Development of Novel Neratinib and Docetaxel Core-Loaded and Trastuzumab Surface-Conjugated Nanoparticle for Treatment of HER-2 Positive Breast Cancer
Abstract
1. Introduction
- Minimize non-specific drug biodistribution to reduce chemotherapy-associated toxicity.
- Enhance synergy through three agents with orthogonal mechanisms of action, effectively blunting downstream signaling.
- Synchronize the pharmacokinetics (simultaneous delivery at the biophase) of all three agents to mitigate upregulation of alternate signaling pathways arising from differences in drug absorption and onset of action.
- Improve treatment adherence by reducing dosing frequency.
- Overcome drug resistance by (a) preventing nanoparticle removal via p-glycoprotein efflux pumps and (b) enabling multi-drug delivery per molecular recognition event using targeted nanoparticles, thus preventing cellular crosstalk.
- Establish a safe, effective, and precise nanocarrier-based drug delivery approach, with potential applications in broader oncological and drug delivery challenges.
2. Materials and Methods
2.1. Materials
2.2. Instruments
2.3. Methods
2.3.1. Formulation of Dual-Loaded Nanoparticles (DTX-NTB-NP)
2.3.2. Conjugation of Monoclonal Antibody (Trastuzumab) to Drug-Loaded Nanoparticles
2.3.3. Oxidation of Trastuzumab (Ox-TRZ)
2.3.4. Conjugation of Carbohydrazide to TRZ (TRZ-Carbohydrazide)
2.3.5. Conjugation of Trastuzumab-Carbohydrazide to Drug-Loaded Nanoparticles (TRZ-NP)
2.3.6. Confirmation of TRZ-NP Conjugation
2.3.7. Confirmation of TRZ-NP Conjugation via BCA (Bicinchoninic Acid Assay)
2.3.8. Confirmation of TRZ-NP Conjugation by Analysis of Functional Groups
2.3.9. Characterization of Trastuzumab Conjugated Nanoparticles (TRZ−NP)
Particle Size and Zeta Potential
Surface Morphology with SEM (Scanning Electron Microscopy)
Internal Structure of the NPs (Transmission Electron Microscopy)
Characterization of Key Functional Groups in the Nanoparticles
2.3.10. HPLC Method Development
2.3.11. Encapsulation Efficiency, Drug Loading, and In Vitro Drug Release Profile
2.4. Cell Culture Assays
2.4.1. Binding Study
2.4.2. Cell Uptake Study
2.4.3. Cytotoxicity Assay
2.5. Tumor Xenograft Model
2.5.1. Toxicology Study/Maximum Tolerated Dose (MTD)
2.5.2. Efficacy Study
2.6. Statistical Analysis
3. Results
3.1. Formulation and Characterization of Blank and Drug-Loaded Nanoparticles
3.1.1. Particle Size Distribution
3.1.2. Zeta Potential
3.1.3. Morphology and Structure of Nanoparticles
3.1.4. Oxidation of Trastuzumab
3.1.5. Conjugation of TRZ to Carbohydrazide
3.1.6. Conjugation of Trastuzumab-Carbohydrazide to Drug-Loaded Nanoparticles
3.1.7. Confirmation of TRZ−NP Conjugation by Centrifugation
3.1.8. Confirmation of TRZ−NP Conjugation by FTIR
3.1.9. Confirmation of TRZ-NP Conjugation by Bicinchoninic Acid Assay (BCA)
3.2. HPLC Method Development for Quantifying Analytes
3.3. Drug Release Profile (In Vitro), Drug-Loading and Encapsulation-Efficiency
3.4. Binding Affinity of Antibody-Nanoparticle Conjugate
3.5. Nanoparticle Uptake Studies
3.6. Cytotoxic Effect of Docetaxel, Neratinib, and Trastuzumab on SKBR3 Cells
3.7. Evaluation of Combination Index (CI)
3.8. In Vivo Study
3.8.1. Maximum Tolerated Dose
3.8.2. Efficacy Study
4. Discussion
5. Conclusions and Implications for Further Development
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADC | Antibody Drug Conjugates |
ADCC | Antibody Dependent Cell Cytotoxicity |
ANOVA | Analysis of Variance |
CAR T | Chimeric Antigen Receptor T-cell therapy |
CI | Combination Index |
DTX | Docetaxel |
HER2 | Human Epidermal growth factor Receptor |
IC50 | Inhibitory Concentration |
MBC | Metastatic Breast Cancer |
NCI | National Cancer Institute |
NP | Nanoparticles |
NTB | Neratinib |
NTB-DTX-NP | Neratinib-Docetaxel loaded Nanoparticle |
PGLA | Polylactitide-co-glycolide |
TRZ-NP | Trastuzumab conjugated Nanoparticle |
TGI | Tumor Growth Inhibition |
TKI | Tyrosine Kinase Inhibitor |
TRZ | Trastuzumab |
References
- Azamjah, N.; Soltan-Zadeh, Y.; Zayeri, F. Global Trend of Breast Cancer Mortality Rate: A 25-Year Study. Asian Pac. J. Cancer Prev. 2019, 20, 2015–2020. [Google Scholar] [CrossRef]
- Common Cancer Sites—Cancer Stat Facts, SEER. Available online: https://seer.cancer.gov/statfacts/html/common.html (accessed on 19 September 2023).
