Topical Semisolid Products—Understanding the Impact of Metamorphosis on Skin Penetration and Physicochemical Properties
Abstract
1. Introduction
2. Evaporation
3. Supersaturation
4. Crystallization
5. Viscosity
6. Thermodynamic Activity
7. Microstructural Change
8. Skin Permeation Studies
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Imran, M.; Iqubal, M.K.; Imtiyaz, K.; Saleem, S.; Mittal, S.; Rizvi, M.M.A.; Ali, J.; Baboota, S. Topical Nanostructured Lipid Carrier Gel of Quercetin and Resveratrol: Formulation, Optimization, in Vitro and Ex Vivo Study for the Treatment of Skin Cancer. Int. J. Pharm. 2020, 587, 119705. [Google Scholar] [CrossRef] [PubMed]
- Tapfumaneyi, P.; Imran, M.; Mohammed, Y.; Roberts, M.S. Recent Advances and Future Prospective of Topical and Transdermal Delivery Systems. Front. Drug Deliv. 2022, 2, 25. [Google Scholar] [CrossRef]
- Chang, R.-K.; Raw, A.; Lionberger, R.; Yu, L. Generic Development of Topical Dermatologic Products, Part II: Quality by Design for Topical Semisolid Products. AAPS J. 2013, 15, 674–683. [Google Scholar] [CrossRef] [PubMed]
- Durand, C.; Alhammad, A.; Willett, K.C. Practical Considerations for Optimal Transdermal Drug Delivery. Am. J. Health-Syst. Pharm. 2012, 69, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Marwah, H.; Garg, T.; Goyal, A.K.; Rath, G. Permeation Enhancer Strategies in Transdermal Drug Delivery. Null 2016, 23, 564–578. [Google Scholar] [CrossRef]
- Mohammed, Y.; Holmes, A.; Kwok, P.C.L.; Kumeria, T.; Namjoshi, S.; Imran, M.; Matteucci, L.; Ali, M.; Tai, W.; Benson, H.A.E.; et al. Advances and Future Perspectives in Epithelial Drug Delivery. Adv. Drug Deliv. Rev. 2022, 186, 114293. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.S.; Cheruvu, H.S.; Mangion, S.E.; Alinaghi, A.; Benson, H.A.E.; Mohammed, Y.; Holmes, A.; van der Hoek, J.; Pastore, M.; Grice, J.E. Topical Drug Delivery: History, Percutaneous Absorption, and Product Development. Adv. Drug Deliv. Rev. 2021, 177, 113929. [Google Scholar] [CrossRef]
- Verdier-Sévrain, S.; Bonté, F. Skin Hydration: A Review on Its Molecular Mechanisms. J. Cosmet. Dermatol. 2007, 6, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Prausnitz, M.R.; Mitragotri, S.; Langer, R. Current Status and Future Potential of Transdermal Drug Delivery. Nat. Rev. Drug Discov. 2004, 3, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Raney, S.G.; Franz, T.J.; Lehman, P.A.; Lionberger, R.; Chen, M.-L. Pharmacokinetics-Based Approaches for Bioequivalence Evaluation of Topical Dermatological Drug Products. Clin. Pharm. 2015, 54, 1095–1106. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. 21 CFR § 320.22—Criteria for Waiver of Evidence of in Vivo Bioavailability or Bioequivalence. Available online: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-D/part-320/subpart-B/section-320.22 (accessed on 29 March 2022).
