Formulation and Evaluation of Amikacin Sulfate Loaded Dextran Nanoparticles against Human Pathogenic Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Formulation of Nanoparticles
2.3. Lyophilization Process
2.4. Dynamic Light Scattering (DLS) Analysis
2.5. Determination of Morphological Features
2.6. Energy Dispersive Spectroscopy (EDAX) Analysis
2.7. Differential Scanning Calorimetry (DSC) Analysis
2.8. Thermogravimetric ANALYSIS (TGA)
2.9. X-ray Diffraction (XRD) Analysis
2.10. Loading and In Vitro Release Study
2.10.1. Preparation and Validation of Standard Cure
2.10.2. Loading Study
2.10.3. In Vitro Release Profile
2.11. In Vitro Antibacterial Study
2.11.1. Bacterial Strains Used and Standardization of Bacterial Cultures
2.11.2. Determination of Minimum Inhibitory Concentration
2.11.3. Determination of Antibacterial Susceptibility
2.12. Statistical Analysis
3. Results and Discussion
3.1. Physical and Morphological Characterization
3.2. Thermal Analysis
3.3. XRD Analysis
3.4. Loading and In Vitro Release Profile
3.5. Antibacterial Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramirez, M.S.; Tolmasky, M.E. Amikacin: Uses, Resistance, and Prospects for Inhibition. Molecules 2017, 22, 2267. [Google Scholar] [CrossRef] [PubMed]
- Veronica, M.; Harry, W.; Santino, C.; Raul, G.M.; Angelita, S.; Sotira, K.; Susan, H.; Ian, C.; Marc, L. Amikacin treatment for multidrug resistant tuberculosis: How much monitoring is required? Eur. Respir. J. 2013, 42, 1148–115010. [Google Scholar] [CrossRef]
- Ansari, M.; Al-Adeem, M.; Alshakka, M. Comorbidity among Patients with Kidney Diseases in Hail Region, Saudi Arabia. Int. J. Diabetes Clin. Res. 2019, 6, 104. [Google Scholar] [CrossRef]
- Ginawi, I.A.; Ahmed, H.G.; Al-hazimi, A.M. Assessment of risk factors for chronic kidney disease in Saudi Arabia. Int. J. Sci. Res. 2014, 3, 446–450. [Google Scholar]
- Saad, S.A.; Sivakumar, S.M.; Muhammad, H.S.; Mohammed, A.B.; Osama, A.M.; Saeed, A.; Hafiz, A.M.; Santhosh, J.M.; Ziaur, R.; Md Shamsher, A.; et al. Potential bioactive secondary metabolites of Actinomycetes sp. isolated from rocky soils of the heritage village Rijal Alma, Saudi Arabia. Arab. J. Chem. 2022, 15, 103793. [Google Scholar] [CrossRef]
- Unissa, R.; Neeeraj, S.P.; Ayyub, I.; Omsai, N. Evaluation of Antibacterial Activity of Achyranthes aspera Extract against Vibrio alginolyticus: An in Vitro Study. Saudi J. Pathol. Microbiol. 2017, 2, 241–246. [Google Scholar] [CrossRef]
- Nayak-Rao, S. Aminoglycoside use in renal failure. Indian J. Nephrol. 2010, 20, 121–124. [Google Scholar] [CrossRef]
- Sivakumar, S.M.; Alam, M.F.; Safhi, M.M.; Sultan, M.H.; Makeen, H.A.; Mohamed, E.E. Development of formulation methods and physical characterization of injectable sodium selenite nanoparticles for the delivery of Sorafenib tosylate. Curr. Pharm. Biotechnol. 2020, 21, 659–666. [Google Scholar]
- Clinical and Laboratory Standards Institute [CLSI]. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement. CLSI Document M100-S22; Clinical and Laboratory Standards Institute: New York, NY, USA, 2013.