- Malhotra, G.K.; Zhao, X.; Band, H.; Band, V. Histological, molecular and functional subtypes of breast cancers. Cancer Biol. Ther. 2010, 10, 955–960. [Google Scholar] [CrossRef]
- Furrer, D.; Paquet, C.; Jacob, S.; Diorio, C.; Furrer, D.; Paquet, C.; Jacob, S.; Diorio, C. The Human Epidermal Growth Factor Receptor 2 (HER2) as a Prognostic and Predictive Biomarker: Molecular Insights into HER2 Activation and Diagnostic Implications. In Cancer Prognosis; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Amisha, F.; Malik, P.; Saluja, P.; Gautam, N.; Patel, T.H.; Roy, A.M.; Singh, S.R.K.; Malapati, S.J. A Comprehensive Review on the Role of Human Epidermal Growth Factor Receptor 2 (HER2) as a Biomarker in Extra-Mammary and Extra-Gastric Cancers. Onco 2023, 3, 96–124. [Google Scholar] [CrossRef]
- Shu, M.; Yan, H.; Xu, C.; Wu, Y.; Chi, Z.; Nian, W.; He, Z.; Xiao, J.; Wei, H.; Zhou, Q.; et al. A novel anti-HER2 antibody GB235 reverses Trastuzumab resistance in HER2-expressing tumor cells in vitro and in vivo. Sci. Rep. 2020, 10, 2986. [Google Scholar] [CrossRef]
- Mondaca, S.; Margolis, M.; Sanchez-Vega, F.; Jonsson, P.; Riches, J.C.; Ku, G.Y.; Hechtman, J.F.; Tuvy, Y.; Berger, M.F.; Shah, M.A.; et al. Phase II study of trastuzumab with modified docetaxel, cisplatin, and 5 fluorouracil in metastatic HER2-positive gastric cancer. Gastric Cancer 2019, 22, 355–362. [Google Scholar] [CrossRef]
- Pernas, S.; Tolaney, S.M. HER2-positive breast cancer: New therapeutic frontiers and overcoming resistance. Ther. Adv. Med. Oncol. 2019, 11, 175883591983351. [Google Scholar] [CrossRef]
- Chen, F.; Ma, K.; Madajewski, B.; Zhuang, L.; Zhang, L.; Rickert, K.; Marelli, M.; Yoo, B.; Turker, M.Z.; Overholtzer, M.; et al. Ultrasmall targeted nanoparticles with engineered antibody fragments for imaging detection of HER2-overexpressing breast cancer. Nat. Commun. 2018, 9, 4141. [Google Scholar] [CrossRef] [PubMed]
- Larionov, A.A. Current Therapies for Human Epidermal Growth Factor Receptor 2-Positive Metastatic Breast Cancer Patients. Front. Oncol. 2018, 8, 89. [Google Scholar] [CrossRef] [PubMed]
- Hunter, F.W.; Barker, H.R.; Lipert, B.; Rothé, F.; Gebhart, G.; Piccart-Gebhart, M.J.; Sotiriou, C.; Jamieson, S.M.F. Mechanisms of resistance to trastuzumab emtansine (T-DM1) in HER2-positive breast cancer. Br. J. Cancer 2020, 122, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Powles, T.; Huddart, R.A.; Elliott, T.; Sarker, S.-J.; Ackerman, C.; Jones, R.; Hussain, S.; Crabb, S.; Jagdev, S.; Chester, J.; et al. Phase III, Double-Blind, Randomized Trial That Compared Maintenance Lapatinib Versus Placebo After First-Line Chemotherapy in Patients With Human Epidermal Growth Factor Receptor 1/2-Positive Metastatic Bladder Cancer. J. Clin. Oncol. 2017, 35, 48–55. [Google Scholar] [CrossRef]
- Orr, G.A.; Verdier-Pinard, P.; McDaid, H.; Horwitz, S.B. Mechanisms of Taxol resistance related to microtubules. Oncogene 2003, 22, 7280–7295. [Google Scholar] [CrossRef]