- Buhse, L.; Kolinski, R.; Westenberger, B.; Wokovich, A.; Spencer, J.; Chen, C.W.; Turujman, S.; Gautam-Basak, M.; Kang, G.J.; Kibbe, A.; et al. Topical Drug Classification. Int. J. Pharm. 2005, 295, 101–112. [Google Scholar] [CrossRef]
- Hunter, A.M.; Grigson, C.; Wade, A. Influence of Topically Applied Menthol Cooling Gel on Soft Tissue Thermodynamics and Arterial and Cutaneous Blood Flow At Rest. Int. J. Sports Phys. 2018, 13, 483–492. [Google Scholar] [CrossRef]
- Surber, C.; Knie, U. Metamorphosis of Vehicles: Mechanisms and Opportunities. In Current Problems in Dermatology; Surber, C., Abels, C., Maibach, H., Karger, A.G.S., Eds.; Karger: Basel, Switzerland, 2018; Volume 54, pp. 152–165. ISBN 978-3-318-06384-4. [Google Scholar]
- Namjoshi, S.; Dabbaghi, M.; Roberts, M.S.; Grice, J.E.; Mohammed, Y. Quality by Design: Development of the Quality Target Product Profile (QTPP) for Semisolid Topical Products. Pharmaceutics 2020, 12, 287. [Google Scholar] [CrossRef]
- Mohammed, Y.; Namjoshi, S.; Telaprolu, K.; Crowe, A.; Jung, N.; Grice, J.; Windbergs, M.; Benson, H.; Raney, S.G.; Roberts, M.S. A Novel Method to Selectively Differentiate between the Loss of Water and Other Volatiles from Topical Semisolid Products; CRS: Mount Laurel, NJ, USA, 2017. [Google Scholar]
- Santos, P.; Watkinson, A.C.; Hadgraft, J.; Lane, M.E. Enhanced Permeation of Fentanyl from Supersaturated Solutions in a Model Membrane. Int. J. Pharm. 2011, 407, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.; Watkinson, A.C.; Hadgraft, J.; Lane, M.E. Influence of Penetration Enhancer on Drug Permeation from Volatile Formulations. Int. J. Pharm. 2012, 439, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Pellett, M.A.; Castellano, S.; Hadgraft, J.; Davis, A.F. The Penetration of Supersaturated Solutions of Piroxicam across Silicone Membranes and Human Skin in Vitro. J. Control. Release 1997, 46, 205–214. [Google Scholar] [CrossRef]
- Pellett, M.A.; Roberts, M.S.; Hadgraft, J. Supersaturated Solutions Evaluated with an in Vitro Stratum Corneum Tape Stripping Technique. Int. J. Pharm. 1997, 151, 91–98. [Google Scholar] [CrossRef]
- Poulsen, B.J.; Young, E.; Coquilla, V.; Katz, M. Effect of Topical Vehicle Composition on the In Vitro Release of Fluocinolone Acetonide and Its Acetate Ester. J. Pharm. Sci. 1968, 57, 928–933. [Google Scholar] [CrossRef] [PubMed]
- Coldman, M.F.; Poulsen, B.J.; Higuchi, T. Enhancement of Percutaneous Absorption by the Use of Volatile: Nonvolatile Systems as Vehicles. J. Pharm. Sci. 1969, 58, 1098–1102. [Google Scholar] [CrossRef]
- Theeuwes, F.; Gale, R.M.; Baker, R.W. Transference: A Comprehensive Parameter Governing Permeation of Solutes through Membranes. J. Membr. Sci. 1976, 1, 3–16. [Google Scholar] [CrossRef]
- Barrett, C.W.; Hadgraft, J.W.; Caron, G.A.; Sarkany, I. The Effect of Particle Size and Vehicle on the Percutaneous Absorption of Fluocinolone Acetonide. Br. J. Dermatol. 1965, 77, 576–578. [Google Scholar] [CrossRef] [PubMed]
- Chia-Ming, C.; Flynn, G.L.; Weiner, N.D.; Szpunar, G.J. Bioavailability Assessment of Topical Delivery Systems: Effect of Vehicle Evaporation upon in Vitro Delivery of Minoxidil from Solution Formulations. Int. J. Pharm. 1989, 55, 229–236. [Google Scholar] [CrossRef]
- Iervolino, M.; Cappello, B.; Raghavan, S.L.; Hadgraft, J. Penetration Enhancement of Ibuprofen from Supersaturated Solutions through Human Skin. Int. J. Pharm. 2001, 212, 131–141. [Google Scholar] [CrossRef]
