species and activate autophagy for osteoarthritis therapy. Nanoscale 2019, 11, 11605–11616. [Google Scholar] [CrossRef]
- Householder, N.A.; Raghuram, A.; Agyare, K.; Thipaphay, S.; Zumwalt, M. A Review of Recent Innovations in Cartilage Regeneration Strategies for the Treatment of Primary Osteoarthritis of the Knee: Intra-articular Injections. Orthop. J. Sports Med. 2023, 11, 23259671231155950. [Google Scholar] [CrossRef]
- Xue, S.; Zhou, X.; Sang, W.; Wang, C.; Lu, H.; Xu, Y.; Zhong, Y.; Zhu, L.; He, C.; Ma, J. Cartilage-targeting peptide-modified dual-drug delivery nanoplatform with NIR laser response for osteoarthritis therapy. Bioact. Mater. 2021, 6, 2372–2389. [Google Scholar] [CrossRef]
- Dominique André, R. Peptide ligands for targeting and retention of nanoparticles and protein therapeutics in articular cartilage. Diss. Verl. Nicht Ermittelbar 2009. [Google Scholar] [CrossRef]
- Feng, Y.; Jin, X.; Dai, G.; Liu, J.; Chen, J.; Yang, L. In vitro targeted magnetic delivery and tracking of superparamagnetic iron oxide particles labeled stem cells for articular cartilage defect repair. J. Huazhong Univ. Sci. Technol. Med. Sci. 2011, 31, 204–209. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, W.; Ma, Z.; Zhao, H.; Ren, L. Cartilage-bioinspired tenacious concrete-like hydrogel verified via in-situ testing. Nat. Commun. 2025, 16, 2309. [Google Scholar] [CrossRef]
- Wang, Q.; Feng, K.; Wan, G.; Liao, W.; Jin, J.; Wang, P.; Sun, X.; Wang, W.; Jiang, Q. A ROS-responsive hydrogel encapsulated with matrix metalloproteinase-13 siRNA nanocarriers to attenuate osteoarthritis progression. J. Nanobiotechnol. 2025, 23, 18. [Google Scholar] [CrossRef] [PubMed]
- Zöller, K.; To, D.; Bernkop-Schnürch, A. Biomedical applications of functional hydrogels: Innovative developments, relevant clinical trials and advanced products. Biomaterials 2025, 312, 122718. [Google Scholar] [CrossRef] [PubMed]
- Gan, X.; Wang, X.; Huang, Y.; Li, G.; Kang, H. Applications of Hydrogels in Osteoarthritis Treatment. Biomedicines 2024, 12, 923. [Google Scholar] [CrossRef]
- Wang, M.; Li, S.; Zhang, L.; Tian, J.; Ma, J.; Lei, B.; Xu, P. Injectable Bioactive Antioxidative One-Component Polycitrate Hydrogel with Anti-Inflammatory Effects for Osteoarthritis Alleviation and Cartilage Protection. Adv. Healthc. Mater. 2024, 13, 2301953. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, S.; Dou, H.; Liu, Q.; Shu, G.; Lin, J.; Zhang, W.; Peng, G.; Zhong, Z.; Fu, H. Novel glucosamine-loaded thermosensitive hydrogels based on poloxamers for osteoarthritis therapy by intra-articular injection. Mater. Sci. Eng. C 2021, 118, 111352. [Google Scholar] [CrossRef]
- Valentino, A.; Conte, R.; De Luca, I.; Di Cristo, F.; Peluso, G.; Bosetti, M.; Calarco, A. Thermo-Responsive Gel Containing Hydroxytyrosol-Chitosan Nanoparticles (Hyt@tgel) Counteracts the Increase of Osteoarthritis Biomarkers in Human Chondrocytes. Antioxidants 2022, 11, 1210. [Google Scholar] [CrossRef]
- Shi, W.; Fang, F.; Kong, Y.; Greer, S.E.; Kuss, M.; Liu, B.; Xue, W.; Jiang, X.; Lovell, P.; Mohs, A.M.; et al. Dynamic hyaluronic acid hydrogel with covalent linked gelatin as an anti-oxidative bioink for cartilage tissue engineering. Biofabrication 2022, 14, 014107. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Hu, B.; Boakye-Yiadom, K.O.; Ho, W.; Chen, Q.; Xu, X.; Zhang, X.-Q. Injectable hydrogel mediated delivery of gene-engineered adipose-derived stem cells for enhanced osteoarthritis treatment. Biomater. Sci. 2021, 9, 7603–7616. