Influence of Intramuscular Injection Sites on Pharmacokinetics of Amoxicillin in Olive Flounder (Paralichthys olivaceus) and Its Implication for Antibacterial Efficacy
Abstract
1. Introduction
2. Materials and Methods
2.1. Drug and Chemicals
2.2. Experimental Animals
2.3. Experimental Design
2.4. HPLC-MS/MS and Sample Preparation
2.5. Pharmacokinetic Analysis
2.6. Pharmacokinetic/Pharmacodynamic Relationships
2.7. Statistical Analysis
3. Results
3.1. Serum Pharmacokinetics
3.2. Pharmacokinetic/Pharmacodynamic Relationships
3.3. Muscle Residue Depletion
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, J.H.; Seo, J.S.; Kim, G.W.; Kwon, M.G.; Kim, D.H.; Park, C.I.; Kim, K.T.; Park, J. Effect of lincomycin, an injectable lincosamide antibiotic, against streptococcosis in cultured olive flounder Paralichthys olivaceus and its pharmacokinetic-pharmacodynamic profile. Aquaculture 2022, 548, 73766. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, G.W.; Kwon, M.G.; Seo, J.S. Pharmacokinetic-Pharmacodynamic Profile, Bioavailability, and Withdrawal Time of Tylosin Tartrate Following a Single Intramuscular Administration in Olive Flounder (Paralichthys olivaceus). Animals 2021, 11, 2468. [Google Scholar] [CrossRef] [PubMed]
- NFQS. Available online: https://www.nfqs.go.kr/apms/ebook/mice_ebook/index.html#page=1 (accessed on 25 February 2023).
- Lim, J.W.; Jung, M.H.; Jung, S.J.; Kim, D.H.; Park, K.H.; Kang, S.Y. The efficacy of amoxicillin sodium against streptococcosis in cultured olive flounder Paralichthys olivaceus and its pharmacokinetics. J. Vet. Pharmacol. Ther. 2017, 40, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Awji, E.G.; Suh, J.W.; Park, S.C. Pharmacokinetics, pharmacokinetic–pharmacodynamic relationship, and withdrawal period of amoxicillin sodium in olive flounder (Paralichthys olivaceus). Xenobiotica 2016, 46, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.S.; Jeon, E.J.; Jung, S.H.; Park, M.A.; Kim, N.Y. Pharmacokinetics of amoxicillin trihydrate in cultured olive flounder (Paralichthys olivaceus). J. Vet. Pharmacol. Ther. 2015, 38, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Baggot, J.D. The bioavailability and disposition of antimicrobial agents in neonatal animals. In The Physiological Basis of Veterinary Clinical Pharmacology, 1st ed.; Blackwell Publishing Sciences Ltd.: Oxford, UK, 2008; pp. 252–266. [Google Scholar]
- Horsberg, T.E. Experimental methods for pharmacokinetic studies in salmonids. Annu. Rev. Fish Dis. 1994, 4, 345–358. [Google Scholar] [CrossRef]
- Kleinow, K.M.; James, M.O.; Lech, J.J. Drug pharmacokinetics and metabolism in food-producing fish and crustaceans: Methods and examples. Xenobiot. Food-Prod. Anim. 1992, 8, 98–130. [Google Scholar] [CrossRef]
- MFDS. Available online: https://residue.foodsafetykorea.go.kr/vd/analysis (accessed on 26 February 2023).
- FDA. Bioanalytical Method Validation Guidance for Industry. Available online: https://www.fda.gov/media/70858/download (accessed on 26 February 2023).
- Zhang, Y.; Huo, M.; Zhou, J.; Xie, S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Methods Programs Biomed. 2010, 99, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Lees, P.; Pelligand, L.; Illambas, J.; Potter, T.; Lacroix, M.; Rycroft, A.; Toutain, P.L. Pharmacokinetic/pharmacodynamic integration and modelling of amoxicillin for the calf pathogens Mannheimia haemolytica and Pasteurella multocida. J. Vet. Pharmacol. Ther. 2015, 38, 457–470. [Google Scholar] [CrossRef] [PubMed]
- MFDS. Available online: https://residue.foodsafetykorea.go.kr/vd/mrl (accessed on 26 February 2023).