- Casacio, C.A.; Madsen, L.S.; Terrasson, A.; Waleed, M.; Barnscheidt, K.; Hage, B.; Taylor, M.A.; Bowen, W.P. Quantum-Enhanced Nonlinear Microscopy. Nature 2021, 594, 201–206. [Google Scholar] [CrossRef]
- Belsey, N.A.; Garrett, N.L.; Contreras-Rojas, L.R.; Pickup-Gerlaugh, A.J.; Price, G.J.; Moger, J.; Guy, R.H. Evaluation of Drug Delivery to Intact and Porated Skin by Coherent Raman Scattering and Fluorescence Microscopies. J. Control. Release 2014, 174, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Saar, B.G.; Contreras-Rojas, L.R.; Xie, X.S.; Guy, R.H. Imaging Drug Delivery to Skin with Stimulated Raman Scattering Microscopy. Mol. Pharm. 2011, 8, 969–975. [Google Scholar] [CrossRef] [PubMed]
- Saar, B.G.; Freudiger, C.W.; Reichman, J.; Stanley, C.M.; Holtom, G.R.; Xie, X.S. Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering. Science 2010, 330, 1368–1370. [Google Scholar] [CrossRef]
- Cross, S.E.; Roberts, M.S.; Jiang, R.; Benson, H.A.E. Can Increasing the Viscosity of Formulations Be Used to Reduce the Human Skin Penetration of the Sunscreen Oxybenzone? J. Investig. Dermatol. 2001, 117, 147–150. [Google Scholar] [CrossRef]
- Binder, L.; Mazál, J.; Petz, R.; Klang, V.; Valenta, C. The Role of Viscosity on Skin Penetration from Cellulose Ether-Based Hydrogels. Ski. Res. Technol. 2019, 25, 725–734. [Google Scholar] [CrossRef]
- Connors, K.A. Thermodynamics of Pharmaceutical Systems: An Introduction for Students of Pharmacy; Wiley-Interscience: Hoboken, NJ, USA, 2002; ISBN 978-0-471-20241-7. [Google Scholar]
- Higuchi, T. Physical Chemical Analysis of Percutaneous Absorption Process from Creams and Ointments. J. Soc. Cosmet. Chem. 1960, 11, 85–97. [Google Scholar]
- Barry, B.W.; Harrison, S.M.; Dugard, P.H. Correlation of Thermodynamic Activity and Vapour Diffusion through Human Skin for the Model Compound, Benzyl Alcohol. J. Pharm. Pharmacol. 2011, 37, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Barry, B.W.; Harrison, S.M.; Dugard, P.H. Vapour and Liquid Diffusion of Model Penetrants through Human Skin; Correlation with Thermodynamic Activity. J. Pharm. Pharmacol. 2011, 37, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Kokate, A.; Li, X.; Singh, P.; Jasti, B.R. Effect of Thermodynamic Activities of the Unionized and Ionized Species on Drug Flux across Buccal Mucosa. J. Pharm. Sci. 2008, 97, 4294–4306. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.S.; Anderson, R.A.; Swarbrick, J. Permeability of Human Epidermis to Phenolic Compounds. J. Pharm. Pharmacol. 1977, 29, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Grice, J.E.; Li, P.; Jepps, O.G.; Wang, G.-J.; Roberts, M.S. Skin Solubility Determines Maximum Transepidermal Flux for Similar Size Molecules. Pharm. Res. 2009, 26, 1974–1985. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, P.; Roberts, M.S. Maximum Transepidermal Flux for Similar Size Phenolic Compounds Is Enhanced by Solvent Uptake into the Skin. J. Control. Release 2011, 154, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Anissimov, Y.G.; Roberts, M.S. Diffusion Modeling of Percutaneous Absorption Kinetics: 2. Finite Vehicle Volume and Solvent Deposited Solids. J. Pharm. Sci. 2001, 90, 504–520. [Google Scholar] [CrossRef]
- Pudipeddi, M.; Serajuddin, A.T.M. Trends in Solubility of Polymorphs. J. Pharm. Sci. 2005, 94, 929–939. [Google Scholar] [CrossRef] [PubMed]