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.P.; Stein, J.; Cai, Y.; Riemers, F.; Wexselblatt, E.; Wengel, J.; Tryfonidou, M.; Yayon, A.; Howard, K.A.; Creemers, L.B. Fibrin-hyaluronic acid hydrogel-based delivery of antisense oligonucleotides for ADAMTS5 inhibition in co-delivered and resident joint cells in osteoarthritis. J. Control. Release 2019, 294, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, M.; Escobar Ivirico, J.L.; Kan, H.-M.; Shah, S.; Otsuka, T.; Bordett, R.; Barajaa, M.; Nagiah, N.; Pandey, R.; Nair, L.S.; et al. Injectable amnion hydrogel-mediated delivery of adipose-derived stem cells for osteoarthritis treatment. Proc. Natl. Acad. Sci. USA 2022, 119, e2120968119. [Google Scholar] [CrossRef]
- Li, H.; Xiang, D.; Gong, C.; Wang, X.; Liu, L. Naturally derived injectable hydrogels with ROS-scavenging property to protect transplanted stem cell bioactivity for osteoarthritic cartilage repair. Front. Bioeng. Biotechnol. 2023, 10, 1109074. [Google Scholar] [CrossRef]
- Dong, X.; Li, C.; Zhang, M.; Zhao, Y.; Zhao, Z.; Li, W.; Zhang, X. Multifunctional injectable hydrogel for effective promotion of cartilage regeneration and protection against osteoarthritis: Combined chondroinductive, antioxidative and anti-inflammatory strategy. Sci. Technol. Adv. Mater. 2022, 23, 361–375. [Google Scholar] [CrossRef]
- Han, Y.; Yang, J.; Zhao, W.; Wang, H.; Sun, Y.; Chen, Y.; Luo, J.; Deng, L.; Xu, X.; Cui, W.; et al. Biomimetic injectable hydrogel microspheres with enhanced lubrication and controllable drug release for the treatment of osteoarthritis. Bioact. Mater. 2021, 6, 3596–3607. [Google Scholar] [CrossRef]
- Rasheed, T.; Nabeel, F.; Raza, A.; Bilal, M.; Iqbal, H.M.N. Biomimetic nanostructures/cues as drug delivery systems: A review. Mater. Today Chem. 2019, 13, 147–157. [Google Scholar] [CrossRef]
- Sheikhpour, M.; Barani, L.; Kasaeian, A. Biomimetics in drug delivery systems: A critical review. J. Control. Release 2017, 253, 97–109. [Google Scholar] [CrossRef]
- Yu, Q.; Huang, Y.; Chen, X.; Chen, Y.; Zhu, X.; Liu, Y.; Liu, J. A neutrophil cell membrane-biomimetic nanoplatform based on l-arginine nanoparticles for early osteoarthritis diagnosis and nitric oxide therapy. Nanoscale 2022, 14, 11619–11634. [Google Scholar] [CrossRef] [PubMed]
- Vasdev, N.; Pawar, B.; Gupta, T.; Mhatre, M.; Tekade, R.K. A Bird’s Eye View of Various Cell-Based Biomimetic Nanomedicines for the Treatment of Arthritis. Pharmaceutics 2023, 15, 1150. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, X.; Li, X.; Xiong, J.; Li, B.; Duan, L.; Wang, D.; Xia, J. Chondrocyte-Targeted MicroRNA Delivery by Engineered Exosomes toward a Cell-Free Osteoarthritis Therapy. ACS Appl. Mater. Interfaces 2020, 12, 36938–36947. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, G.; Yan, Y.; Wang, C.; Wang, Z.; Jiang, C.; Jiang, Z.; Ma, T.; Zhang, C.; Yan, Z. Exosomes derived from bone marrow mesenchymal stem cells pretreated with decellularized extracellular matrix enhance the alleviation of osteoarthritis through miR-3473b/phosphatase and tensin homolog axis. J. Gene Med. 2023, 25, e3510. [Google Scholar] [CrossRef]
- Chen, H.; Sun, T.; Yan, Y.; Ji, X.; Sun, Y.; Zhao, X.; Qi, J.; Cui, W.; Deng, L.; Zhang, H. Cartilage matrix-inspired biomimetic superlubricated nanospheres for treatment of osteoarthritis. Biomaterials 2020, 242, 119931. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, X.; Xu, L.; Iqbal, Z.; Ouyang, K.; Zhang, H.; Wen, C.; Duan, L.; Xia, J. Chondrocyte-specific genomic editing enabled by hybrid exosomes for osteoarthritis treatment. Theranostics 2022, 12, 4866–4878. [Google Scholar] [CrossRef]