- Syed, R.U.; Moni, S.S.; Alfaisal, R.H.; Alrashidi, R.H.; Alrashidi, N.F.; Wadeed, K.M.; Alshammary, F.N.; Habib, A.M.; Alharbi, F.M.; Rehman, Z.U.; et al. Spectral characterization of the bioactive principles and antibacterial properties of cold methanolic extract of Olea europaea from the Hail region of Saudi Arabia. Arab. J. Chem. 2022, 15, 104006. [Google Scholar] [CrossRef]
- Ghaffari, S.; Varshosaz, J.; Saadat, A.; Atyabi, F. Stability and antimicrobial effect of amikacin-loaded solid lipid nanoparticles. Int. J. Nanomed. 2010, 6, 35–43. [Google Scholar] [CrossRef]
- Rahmati, M.; Babapoor, E.; Dezfulian, M. Amikacin-loaded niosome nanoparticles improve amikacin activity against antibiotic-resistant Klebsiella pneumoniae strains. World J. Microbiol. Biotechnol. 2022, 38, 230. [Google Scholar] [CrossRef] [PubMed]
- Abouelhag, H.A.; Sivakumar, S.M.; Bagul, U.S.; Mohamed Eltyep, E.; Safhi, M.M. Preparation and physical characterization of cisplatin chitosan nanoparticles by zeta nano sizer “prime step for formulation and development”. IJPSR 2017, 8, 4245–4249. [Google Scholar] [CrossRef]
- Ernest, A.A.; Elaine, L.F.; David, W.T. The enhanced permeability retention effect: A new paradigm for drug targeting in infection. J. Antimicrob. Chemother. 2013, 68, 257–274. [Google Scholar] [CrossRef]
- Samy, O.M.; Krisztina, Z.B.; Dusan, H.; Mijoon, L.; Jed, F.F.; Timothy, L.S.; Shahriar, M. Three-dimensional structure of the bacterial cell wall peptidoglycan. Proc. Natl. Acad. Sci. USA 2006, 103, 4404–4409. [Google Scholar] [CrossRef]
- Hatice, K.C.; Serap, K.; Shahed, P.K.; Ali, G. Preparation, characterization and dynamical mechanical properties of dextran-coated iron oxide nanoparticles (DIONPs). Artif. Cells Nanomed. Biotechnol. 2018, 46, 421–431. [Google Scholar] [CrossRef]
- dos Flávio, S.C.; Douglas, L.C.; Marisa, S.C.; Adélia, E.A.; Maria, P.D.G. Preparation and characterisation of dextran-70 hydrogel for controlled release of praziquantel. Braz. J. Pharm. Sci. 2013, 49, 75–83. [Google Scholar] [CrossRef]
- Sharma, U.K.; Verma, A.; Prajapati, S.K.; Himanshu, P.; Avinash, C.P. In vitro, in vivo, and pharmacokinetic assessment of amikacin sulphate laden polymeric nanoparticles meant for controlled ocular drug delivery. Appl. Nanosci. 2015, 5, 143–155. [Google Scholar] [CrossRef]
- Andra, M.P.; Ecaterina, M.; Andrei, C.B.; Cristian, P.; Claudia, D.; Ruxandra, V. Synthesis and characterization of dextran-coated iron oxide nanoparticles. R. Soc. Open Sci. 2018, 5, 171525. [Google Scholar] [CrossRef]
- Atyabi, F.; Talaie, F.; Dinarvand, R. Thiolated chitosan nanoparticles as an oral delivery system for Amikacin: In vitro and ex vivo evaluations. J. Nanosci. Nanotechnol. 2009, 9, 4593–4603. [Google Scholar] [CrossRef]
- Glinka, M.; Filatova, K.; Kucińska-Lipka, J.; Šopík, T.; Domincová Bergerová, E.; Mikulcová, V.; Wasik, A.; Sedlařík, V. Antibacterial Porous Systems Based on Polylactide Loaded with Amikacin. Molecules 2022, 27, 7045. [Google Scholar] [CrossRef]
- Milorad, C.; Slobodan, G.; Goran, N.; Goran, M.N.; Katarina, C.; Miroslav, C. Synthesis, characterization and antimicrobial activity of dextran sulphate stabilized silver nanoparticles. J. Mol. Struct. 2016, 1110, 156–161. [Google Scholar] [CrossRef]
- Tuchilus, C.G.; Nichifor, M.; Mocanu, G.; Stanciu, M.C. Antimicrobial activity of chemically modified dextran derivatives. Carbohydr. Polym. 2017, 161, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Rose, S.J.; Neville, M.E.; Gupta, R.; Luiz, E.B. Delivery of aerosolized liposomal amikacin as a novel approach for the treatment of nontuberculous mycobacteria in an experimental model of pulmonary infection. PLoS ONE 2014, 9, e108703. [Google Scholar] [CrossRef] [PubMed]