- Toll, R.; Jacobi, U.; Richter, H.; Lademann, J.; Schaefer, H.; Blume-Peytavi, U. Penetration Profile of Microspheres in Follicular Targeting of Terminal Hair Follicles. J. Investig. Dermatol. 2004, 123, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Kahraman, E.; Güngör, S.; Ozsoy, Y. Potential Enhancement and Targeting Strategies of Polymeric and Lipid-Based Nanocarriers in Dermal Drug Delivery. Ther. Deliv. 2017, 8, 967–985. [Google Scholar] [CrossRef]
- Subongkot, T.; Sirirak, T. Development and Skin Penetration Pathway Evaluation of Microemulsions for Enhancing the Dermal Delivery of Celecoxib. Colloids Surf. B Biointerfaces 2020, 193, 111103. [Google Scholar] [CrossRef]
- Lademann, J.; Richter, H.; Schaefer, U.F.; Blume-Peytavi, U.; Teichmann, A.; Otberg, N.; Sterry, W. Hair Follicles—A Long-Term Reservoir for Drug Delivery. Ski. Pharm. Physiol. 2006, 19, 232–236. [Google Scholar] [CrossRef]
- Simões, A.; Veiga, F.; Vitorino, C. Progressing Towards the Sustainable Development of Cream Formulations. Pharmaceutics 2020, 12, 647. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.K.; Barot, B.S.; Parejiya, P.B.; Shelat, P.K.; Shukla, A. Topical Delivery of Clobetasol Propionate Loaded Microemulsion Based Gel for Effective Treatment of Vitiligo: Ex Vivo Permeation and Skin Irritation Studies. Colloids Surf. B Biointerfaces 2013, 102, 86–94. [Google Scholar] [CrossRef]
- Jung, N.; Namjoshi, S.; Mohammed, Y.; Grice, J.E.; Benson, H.A.E.; Raney, S.G.; Roberts, M.S.; Windbergs, M. Application of Confocal Raman Microscopy for the Characterization of Topical Semisolid Formulations and Their Penetration into Human Skin Ex Vivo. Pharm. Res. 2022, 39, 935–948. [Google Scholar] [CrossRef] [PubMed]
- Kreilgaard, M. Dermal Pharmacokinetics of Microemulsion Formulations Determined by In Vivo Microdialysis. Pharm. Res. 2001, 18, 367–373. [Google Scholar] [CrossRef]
- Lademann, J.; Jacobi, U.; Surber, C.; Weigmann, H.-J.; Fluhr, J.W. The Tape Stripping Procedure—Evaluation of Some Critical Parameters. Eur. J. Pharm. Biopharm. 2009, 72, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.L.; Swofford, N.J.; Santiago, B.G. In Vitro Permeation Test (IVPT) for Pharmacokinetic Assessment of Topical Dermatological Formulations. Curr. Protoc. Pharmacol. 2020, 91, e79. [Google Scholar] [CrossRef]
- Caspers, P.J.; Bruining, H.A.; Puppels, G.J.; Lucassen, G.W.; Carter, E.A. In Vivo Confocal Raman Microspectroscopy of the Skin: Noninvasive Determination of Molecular Concentration Profiles. J. Investig. Dermatol. 2001, 116, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Sinkó, B.; Garrigues, T.M.; Balogh, G.T.; Nagy, Z.K.; Tsinman, O.; Avdeef, A.; Takács-Novák, K. Skin–PAMPA: A New Method for Fast Prediction of Skin Penetration. Eur. J. Pharm. Sci. 2012, 45, 698–707. [Google Scholar] [CrossRef]
- Engesland, A.; Skar, M.; Hansen, T.; Škalko-basnet, N.; Flaten, G.E. New Applications of Phospholipid Vesicle-Based Permeation Assay: Permeation Model Mimicking Skin Barrier. J. Pharm. Sci. 2013, 102, 1588–1600. [Google Scholar] [CrossRef] [PubMed]
- Organisation for Economic Cooperation and Development. OECD Guideline for Testing of Chemicals No. 428: Skin Absorption: In Vitro Methods; OECD: Paris, France, 2004. [Google Scholar]
- Franz, T.J. Percutaneous Absorption on the Relevance of in Vitro Data. J. Investig. Derm. 1975, 64, 190–195. [Google Scholar] [CrossRef]