- Lu, H.-D.; Zhao, H.-Q.; Wang, K.; Lv, L.-L. Novel hyaluronic acid–chitosan nanoparticles as non-viral gene delivery vectors targeting osteoarthritis. Int. J. Pharm. 2011, 420, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Sinani, G.; Durgun, M.E.; Cevher, E.; Özsoy, Y. Polymeric-Micelle-Based Delivery Systems for Nucleic Acids. Pharmaceutics 2023, 15, 2021. [Google Scholar] [CrossRef]
- Zhou, D.; Wei, Y.; Sheng, S.; Wang, M.; Lv, J.; Zhao, B.; Chen, X.; Xu, K.; Bai, L.; Wu, Y.; et al. MMP13-targeted siRNA-loaded micelles for diagnosis and treatment of posttraumatic osteoarthritis. Bioact. Mater. 2024, 37, 378–392. [Google Scholar] [CrossRef]
- Ebada, H.M.K.; Nasra, M.M.A.; Nassra, R.A.; Solaiman, A.A.; Abdallah, O.Y. Cationic nanocarrier of rhein based on hydrophobic ion pairing approach as intra-articular targeted regenerative therapy for osteoarthritis. Colloids Surf. B Biointerfaces 2022, 211, 112285. [Google Scholar] [CrossRef]
- Salvi, V.R.; Pawar, P. Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier. J. Drug Deliv. Sci. Technol. 2019, 51, 255–267. [Google Scholar] [CrossRef]
- Bhosale, A.; Jyothi, V.G.S.S.; Devangan, P.; Bajad, G.; Singh, H.; Patra, B.; Guru, S.K.; Madan, J. Emu oil enriched nanostructured lipid carriers of lornoxicam burdened polymeric gel augmented drug delivery and assisted cartilage repairing in knee osteoarthritis: In-vitro and in-vivo studies. J. Drug Deliv. Sci. Technol. 2024, 98, 105914. [Google Scholar] [CrossRef]
- Mao, L.; Wu, W.; Wang, M.; Guo, J.; Li, H.; Zhang, S.; Xu, J.; Zou, J. Targeted treatment for osteoarthritis: Drugs and delivery system. Drug Deliv. 2021, 28, 1861–1876. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Zheng, X.; Lin, R.; Sun, A.R.; Song, J.; Ye, Z.; Liang, D.; Zhang, M.; Tian, J.; Zhou, X.; et al. Knee Osteoarthritis Therapy: Recent Advances in Intra-Articular Drug Delivery Systems. Drug Des. Dev. Ther. 2022, 16, 1311–1347. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Ma, Y.; Tao, Y.; Lin, W.; Wang, P. Intra-Articular Drug Delivery for Osteoarthritis Treatment. Pharmaceutics 2021, 13, 2166. [Google Scholar] [CrossRef] [PubMed]
- Lan, Q.; Lu, R.; Chen, H.; Pang, Y.; Xiong, F.; Shen, C.; Qin, Z.; Zheng, L.; Xu, G.; Zhao, J. MMP-13 enzyme and pH responsive theranostic nanoplatform for osteoarthritis. J. Nanobiotechnol. 2020, 18, 117. [Google Scholar] [CrossRef]
- Zhao, Y.; Wei, C.; Chen, X.; Liu, J.; Yu, Q.; Liu, Y.; Liu, J. Drug Delivery System Based on Near-Infrared Light-Responsive Molybdenum Disulfide Nanosheets Controls the High-Efficiency Release of Dexamethasone To Inhibit Inflammation and Treat Osteoarthritis. ACS Appl. Mater. Interfaces 2019, 11, 11587–11601. [Google Scholar] [CrossRef]
- Nakamura, A.; Ali, S.A.; Kapoor, M. Antisense oligonucleotide-based therapies for the treatment of osteoarthritis: Opportunities and roadblocks. Bone 2020, 138, 115461. [Google Scholar] [CrossRef] [PubMed]
- Kou, L.; Xiao, S.; Sun, R.; Bao, S.; Yao, Q.; Chen, R. Biomaterial-engineered intra-articular drug delivery systems for osteoarthritis therapy. Drug Deliv. 2019, 26, 870–885. [Google Scholar] [CrossRef]
- Rahimi, M.; Charmi, G.; Matyjaszewski, K.; Banquy, X.; Pietrasik, J. Recent developments in natural and synthetic polymeric drug delivery systems used for the treatment of osteoarthritis. Acta Biomater. 2021, 123, 31–50. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.L.; Im, G.-I. Drug delivery systems for intra-articular treatment of osteoarthritis. Expert Opin. Drug Deliv. 2014, 11, 269–282. [Google Scholar] [CrossRef] [PubMed]