- Zhu, C.; Ling, W.; Zhang, J.; Gao, H.; Shen, K.; Ma, X. Safety and efficacy evaluation of pertuzumab in patients with solid tumors. Medicine 2017, 96, e6870. [Google Scholar] [CrossRef] [PubMed]
- Pivot, X.; Suter, T.; Nabholtz, J.M.; Pierga, J.Y.; Espie, M.; Lortholary, A.; Khayat, D.; Pauporte, I.; Romieu, G.; Kramar, A.; et al. Cardiac toxicity events in the PHARE trial, an adjuvant trastuzumab randomised phase III study. Eur. J. Cancer 2015, 51, 1660–1666. [Google Scholar] [CrossRef] [PubMed]
- Chatelut, E.; Delord, J.-P.; Canal, P. Toxicity patterns of cytotoxic drugs. Investig. New Drugs 2003, 21, 141–148. [Google Scholar] [CrossRef]
- Secombe, K.R.; Ball, I.A.; Shirren, J.; Wignall, A.D.; Keefe, D.M.; Bowen, J.M. Pathophysiology of neratinib-induced diarrhea in male and female rats: Microbial alterations a potential determinant. Breast Cancer 2021, 28, 99–109. [Google Scholar] [CrossRef]
- FDA. C. for D.E. and Research. FDA Approves Ado-Trastuzumab Emtansine for Early Breast Cancer; FDA: Silver Spring, MD, USA, 2019. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-ado-trastuzumab-emtansine-early-breast-cancer (accessed on 27 October 2023).
- Li, G.; Guo, J.; Shen, B.-Q.; Yadav, D.B.; Sliwkowski, M.X.; Crocker, L.M.; Lacap, J.A.; Phillips, G.D.L. Mechanisms of Acquired Resistance to Trastuzumab Emtansine in Breast Cancer Cells. Mol. Cancer Ther. 2018, 17, 1441–1453. [Google Scholar] [CrossRef]
- Loganzo, F.; Tan, X.; Sung, M.; Jin, G.; Myers, J.S.; Melamud, E.; Wang, F.; Diesl, V.; Follettie, M.T.; Musto, S.; et al. Tumor cells chronically treated with a trastuzumab-maytansinoid antibody-drug conjugate develop varied resistance mechanisms but respond to alternate treatments. Mol. Cancer Ther. 2015, 14, 952–963. [Google Scholar] [CrossRef] [PubMed]
- Giugliano, F.; Corti, C.; Tarantino, P.; Michelini, F.; Curigliano, G. Bystander effect of antibody-drug conjugates: Fact or fiction? Curr. Oncol. Rep. 2022, 24, 809–817. [Google Scholar] [CrossRef]
- Huang, H.-C.; Pigula, M.; Fang, Y.; Hasan, T. Immobilization of Photo-Immunoconjugates on Nanoparticles Leads to Enhanced Light-Activated Biological Effects. Small 2018, 14, 1800236. [Google Scholar] [CrossRef]
- Fisusi, F.; Brandy, N.; Wu, J.; Akala, E.O. Studies on polyethylene glycol-monoclonal antibody conjugates for fabrication of nanoparticles for biomedical applications. J. Nanosci. Nanomed. 2020, 4, 1–9. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7869852/ (accessed on 24 February 2022).
- Huang, L.; Song, J.; Chen, B. A novel targeting drug carrier to deliver chemical bonded and physical entrapped anti-tumor drugs. Int. J. Pharm. 2014, 466, 52–57. [Google Scholar] [CrossRef]
- Hermanson, G.T. (Ed.) Index. In Bioconjugate Techniques, 2nd ed.; Academic Press: New York, NY, USA, 2008; pp. 1133–1195. [Google Scholar] [CrossRef]
- Sodium Cyanoborohydride. A Reducing Agent for Stable Bonds Between Aldehyde and Amine Groups. (Cat. # 786-061, 786-062). Available online: https://cdn.gbiosciences.com/pdfs/protocol/786-061_protocol.pdf (accessed on 24 February 2022).