- Sil, B.C.; Alvarez, M.P.; Zhang, Y.; Kung, C.-P.; Hossain, M.; Iliopoulos, F.; Luo, L.; Crowther, J.M.; Moore, D.J.; Hadgraft, J.; et al. 3D-Printed Franz Type Diffusion Cells. Int. J. Cosmet. Sci. 2018, 40, 604–609. [Google Scholar] [CrossRef]
- Tiboni, M.; Curzi, G.; Aluigi, A.; Casettari, L. An Easy 3D Printing Approach to Manufacture Vertical Diffusion Cells for in Vitro Release and Permeation Studies. J. Drug Deliv. Sci. Technol. 2021, 65, 102661. [Google Scholar] [CrossRef]
- Wagner, H.; Lehr, C.-M.; Schaefer, U.F.; Kostka, K.-H. Human Skin Penetration of Flufenamic Acid: In Vivo/In Vitro Correlation (Deeper Skin Layers) for Skin Samples from the Same Subject. J. Investig. Dermatol. 2002, 118, 540–544. [Google Scholar] [CrossRef]
- Wagner, H.; Kostka, K.-H.; Lehr, C.-M.; Schaefer, U.F. Drug Distribution in Human Skin Using Two Different In Vitro Test Systems: Comparison with In Vivo Data. Pharm. Res. 2000, 17, 1475–1481. [Google Scholar] [CrossRef]
- Finnin, B.; Walters, K.A.; Franz, T.J. In Vitro Skin Permeation Methodology. In Topical and Transdermal Drug Delivery; Benson, H.A.E., Watkinson, A.C., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 85–108. ISBN 978-1-118-14050-5. [Google Scholar]
- Bronaugh, R.L.; Stewart, R.F. Methods for In Vitro Percutaneous Absorption Studies IV: The Flow-through Diffusion Cell. J. Pharm. Sci. 1985, 74, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Tanojo, H.; Roemelé, P.E.H.; van Veen, G.H.; Stieltjes, H.; Junginger, H.E.; Boddé, H.E. New Design of a Flow-through Permeation Cell for Studying in Vitro Permeation Studies across Biological Membranes. J. Control. Release 1997, 45, 41–47. [Google Scholar] [CrossRef]
- Arora, S.; Clarke, J.; Tsakalozou, E.; Ghosh, P.; Alam, K.; Grice, J.E.; Roberts, M.S.; Jamei, M.; Polak, S. Mechanistic Modeling of In Vitro Skin Permeation and Extrapolation to In Vivo for Topically Applied Metronidazole Drug Products Using a Physiologically Based Pharmacokinetic Model. Mol. Pharm. 2022, 19, 3139–3152. [Google Scholar] [CrossRef]
- Chen, M.; Liu, X.; Fahr, A. Skin Penetration and Deposition of Carboxyfluorescein and Temoporfin from Different Lipid Vesicular Systems: In Vitro Study with Finite and Infinite Dosage Application. Int. J. Pharm. 2011, 408, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Cristofoli, M.; Kung, C.-P.; Hadgraft, J.; Lane, M.E.; Sil, B.C. Ion Pairs for Transdermal and Dermal Drug Delivery: A Review. Pharmaceutics 2021, 13, 909. [Google Scholar] [CrossRef] [PubMed]
- Valenta, C.; Siman, U.; Kratzel, M.; Hadgraft, J. The Dermal Delivery of Lignocaine: Influence of Ion Pairing. Int. J. Pharm. 2000, 197, 77–85. [Google Scholar] [CrossRef]
- Sarveiya, V.; Templeton, J.F.; Benson, H.A.E. Ion-Pairs of Ibuprofen: Increased Membrane Diffusion. J. Pharm. Pharmacol. 2004, 56, 717–724. [Google Scholar] [CrossRef] [PubMed]
APIs | Dosage Form | Qualitative and Quantitative Assessment (Q1 & Q2) | Comparative Physicochemical Characterization (Q3) | In Vitro Release Testing (IVRT) | In Vitro Permeation Testing (IVPT) | Additional In Vivo Pharmacokinetic Study | Year |
---|---|---|---|---|---|---|---|
Acyclovir | Ointment | + | + | + | 2019 | ||
Acyclovir | Cream | + | + | + | + | 2016 | |
Bexarotene | Gel | + | + | + | 2019 | ||
Clindamycin phosphate | Gel | + | + | + | 2020 | ||
Crisaborole | Ointment | + | + | + | + | + | 2019 |
Dapsone | Gel | + | + | + | + | + | 2019 |
Docosanol | Cream | + | + | + | 2017 | ||
Doxepin hydrochloride | Cream | + | + | + | + | + | 2019 |