Delivery System | Drugs | Model | Sustained Release Time | Result |
---|---|---|---|---|
Dex-Lips (Liposome) | Dexamethasone | Mouse (DMM) | >4 day | Promoting the M2 polarization of synovial macrophages alleviated osteoarthritis in miR-204/-211 deficient mice and improved pain symptoms. |
Liposomal TGF-β1 (Liposome) | TGF-β1 | The dentine-pulp complex | >4 day | Long-term delivery of TGF-β1 and maintaining therapeutic concentrations in the cellular microenvironment promote odontogenic differentiation of human dental pulp stem cells. |
AST@Lip-FA (Liposome) | Astaxanthin | Mouse (ACLT) | >1 week | Effectively eliminate the overexpressed ROS and NO in the OA microenvironment, thereby reducing the invasion of synovial macrophages, alleviating related inflammation and tissue damage, and promoting cartilage tissue repair. |
siBAK1@Lips (Liposome) | siRNA | Mouse (DMM) | >1 week | Reduce the friction of articular cartilage and release cartilage/osteoclast-targeted siBAK@Lips, thereby inhibiting inflammation and delaying the progression of osteoarthritis through the cGAS-STING pathway. |
WY-Lip/UA (Liposome) | Urolithin A | Rat (DMM) | >2 weeks | Effectively target chondrocytes and promote cell uptake, enhance mitochondrial function recovery, reactive oxygen species clearance, and maintain chondrocyte homeostasis by increasing mitochondrial autophagy. |
Polyphosphazene (microsphere) | Ibuprofen | — | >3 weeks | It has non-toxic degradation products, can reduce gastrointestinal side effects, features controlled or sustained release properties, improves bioavailability, and reduces dosing frequency. |
Poly (lactic-co-glycolic acid) (PLGA) (microspheres) | Dexamethasone | Pre-treatment (IL-1α) | >3 weeks | Enhanced its mechanical function to counteract the harmful effects of local pro-inflammatory cytokine exposure. |
gelatin (microspheres) | IL-4 /IL-13 | Pre-treatment (IL-1β/LPS) | >2 weeks | Prolong the half-life of anti-inflammatory cytokines while reducing their clearance during periods of low disease activity. |
GM-Lipo@ARB (microspheres) | Arbutin (ARB) | Pre-treatment (IL-1β) | >4 weeks | By inhibiting the activation of NF-κB for anti-inflammatory effects and activating the Nrf2 pathway for antioxidant stress, the progression of OA can be alleviated. |
siRNA-micelles (microspheres) | siRNA | 3D stem cell aggregates | >4 weeks | Enhance the formation, organization, and development of tissues and organs based on cell aggregates, providing new solutions for addressing fundamental biological issues and disease treatment. |
F127/COS/KGNDCF (Nanoparticles) | F127/KGN | Pre-treatment (IL-1β) | Controllable | Control the immediate and sustained release of DCF and KGN through the thermal responsiveness of expansion and contraction, as well as the composition ratio of F127 or KGN to COS. |
DM (Nanoparticles) | Dopamine | Pre-treatment (IL-1β) | >24 h | By inhibiting the generation of intracellular ROS and RNS, and activating antioxidant enzymes through autophagy, cartilage degradation and the progression of OA can be suppressed. |
RB@MPMW (Nanoparticles) | Rapamycin | Rat (ACLT) | Controllable | By activating the AMPK-SIRT1-PGC-1α signaling pathway, they enhance the energy metabolism of chondrocytes, further rescue cell apoptosis in vitro, and inhibit cartilage degeneration in vivo. |