- Vogel, M.; Büldt, A.; Karst, U. Hydrazine reagents as derivatizing agents in environmental analysis—A critical review. Fresenius’ J. Anal. Chem. 2000, 366, 781–791. [Google Scholar] [CrossRef]
- Sadhukhan, D.; Ray, A.; Pilet, G.; Rosair, G.M.; Garribba, E.; Nonat, A.; Charbonnière, L.J.; Mitra, S. Cobalt (II), Manganese (IV) Mononuclear and Zinc(II) Symmetric Dinuclear Complexes of an Aliphatic Hydrazone Schiff Base Ligand with Diversity in Coordination Behaviors and Supramolecular Architectures: Syntheses, Structural Elucidations, and Spectroscopic Characterizations. Bull. Chem. Soc. Jpn. 2011, 84, 764–777. [Google Scholar] [CrossRef]
- Hermanson, G.T. Introduction to Bioconjugation. In Bioconjugate Techniques; Elsevier: Amsterdam, The Netherlands, 2013; pp. 1–125. [Google Scholar]
- Steinhauser, I.; Spänkuch, B.; Strebhardt, K.; Langer, K. Trastuzumab-modified nanoparticles: Optimisation of preparation and uptake in cancer cells. Biomaterials 2006, 27, 4975–4983. [Google Scholar] [CrossRef]
- Thetmofisher. Pierce BCA Protein Assay Kit User Guide; Pierce: Appleton, WI, USA, 2024; Available online: https://www.thermofisher.com/us/en/home/life-science/protein-biology/BCA_Assay (accessed on 24 February 2022).
- Adesina, S.K.; Wight, S.A.; Akala, E.O. Optimization of the fabrication of novel stealth PLA-based nanoparticles by dispersion polymerization using D-optimal mixture design. Drug Dev. Ind. Pharm. 2014, 40, 1547–1556. [Google Scholar] [CrossRef]
- Adesina, S.K.; Holly, A.; Kramer-Marek, G.; Capala, J.; Akala, E.O. Polylactide-Based Paclitaxel-Loaded Nanoparticles Fabricated by Dispersion Polymerization: Characterization, Evaluation in Cancer Cell Lines, and Preliminary Biodistribution Studies. J. Pharm. Sci. 2014, 103, 2546–2555. [Google Scholar] [CrossRef]
- Yu, X.; Sun, L.; Tan, L.; Wang, M.; Ren, X.; Pi, J.; Jiang, M.; Li, N. Preparation and Characterization of PLGA–PEG–PLGA Nanoparticles Containing Salidroside and Tamoxifen for Breast Cancer Therapy. AAPS PharmSciTech 2020, 21, 85. [Google Scholar] [CrossRef]
- Lucero-Acuña, A.; Guzmán, R. Nanoparticle encapsulation and controlled release of a hydrophobic kinase inhibitor: Three stage mathematical modeling and parametric analysis. Int. J. Pharm. 2015, 494, 249–257. [Google Scholar] [CrossRef]
- D’Souza, S.S.; DeLuca, P.P. Development of a dialysis in vitro release method for biodegradable microspheres. AAPS PharmSciTech 2005, 6, E323–E328. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Ruan, S.; Larsen, M.E.; Tan, C.; Liu, B.; Lyu, H. Trastuzumab-resistant breast cancer cells-derived tumor xenograft models exhibit distinct sensitivity to lapatinib treatment in vivo. Biol. Proced. Online 2023, 25, 19. [Google Scholar] [CrossRef] [PubMed]
- Carlson, B.L.; Pokorny, J.L.; Schroeder, M.A.; Sarkaria, J.N. Establishment, maintenance and in vitro and in vivo applications of primary human glioblastoma multiforme (GBM) xenograft models for translational biology studies and drug discovery. Curr. Protoc. Pharmacol. 2011, 52, 14–16. [Google Scholar] [CrossRef] [PubMed Central]
- Dong, X.; Zhang, J. Maximum tolerated dose and toxicity evaluation of orally administered docetaxel granule in mice. Toxicol. Rep. 2024, 12, 430–435. [Google Scholar] [CrossRef]
- Lin, Y.-L.; Tsai, N.-M.; Chen, C.-H.; Liu, Y.-K.; Lee, C.-J.; Chan, Y.-L.; Wang, Y.-S.; Chang, Y.-C.; Lin, C.-H.; Huang, T.-H.; et al. Specific drug delivery efficiently induced human breast tumor regression using a lipoplex by non-covalent association with anti-tumor antibodies. J. Nanobiotechnol. 2019, 17, 25. [Google Scholar] [CrossRef]