- Meers, P.; Neville, M.; Malinin, V.; Scotto, A.W.; Sardaryan, G.; Kurumunda, R.; Mackinson, C.; James, G.; Fisher, S.; Perkins, W.R. Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections. J. Antimicrob. Chemother. 2008, 61, 859–868. [Google Scholar] [CrossRef]
- Vasile, B.S.; Oprea, O.; Voicu, G.; Ficai, A.; Andronescu, E.; Teodorescu, A.; Holban, A. Synthesis and characterization of a novel controlled release zinc oxide/gentamicin-chitosan composite with potential applications in wounds care. Int. J. Pharm. 2014, 463, 161–169. [Google Scholar] [CrossRef]
- Lemnaru (Popa), G.-M.; Truşcă, R.D.; Ilie, C.-I.; Țiplea, R.E.; Ficai, D.; Oprea, O.; Stoica-Guzun, A.; Ficai, A.; Dițu, L.-M. Antibacterial Activity of Bacterial Cellulose Loaded with Bacitracin and Amoxicillin: In Vitro Studies. Molecules 2020, 25, 4069. [Google Scholar] [CrossRef]
- Yang, J.; Lee, J.Y.; Too, H.P. A general phase transfer protocol for synthesizing alkaline sta-bilized nanoparticles of noble metals. Anal. Chim. Acta 2017, 588, 34–41. [Google Scholar] [CrossRef]
Zeta Potential (mV) | Zeta Average Size (z.d.nm) | Size (d.nm) | % Intensity | Y Intercept | PDI | % PDI | Pd (d.nm) | % Mass (d,nm) | Conductivity (mS/cm) |
---|---|---|---|---|---|---|---|---|---|
−20.9 ± 8.35 | 317.9 | 259.3 ± 73.52 | 90.2 | 0.854 | 0.256 | 67.7 | 215.2 | 57.63 | 2.36 |
Organisms | Concentration CFU#/mL | MIC (µg/mL) | Zone of Inhibition (mm) | |
---|---|---|---|---|
LADNP | Ciprofloxacin (50 µg/mL) | |||
Bacillus subtilis | 2 × 105 | 151.3 ± 2.5 | 25 ± 2 | 29 ± 2 |
Staphylococcus aureus | 4 × 105 | 201 ± 2.4 | 22.67 ± 3 | 26.67 ± 1.5 |
Streptococcus pyogenes | 4 × 103 | 260 ± 1.63 | 24.33 ± 1.5 | 25.67 ± 2.3 |
Escherichia coli | 3 × 105 | 102.6 ± 5.2 | 30 ± 2 | 33.67 ± 1.5 |
Pseudomonas aruginosa | 2 × 103 | 121 ± 2.9 | 25.3 ± 2.5 | 28 ± 3 |
Klebsiella pneumonia | 2 × 104 | 123.3 ± 1.2 | 27.67 ± 2.5 | 30 ± 2 |
Proteus vulgaris | 3 × 103 | 148 ± 1.6 | 25.33 ± 1.5 | 28 ± 3 |
Salmonella cholerasis | 2 × 104 | 151.3 ± 3.4 | 24 ± 1 | 27 ± 2.7 |
Enterococcus facalis | 4 × 103 | 122.3 ± 2.1 | 25.3 ± 2.5 | 27.67 ± 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syed, R.U.; Moni, S.S.; Nawaz, M.; Bin Break, M.K.; Khalifa, N.E.; Abdelwahab, S.I.; Alharbi, R.M.; Alfaisal, R.H.; Al Basher, B.N.; Alhaidan, E.M. Formulation and Evaluation of Amikacin Sulfate Loaded Dextran Nanoparticles against Human Pathogenic Bacteria. Pharmaceutics 2023, 15, 1082. https://doi.org/10.3390/pharmaceutics15041082
Syed RU, Moni SS, Nawaz M, Bin Break MK, Khalifa NE, Abdelwahab SI, Alharbi RM, Alfaisal RH, Al Basher BN, Alhaidan EM. Formulation and Evaluation of Amikacin Sulfate Loaded Dextran Nanoparticles against Human Pathogenic Bacteria. Pharmaceutics. 2023; 15(4):1082. https://doi.org/10.3390/pharmaceutics15041082
Chicago/Turabian StyleSyed, Rahamat Unissa, Sivakumar S. Moni, Muhammad Nawaz, Mohammed Khaled Bin Break, Nasrin E. Khalifa, Siddig Ibrahim Abdelwahab, Reham Meshal Alharbi, Raghad Huraid Alfaisal, Bayan Naif Al Basher, and Entsar Mohammed Alhaidan. 2023. "Formulation and Evaluation of Amikacin Sulfate Loaded Dextran Nanoparticles against Human Pathogenic Bacteria" Pharmaceutics 15, no. 4: 1082. https://doi.org/10.3390/pharmaceutics15041082
APA StyleSyed, R. U., Moni, S. S., Nawaz, M., Bin Break, M. K., Khalifa, N. E., Abdelwahab, S. I., Alharbi, R. M., Alfaisal, R. H., Al Basher, B. N., & Alhaidan, E. M. (2023). Formulation and Evaluation of Amikacin Sulfate Loaded Dextran Nanoparticles against Human Pathogenic Bacteria. Pharmaceutics, 15(4), 1082. https://doi.org/10.3390/pharmaceutics15041082