PCCGA (Hydrogel) | — | — | Controllable | Exhibits good biocompatibility, antioxidant activity, ROS scavenging ability, and promotes cell migration. |
HA-PBA-Gel (Hydrogel) | Phenylboronic acid | Pre-treatment (H2O2) | Controllable | A convenient and effective solution has been provided for the manufacture of cartilage tissue engineering scaffolds with inherent antioxidant properties. |
ECM-mimicking@ADSCs (Hydrogel) | ADSCs | Rat (ACLT/MMx) | >1 week | In the rat OA model induced by surgery, significant relief was observed in cartilage degeneration, joint inflammation, subchondral bone loss, and structural damage. |
Fibrin-HA (hydrogel) | Gapmer | Gene knockdown | >2 weeks | Continuously release and effectively suppress the expression of genes related to cartilage degeneration. |
HA-EGCG (hydrogel) | EGCG | Rat (DMM) | >1 month | Significantly induce the polarization of synovial macrophages to the M2 phenotype and reduce synovial inflammation, thereby maximizing the role of ADSCs in repairing OA cartilage damage. |
NM-LANPs@Ru (cell-membrane) | L-arginine | Rat (injection of papain) | >1 week | Based on the synthesis of neutrophil membranes, the effective regulation of autophagy can inhibit inflammatory C28/I2 cell apoptosis, thereby effectively curing OA. |
CAP-GFP-Lamp2b (Exosomes) | microRNA-140 | Rat (DMM) | >24 h | By modifying exosomes to avoid the phagocytic action of monocytes on microRNA-140 and the degradation by enzymes in the extracellular matrix, the vitality of OA cartilage can be restored. |
dECM-BMSC-Exos (Exosomes) | BMSCs | Mouse (DMM) | >24 h | Enhancing the relief of OA progression by upregulating miR-3473b to improve anabolic metabolism and migration, as well as to inhibit chondrocyte apoptosis. |
ERMs@siM13 (Micelles) | siM13 | Mouse (DMM) | >24 h | By restoring the balance of cartilage matrix metabolism, the progression of early OA was effectively delayed. In addition, ERMs@siM13 real-time reports on the progress of OA can be provided by promptly responding to different levels of MMP13. |
RH-SLNs (SLNs) | RH | Rat (MIA) | >3 weeks | Significantly inhibits inflammatory response, oxidative stress, and cartilage degeneration in arthritis rats, and rapidly penetrate cartilage tissue and are continuously released for 3 weeks in a rat osteoarthritis model. |
LRX-NLCs-Gel (NLCs) | LRX | Rat (MIA) | >24 h | Not only improve the pain of rats’ OA, but also reduce the proliferation of synovium, inflammation and other indicators, as well as improve the cartilage structure. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, P.; Zhao, J.; Wang, X.; Zhang, Z.; Zhao, H. The Application of Novel Drug Delivery Systems in the Treatment of Osteoarthritis. Pharmaceutics 2025, 17, 1272. https://doi.org/10.3390/pharmaceutics17101272
Huang P, Zhao J, Wang X, Zhang Z, Zhao H. The Application of Novel Drug Delivery Systems in the Treatment of Osteoarthritis. Pharmaceutics. 2025; 17(10):1272. https://doi.org/10.3390/pharmaceutics17101272
Chicago/Turabian StyleHuang, Pengfei, Junjie Zhao, Xiyu Wang, Zhaokun Zhang, and Haiyan Zhao. 2025. "The Application of Novel Drug Delivery Systems in the Treatment of Osteoarthritis" Pharmaceutics 17, no. 10: 1272. https://doi.org/10.3390/pharmaceutics17101272
APA StyleHuang, P., Zhao, J., Wang, X., Zhang, Z., & Zhao, H. (2025). The Application of Novel Drug Delivery Systems in the Treatment of Osteoarthritis. Pharmaceutics, 17(10), 1272. https://doi.org/10.3390/pharmaceutics17101272