- Quesenberry, M.S.; Lee, Y.C. A Rapid Formaldehyde Assay Using Purpald Reagent: Application under Periodation Conditions. Anal. Biochem. 1996, 234, 50–55. [Google Scholar] [CrossRef]
- Meng, L.-X.; Ren, Q.; Meng, Q.; Zheng, Y.-X.; He, M.-L.; Sun, S.-Y.; Ding, Z.-J.; Li, B.-C.; Wang, H.-Y. Trastuzumab modified silica nanoparticles loaded with doxorubicin for targeted and synergic therapy of breast cancer. Artif. Cells Nanomed. Biotechnol. 2018, 46, S556–S563. [Google Scholar] [CrossRef]
- Tam, J.O.; de Puig, H.; Yen, C.-W.; Bosch, I.; Gómez-Márquez, J.; Clavet, C.; Hamad-Schifferli, K.; Gehrke, L. A comparison of nanoparticle-antibody conjugation strategies in sandwich immunoassays. J. Immunoass. Immunochem. 2017, 38, 355–377. [Google Scholar] [CrossRef]
- Walker, J.M. The bicinchoninic acid (BCA) assay for protein quantitation. Methods Mol. Biol. 1994, 32, 5–8. [Google Scholar] [CrossRef]
- Bainor, A.; Chang, L.; McQuade, T.J.; Webb, B.; Gestwicki, J.E. Bicinchoninic acid (BCA) assay in low volume. Anal. Biochem. 2011, 410, 310–312. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.-C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010, 70, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Premji, S.K.; O’Sullivan, C.C. Standard-of-Care Treatment for HER2+ Metastatic Breast Cancer and Emerging Therapeutic Options. Breast Cancer 2024, 18, 11782234241234418. [Google Scholar] [CrossRef] [PubMed]
- Shyam Sunder, S.; Sharma, U.C.; Pokharel, S. Adverse effects of tyrosine kinase inhibitors in cancer therapy: Pathophysiology, mechanisms and clinical management. Signal Transduct. Target. Ther. 2023, 8, 262. [Google Scholar] [CrossRef] [PubMed]
- Mohanavelu, P.; Mutnick, M.; Mehra, N.; White, B.; Kudrimoti, S.; Hernandez Kluesner, K.; Chen, X.; Nguyen, T.; Horlander, E.; Thenot, H.; et al. Meta-Analysis of Gastrointestinal Adverse Events from Tyrosine Kinase Inhibitors for Chronic Myeloid Leukemia. Cancers 2021, 13, 1643. [Google Scholar] [CrossRef]
- Martínez Rivas, C.J.; Tarhini, M.; Badri, W.; Miladi, K.; Greige-Gerges, H.; Nazari, Q.A.; Galindo Rodríguez, S.A.; Román, R.Á.; Fessi, H.; Elaissari, A. Nanoprecipitation process: From encapsulation to drug delivery. Int. J. Pharm. 2017, 532, 66–81. [Google Scholar] [CrossRef]
- Yan, X.; Bernard, J.; Ganachaud, F. Nanoprecipitation as a simple and straightforward process to create complex polymeric colloidal morphologies. Adv. Colloid Interface Sci. 2021, 294, 102474. [Google Scholar] [CrossRef]
- Legrand, P.; Lesieur, S.; Bochot, A.; Gref, R.; Raatjes, W.; Barratt, G.; Vauthier, C. Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation. Int. J. Pharm. 2007, 344, 33–43. [Google Scholar] [CrossRef]
- Hornig, S.; Heinze, T.; Becer, C.R.; Schubert, U.S. Synthetic polymeric nanoparticles by nanoprecipitation. J. Mater. Chem. 2009, 19, 3838–3840. [Google Scholar] [CrossRef]
- Lepeltier, E.; Bourgaux, C.; Couvreur, P. Nanoprecipitation and the ‘Ouzo effect’: Application to drug delivery devices. Adv. Drug Deliv. Rev. 2014, 71, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Geissler, A.; Biesalski, M.; Heinze, T.; Zhang, K. Formation of nanostructured cellulose stearoyl esters via nanoprecipitation. J. Mater. Chem. A 2014, 2, 1107–1116. [Google Scholar] [CrossRef]
- Gulaczyk, I.; Kręglewski, M.; Valentin, A. The N–N stretching band of hydrazine. J. Mol. Spectrosc. 2003, 220, 132–136. [Google Scholar] [CrossRef]