- Song, I.B.; Kim, T.W.; Lee, H.G.; Kim, M.S.; Hwang, Y.H.; Park, B.K.; Lim, J.H.; Yun, H.I. Influence of the injection site on the pharmacokinetics of cefquinome following intramuscular injection in piglets. J. Vet. Med. Sci. 2013, 75, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Delis, G.; Batzias, G.; Theodosiadou, E.; Kounenis, G.; Koutsoviti-Papadopoulou, M. Influence of the injection site on the pharmacokinetics of amoxicillin after intramuscular administration of a conventional and a long-acting formulation in sheep. J. Vet. Pharmacol. Ther. 2009, 32, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Firth, E.C.; Nouws, J.F.; Driessens, F.; Schmaetz, P.; Peperkamp, K.; Klein, W.R. Effect of the injection site on the pharmacokinetics of procaine penicillin G in horses. Am. J. Vet. Res. 1986, 47, 2380–2384. [Google Scholar] [PubMed]
- Abo-El-Sooud, K.; Swielim, G.A.; El-Gammal, S.M.; Ramsis, M.N. Comparative Pharmacokinetics and bioavailability of marbofloxacin in geese (Anser Anser domesticus) after two sites of intramuscular administrations. J. Vet. Pharmacol. Ther. 2020, 43, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Cho, J.Y.; Kim, J.W.; Kim, H.C.; Noh, J.K.; Kim, Y.O.; Hwang, H.K.; Kim, W.J.; Yeo, S.Y.; An, C.M.; et al. CRISPR/Cas9-mediated myostatin disruption enhances muscle mass in the olive flounder Paralichthys olivaceus. Aquaculture 2019, 512, 734336. [Google Scholar] [CrossRef]
- Cassens, R.G.; Cooper, C.C. Red and white muscle. Adv. Food Res. 1971, 19, 1–74. [Google Scholar] [CrossRef] [PubMed]
- Stevens, E.D. The effect of exercise on the distribution of blood to various organs in rainbow trout. Comp. Biochem. Physiol. 1968, 25, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Harder, W.; Sokoloff, S. Anatomy of Fishes; Schweizerbart: Stuttgart, Germany, 1976; ISBN 978-3-510-65067-5. [Google Scholar]
- Papich, M.G. Pharmacokinetic–pharmacodynamic (PK–PD) modeling and the rational selection of dosage regimes for the prudent use of antimicrobial drugs. Vet. Microbiol. 2014, 171, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, M.R. Optimisation of antimicrobial therapy using pharmacokinetic and pharmacodynamic parameters. Clin. Microbiol. Infect. 2001, 7, 589–596. [Google Scholar] [CrossRef] [PubMed]
PK Parameters | Unit | Dorsal IM | Cheek IM | Pectoral Fin IM |
---|---|---|---|---|
λz | h−1 | 0.08 | 0.07 | 0.07 |
t1/2λz | h | 8.89 | 10.12 | 10.33 |
Tmax | h | 3.00 | 3.00 | 3.00 |
Cmax * | µg/mL | 202.79 ± 24.88 | 203.96 ± 58.26 | 229.59 ± 26.70 |
AUC0–24 | µg/mL·h | 1227.19 | 1618.71 | 1540.42 |
AUC0-t | µg/mL·h | 1697.23 | 2006.71 | 1846.61 |
AUC0-inf | µg/mL·h | 1706.42 | 2029.39 | 1854.69 |
AUMC0-inf | µg/mL·h2 | 24,469.78 | 24,582.22 | 19,622.66 |
MRT0-inf | h | 14.34 | 12.11 | 10.58 |
PK/PD Parameters | Dorsal IM | Cheek IM | Pectoral Fin IM |
---|---|---|---|
Streptococcus iniae | |||
Cmax/MIC90 | 6499.68 | 6537.18 | 7358.65 |
AUC0–24/MIC90 (h) | 39,333.01 | 51,881.73 | 49,372.44 |
AUC0-t/MIC90 (h) | 54,398.40 | 64,317.63 | 59,186.22 |
AUC0-inf/MIC90 (h) | 54,692.95 | 65,044.55 | 59,445.19 |
T > MIC90 (h) | 111.61 | 132.37 | 118.28 |
Streptococcus parauberis | |||
Cmax/MIC90 | 405.58 | 407.92 | 459.18 |
AUC0–24/MIC90 (h) | 2454.38 | 3237.42 | 3080.84 |
AUC0-t/MIC90 (h) | 3394.46 | 4013.42 | 3693.22 |
AUC0-inf/MIC90 (h) | 3412.84 | 4058.78 | 3709.38 |
T > MIC90 (h) | 76.05 | 85.35 | 76.87 |
Time (day) | Amoxicillin Concentration (mg/kg) | ||
---|---|---|---|
Dorsal IM | Cheek IM | Pectoral Fin IM | |
1 | 1.28 ± 0.14 (7/7) | 2.20 ± 1.17 (7/7) | 1.04 ± 0.45 (7/7) |
2 | 0.27 ± 0.12 (7/7) | 0.24 ± 0.09 (7/7) | 0.18 ± 0.06 (7/7) |
3 | 0.06 ± 0.03 (5/7) | 0.11 ± 0.04 (6/7) | 0.08 ± 0.03 (6/7) |
7 | Not detected | Not detected | 0.01 ± 0.01 (0/7) |
20 | Not detected | 0.01 ± 0.02 (0/7) | Not detected |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-H.; Kim, G.-W.; Kang, H.-W.; Hong, J.-W.; Lee, H.-E.; Kwon, M.-G.; Seo, J.-S. Influence of Intramuscular Injection Sites on Pharmacokinetics of Amoxicillin in Olive Flounder (Paralichthys olivaceus) and Its Implication for Antibacterial Efficacy. Pharmaceutics 2023, 15, 1153. https://doi.org/10.3390/pharmaceutics15041153
Lee J-H, Kim G-W, Kang H-W, Hong J-W, Lee H-E, Kwon M-G, Seo J-S. Influence of Intramuscular Injection Sites on Pharmacokinetics of Amoxicillin in Olive Flounder (Paralichthys olivaceus) and Its Implication for Antibacterial Efficacy. Pharmaceutics. 2023; 15(4):1153. https://doi.org/10.3390/pharmaceutics15041153
Chicago/Turabian StyleLee, Ji-Hoon, Ga-Won Kim, Hyun-Woo Kang, Joo-Won Hong, Hyo-Eun Lee, Mun-Gyeong Kwon, and Jung-Soo Seo. 2023. "Influence of Intramuscular Injection Sites on Pharmacokinetics of Amoxicillin in Olive Flounder (Paralichthys olivaceus) and Its Implication for Antibacterial Efficacy" Pharmaceutics 15, no. 4: 1153. https://doi.org/10.3390/pharmaceutics15041153
APA StyleLee, J.-H., Kim, G.-W., Kang, H.-W., Hong, J.-W., Lee, H.-E., Kwon, M.-G., & Seo, J.-S. (2023). Influence of Intramuscular Injection Sites on Pharmacokinetics of Amoxicillin in Olive Flounder (Paralichthys olivaceus) and Its Implication for Antibacterial Efficacy. Pharmaceutics, 15(4), 1153. https://doi.org/10.3390/pharmaceutics15041153