Erythromycin | Gel | + | 2019 | ||||
Fluocinolone acetonide | Cream | + | 2018 | ||||
Gentamicin sulfate | Ointment | + | 2017 | ||||
Gentamicin sulfate | Cream | + | 2017 | ||||
Hydrocortisone | Cream | + | 2017 | ||||
Ivermectin | Cream | + | + | + | + | + | 2019 |
Lidocaine | Ointment | + | + | 2016 | |||
Luliconazole | Cream | + | + | + | + | 2018 | |
Metronidazole | Gel | + | + | + | 2019 | ||
Metronidazole | Cream | + | + | + | + | 2019 | |
Oxymetazoline hydrochloride | Cream | + | + | + | + | 2019 | |
Penciclovir | Cream | + | + | + | + | 2018 | |
Pimecrolimus | Cream | + | + | + | + | 2019 | |
Silver sulfadiazine | Cream | + | + | + | 2017 | ||
Tacrolimus | Ointment | + | + | + | + | 2018 | |
Tretinoin | Gel | + | + | + | 2020 | ||
Triamcinolone acetonide | Cream | + | 2017 |
NO. | Available Techniques | Working Range | Advantages | Disadvantage |
---|---|---|---|---|
1 | Dynamic Light Scattering | 10 nm–10 µm | Smaller sample volume | Need of sample dilution, unsuitable for viscous samples. |
2 | Laser Diffraction | 10 nm–1 mm | Reproducible, smaller sample volume, suitable for spherical particles. | Inaccurate results for irregularly shaped particles need sample dilution. |
3 | Morphologically Directed Raman Spectroscopy (MDRS) | 1 μm–1 mm | Spectroscopic interrogation of particles. | Shorter working range. |
4 | Optical microscopy (bright-field microscopy and polarized light microscopy) | 1 μm–1 mm | Rapid identification of drug crystals. | Shorter working range, sensitive to sample preparation. |
NO. | Skin Models | Examples | Advantages | Disadvantages |
1 | Human skin models | Full-thickness human skin, dermatomed human skin, the epidermis. | Anatomically identical to human in vivo skin | Ethical considerations, Inconsistency between skin donors |
2 | Animal skin models | Rats skin, snakeskin, porcine skin, macaque skin. | Histologically similar to human skin | More permeable than ex vivo skin |
3 | Reconstructed human skin equivalents | Reconstructed full-thickness skin, the reconstructed epidermis (EpiSkin®, SkinEthic®, EpiDerm®). | Structurally close to human skin | More permeable than ex vivo skin |
4 | Synthetic membranes | Strat-M™, parallel artificial membrane permeability assay [54], phospholipid vesicle-based permeation assay [55]. | Reproducible and consistent results | Differences in lipid compositions to the human skin |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, X.; Imran, M.; Mohammed, Y. Topical Semisolid Products—Understanding the Impact of Metamorphosis on Skin Penetration and Physicochemical Properties. Pharmaceutics 2022, 14, 2487. https://doi.org/10.3390/pharmaceutics14112487
Jin X, Imran M, Mohammed Y. Topical Semisolid Products—Understanding the Impact of Metamorphosis on Skin Penetration and Physicochemical Properties. Pharmaceutics. 2022; 14(11):2487. https://doi.org/10.3390/pharmaceutics14112487
Chicago/Turabian StyleJin, Xuping, Mohammad Imran, and Yousuf Mohammed. 2022. "Topical Semisolid Products—Understanding the Impact of Metamorphosis on Skin Penetration and Physicochemical Properties" Pharmaceutics 14, no. 11: 2487. https://doi.org/10.3390/pharmaceutics14112487
APA StyleJin, X., Imran, M., & Mohammed, Y. (2022). Topical Semisolid Products—Understanding the Impact of Metamorphosis on Skin Penetration and Physicochemical Properties. Pharmaceutics, 14(11), 2487. https://doi.org/10.3390/pharmaceutics14112487