- Greene, M.K.; Richards, D.A.; Nogueira, J.C.F.; Campbell, K.; Smyth, P.; Fernández, M.; Scott, C.J.; Chudasama, V. Forming next-generation antibody–nanoparticle conjugates through the oriented installation of non-engineered antibody fragments. Chem. Sci. 2018, 9, 79–87. [Google Scholar] [CrossRef]
- Shamsipour, F.; Zarnani, A.H.; Ghods, R.; Chamankhah, M.; Forouzesh, F.; Vafaei, S.; Bayat, A.A.; Akhondi, M.M.; Oghabian, M.A.; Jeddi-Tehrani, M. Conjugation of Monoclonal Antibodies to Super Paramagnetic Iron Oxide Nanoparticles for Detection of her2/neu Antigen on Breast Cancer Cell Lines. Avicenna J. Med. Biotechnol. 2009, 1, 27–31. [Google Scholar]
- Lee, N.K.; Wang, C.-P.J.; Lim, J.; Park, W.; Kwon, H.-K.; Kim, S.-N.; Kim, T.-H.; Park, C.G. Impact of the conjugation of antibodies to the surfaces of polymer nano particles on the immune cell targeting abilities. Nano Converg. 2021, 8, 24. [Google Scholar] [CrossRef] [PubMed]
- Rodallec, A.; Franco, C.; Robert, S.; Sicard, G.; Giacometti, S.; Lacarelle, B.; Bouquet, F.; Savina, A.; Lacroix, R.; Dignat-George, F.; et al. Prototyping Trastuzumab Docetaxel Immunoliposomes with a New FCM-Based Method to Quantify Optimal Antibody Density on Nanoparticles. Sci. Rep. 2020, 10, 4147. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, Y.; Wu, Y.; Wu, J.; Wang, W.; Wu, Q.; Yuan, Z. The effects of ligand valency and density on the targeting ability of multivalent nanoparticles based on negatively charged chitosan nanoparticles. Colloids Surf. B Biointerfaces 2018, 161, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Zaleski, M.H.; Chase, L.S.; Hood, E.D.; Wang, Z.; Nong, J.; Espy, C.L.; Zamora, M.E.; Wu, J.; Morrell, L.J.; Muzykantov, V.R.; et al. Conjugation Chemistry Markedly Impacts Toxicity and Biodistribution of Targeted Nanoparticles, Mediated by Complement Activation. Adv. Mater. 2025, 37, 2409945. [Google Scholar] [CrossRef] [PubMed]
- Colombo, M.; Fiandra, L.; Alessio, G.; Mazzucchelli, S.; Nebuloni, M.; De Palma, C.; Kantner, K.; Pelaz, B.; Rotem, R.; Corsi, F.; et al. Tumour homing and therapeutic effect of colloidal nanoparticles depend on the number of attached antibodies. Nat. Commun. 2016, 7, 13818. [Google Scholar] [CrossRef]
- Haghighi, A.H.; Khorasani, M.T.; Faghih, Z.; Farjadian, F. Effects of different quantities of antibody conjugated with magnetic nanoparticles on cell separation efficiency. Heliyon 2020, 6, e03677. [Google Scholar] [CrossRef]
- Chamseddine, I.M.; Frieboes, H.B.; Kokkolaras, M. Design Optimization of Tumor Vasculature-Bound Nanoparticles. Sci. Rep. 2018, 8, 17768. [Google Scholar] [CrossRef]
- Ejigah, V.; Owoseni, O.; Bataille-Backer, P.; Ogundipe, O.D.; Fisusi, F.A.; Adesina, S.K. Approaches to Improve Macromolecule and Nanoparticle Accumulation in the Tumor Microenvironment by the Enhanced Permeability and Retention Effect. Polymers 2022, 14, 2601. [Google Scholar] [CrossRef]
- Fang, J.; Islam, W.; Maeda, H. Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers. Adv. Drug Deliv. Rev. 2020, 157, 142–160. [Google Scholar] [CrossRef]
- Shen, S.; Wu, Y.; Liu, Y.; Wu, D. High drug-loading nanomedicines: Progress, current status, and prospects. Int. J. Nanomed. 2017, 12, 4085–4109. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.; Wei, X.; Song, X.; Hao, L.; Cai, X.; Zhang, Z.; Peng, Q.; Lin, Y. Independent effect of polymeric nanoparticle zeta potential/surface charge, on their cytotoxicity and affinity to cells. Cell Prolif. 2015, 48, 465–474. [Google Scholar] [CrossRef]
- Honary, S.; Zahir, F. Effect of Zeta Potential on the Properties of Nano-Drug Delivery Systems—A Review (Part 1). Trop. J. Pharm. Res. 2013, 12, 255–264. [Google Scholar] [CrossRef]
- Selvamani, V. Chapter 15—Stability Studies on Nanomaterials Used in Drugs. In Micro and Nano Technologies; Characterization and Biology of Nanomaterials for Drug Delivery; Mohapatra, S.S., Ranjan, S., Dasgupta, N., Mishra, R.K., Thomas, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 425–444. [Google Scholar] [CrossRef]
- Gall, V.A.; Philips, A.V.; Qiao, N.; Clise-Dwyer, K.; Perakis, A.A.; Zhang, M.; Clifton, G.T.; Sukhumalchandra, P.; Ma, Q.; Reddy, S.M.; et al. Trastuzumab Increases HER2 Uptake and Cross-Presentation by Dendritic Cells. Cancer Res. 2017, 77, 5374–5383. [Google Scholar] [CrossRef]
- AghaAmiri, S.; Simien, J.; Thompson, A.M.; Voss, J.; Ghosh, S.C.; Hernandez Vargas, S.; Kim, S.; Azhdarinia, A.; Tran Cao, H.S. Comparison of HER2-Targeted Antibodies for Fluorescence-Guided Surgery in Breast Cancer. Mol. Imaging 2021, 2021, 5540569. [Google Scholar] [CrossRef]
- Battogtokh, G.; Choi, Y.S.; Kang, D.S.; Park, S.J.; Shim, M.S.; Huh, K.M.; Cho, Y.-Y.; Lee, J.Y.; Lee, H.S.; Kang, H.C. Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: Current strategies and future perspectives. Acta Pharm. Sin. B 2018, 8, 862–880. [Google Scholar] [CrossRef] [PubMed]
- Abedin, M.R.; Powers, K.; Aiardo, R.; Barua, D.; Barua, S. Antibody–drug nanoparticle induces synergistic treatment efficacies in HER2 positive breast cancer cells. Sci. Rep. 2021, 11, 7347. [Google Scholar] [CrossRef]
- Mandala, B.; Berko, Y.; Battogtok, G.; Fisusi, F.; Gao, H.; Akala, E.O. Nanotechnology Platform for the Delivery of Docetaxel and Tyrosine Kinase Inhibitors for HER2-Positive Breast Cancer Therapy. Pharm. Nanotechnol. 2025, 13, 1017–1043. [Google Scholar] [CrossRef]
- Aleanizy, F.S.; Alqahtani, F.Y.; Setó, S.; Khalil, N.; Aleshaiwi, L.; Alghamdi, M.; Alquadeib, B.; Alkahtani, H.; Aldarwesh, A.; Alqahtani, Q.H.; et al. Trastuzumab Targeted Neratinib Loaded Poly-Amidoamine Dendrimer Nanocapsules for Breast Cancer Therapy. Int. J. Nanomed. 2020, 15, 5433–5443. [Google Scholar] [CrossRef]
- Chiang, C.-S.; Hu, S.-H.; Liao, B.-J.; Chang, Y.-C.; Chen, S.-Y. Enhancement of cancer therapy efficacy by trastuzumab-conjugated and pH-sensitive nanocapsules with the simultaneous encapsulation of hydrophilic and hydrophobic compounds. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 99–107. [Google Scholar] [CrossRef]
- Peng, J.; Chen, J.; Xie, F.; Bao, W.; Xu, H.; Wang, H.; Xu, Y.; Du, Z. Herceptin-conjugated paclitaxel loaded PCL-PEG worm-like nanocrystal micelles for the combinatorial treatment of HER2-positive breast cancer. Biomaterials 2019, 222, 119420. [Google Scholar] [CrossRef]
- Su, C.-Y.; Chen, M.; Chen, L.-C.; Ho, Y.-S.; Ho, H.-O.; Lin, S.-Y.; Chuang, K.-H.; Sheu, M.-T. Bispecific antibodies (anti-mPEG/anti-HER2) for active tumor targeting of docetaxel (DTX)-loaded mPEGylated nanocarriers to enhance the chemotherapeutic efficacy of HER2-overexpressing tumors. Drug Deliv. 2018, 25, 1066–1079. [Google Scholar] [CrossRef]
- Heggannavar, G.B.; Vijeth, S.; Kariduraganavar, M.Y. Development of dual drug loaded PLGA based mesoporous silica nanoparticles and their conjugation with Angiopep-2 to treat glioma. J. Drug Deliv. Sci. Technol. 2019, 53, 101157. [Google Scholar] [CrossRef]
- Carvalho, A.M.; Greene, M.K.; Smyth, P.; Mutch, A.; McLaughlin, K.M.; Cairns, L.V.; Mills, K.I.; McCloskey, K.D.; Scott, C.J. Development of CD33-Targeted Dual Drug-Loaded Nanoparticles for the Treatment of Pediatric Acute Myeloid Leukemia. Biomacromolecules 2024, 25, 6503–6514. [Google Scholar] [CrossRef] [PubMed]
- Battogtokh, G.; Akala, E.O. Development of Multifunctional Targeted Dual-Loaded Polymeric Nanoparti-cles for Triple-Negative Breast Cancer Treatment. Pharmaceutics 2025, 17, 425. [Google Scholar] [CrossRef] [PubMed]
120 h | 72 h | |||||||
---|---|---|---|---|---|---|---|---|
Formulation | IC50 calc. | Compu syn IC50 | CI | Interaction | IC50 calc. | Compu syn IC50 | CI | Interaction |
Docetaxel sol. | 5.805 ± 2.91 | 5.80012 | 250.8 ± 246 | 334.356 | ||||
Docetaxel NP | 4.55 ± 4.08 | 4.04336 | 183.5 ± 102.74 | 274.694 | ||||
Neratinib sol. | 11.91 ± 2.97 | 12.3085 | 331.9 ± 153.09 | 210.166 | ||||
Neratinib NP | 11.69 ± 4.55 | 12.506 | 347.2 ± 179.23 | 253.618 | ||||
Neratinib/Docetaxel sol. | 3.013 ± 1.88 | 3.58186 | 0.58614 | +++ | 66.17 ± 37.97 | 72.7428 | 0.28184 | ++++ |
Neratinib/Docetaxel NP | 3.102 ± 0.46 | 3.64065 | 0.59576 | +++ | 108.6 ± 76.92 | 123.13 | 0.46687 | +++ |
Trastuzumab sol. | 166.8 ± 47.53 | 174.091 | 2315 ± 772.52 | 2273.08 | ||||
Trastuzumab Neratinib/Docetaxel sol. | 1.938 ± 0.46 | 2.41153 | 0.20852 | ++++ | 14.78 ± 7.41 | 14.9498 | 0.04081 | ++++ |
Trastuzumab conjugated dual loaded NP | 1.432 ± 1.88 | 1.50053 | 0.16657 | ++++ | 13.96 ± 3.47 | 14.7652 | 0.03949 | ++++ |
IC50 = Inhibitory concentration | Combination index Key: | <1 = Synergistic effect | ++++ = Very strong synergism | |||||
NP = nanoparticles | >1 = Antagonistic effect | ++++ = Strong synergism | ||||||
CI = Combination index | 1 = Additive effect | +++ = Synergism |
S/N | Groups | Dose |
---|---|---|
1 | Trastuzumab-dual loaded nanoparticles | 30 mg/kg |
2 | Trastuzumab-dual loaded nanoparticles | 20 mg/kg |
3 | Trastuzumab-dual loaded nanoparticles | 10 mg/kg |
4 | Neratinib/Docetaxel nanoparticles | 30 mg/kg |
5 | Neratinib/Docetaxel nanoparticles | 20 mg/kg |
6 | Neratinib/Docetaxel nanoparticles | 10 mg/kg |
7 | Trastuzumab/neratinib/Docetaxel sol. | 30 mg/kg |
8 | Trastuzumab/neratinib/Docetaxel sol. | 20 mg/kg |
9 | Trastuzumab/neratinib/Docetaxel sol. | 10 mg/kg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ejigah, V.; Battogtokh, G.; Mandala, B.; Akala, E.O. Development of Novel Neratinib and Docetaxel Core-Loaded and Trastuzumab Surface-Conjugated Nanoparticle for Treatment of HER-2 Positive Breast Cancer. Pharmaceutics 2025, 17, 1265. https://doi.org/10.3390/pharmaceutics17101265
Ejigah V, Battogtokh G, Mandala B, Akala EO. Development of Novel Neratinib and Docetaxel Core-Loaded and Trastuzumab Surface-Conjugated Nanoparticle for Treatment of HER-2 Positive Breast Cancer. Pharmaceutics. 2025; 17(10):1265. https://doi.org/10.3390/pharmaceutics17101265
Chicago/Turabian StyleEjigah, Victor, Gantumur Battogtokh, Bharathi Mandala, and Emmanuel O. Akala. 2025. "Development of Novel Neratinib and Docetaxel Core-Loaded and Trastuzumab Surface-Conjugated Nanoparticle for Treatment of HER-2 Positive Breast Cancer" Pharmaceutics 17, no. 10: 1265. https://doi.org/10.3390/pharmaceutics17101265
APA StyleEjigah, V., Battogtokh, G., Mandala, B., & Akala, E. O. (2025). Development of Novel Neratinib and Docetaxel Core-Loaded and Trastuzumab Surface-Conjugated Nanoparticle for Treatment of HER-2 Positive Breast Cancer. Pharmaceutics, 17(10), 1265. https://doi.org/10.3390/pharmaceutics17101265