Structural Insights into the Nuclear Import of Haliotid Herpesvirus 1 Large Tegument Protein Homologue
Abstract
1. Introduction
2. Materials and Methods
2.1. Retrieval and Analysis of HaHV1 Genomic Sequences
2.2. Peptide and Gene Construct Design and Synthesis
2.3. Recombinant Expression and Purification of Importin Isoforms
2.4. Crystallization, Data Collection and Structure Determination
2.5. Fluorescence Polarization Assay
2.6. Electro-Mobility Shift Assay (EMSA)
3. Results
3.1. Genetic Variability of the HaHV1 UL36 Homologue Gene
3.2. Biochemical Determination of HaHV1 NLS Preference for Importin α Isoforms
3.3. The High-Resolution Crystal Structure Reveals the Binding Interface of IMPα and HaHV1 NLS
3.4. Mutational Studies Confirm Monopartite Nature of HaHV1 NLS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hooper, C.; Hardy-Smith, P.; Handlinger, J. Ganglioneuritis causing high mortalities in farmed Australian abalone (Haliotis laevigata and Haliotis rubra). Aust. Vet. J. 2007, 85, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Ellard, K.; Pyecroft, S.; Handlinger, J.; Andrewartha, R. Findings of disease investigations following the recent detection of AVG in Tasmania. In Proceedings of the Fourth National FRDC Aquatic Animal Health Scientific Conference, Cairns, Australia, 22–24 July 2009. [Google Scholar]
- Chang, P.H.; Kuo, S.T.; Lai, S.H.; Yang, H.S.; Ting, Y.Y.; Hsu, C.L.; Chen, H.C. Herpes-like virus infection causing mortality of cultured abalone Haliotis diversicolor supertexta in Taiwan. Dis. Aquat. Org. 2005, 65, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Guo, Z.; Feng, J.; Liu, G.; Xu, L.; Chen, B.; Pan, J. Virus infection in cultured abalone, Haliotis diversicolor reeve in Guangdong Province, China. J. Shellfish Res. 2004, 23, 1163–1169. [Google Scholar]
- Cowley, J.A.; Corbeil, S.; Chen, H.; Wong, F.; Moody, N.J.; Ellard, K.; Fegan, M.; Savin, K.; Warner, S.; Crane, M.S.-J. Sequence variations amongst abalone herpes-like virus [AbHV] strains provide insights into its origins in Victoria and Tasmania. In Proceedings of the First FRDC Australasian Scientific Conference on Aquatic Animal Health, Cairns, Australia, 5–8 July 2011. [Google Scholar]
- FAO. FAO Statistics—Introduction; Fisheries and Aquaculture Department, Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar]
- Tuynman, H.; Dylewski, M.; Cao, A.; Curtotti, R. Australian Fisheries and Aquaculture Outlook 2024; Department of Agriculture, Water and the Environment ABARES: Canberra, Australia, 2024. [Google Scholar]
- Savin, K.W.; Cocks, B.G.; Wong, F.; Sawbridge, T.; Cogan, N.; Savage, D.; Warner, S. A neurotropic herpesvirus infecting the gastropod, abalone, shares ancestry with oyster herpesvirus and a herpesvirus associated with the amphioxus genome. Virol. J. 2010, 7, 308. [Google Scholar] [CrossRef]
- Savin, K.; Davison, A. Create Genus Aurivirus in the Family Malacoherpesviridae, Order Herpesvirales. 2011. Available online: https://talk.ictvonline.org/taxonomy/ (accessed on 1 September 2025).
- Cingolani, G.; Petosa, C.; Weis, K.; Müller, C.W. Structure of importin-beta bound to the IBB domain of importin-alpha. Nature 1999, 399, 221–229. [Google Scholar] [CrossRef]
- Milles, S.; Mercadante, D.; Aramburu, I.V.; Jensen, M.R.; Banterle, N.; Koehler, C.; Tyagi, S.; Clarke, J.; Shammas, S.L.; Blackledge, M.; et al. Plasticity of an ultrafast interaction between nucleoporins and nuclear transport receptors. Cell 2015, 163, 734–745. [Google Scholar] [CrossRef]
- Vogel, O.A.; Forwood, J.K.; Leung, D.W.; Amarasinghe, G.K.; Basler, C.F. Viral Targeting of Importin Alpha-Mediated Nuclear Import to Block Innate Immunity. Cells 2024, 13, 71. [Google Scholar] [CrossRef]
- Bischoff, F.R.; Görlich, D. RanBP1 is crucial for the release of RanGTP from importin β-related nuclear transport factors. FEBS Lett. 1997, 419, 249–254. [Google Scholar] [CrossRef]
- Lee, S.J.; Matsuura, Y.; Liu, S.M.; Stewart, M. Structural basis for nuclear import complex dissociation by RanGTP. Nature 2005, 435, 693–696. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Yamada, K.; Yoneda, Y. Importin α: A key molecule in nuclear transport and non-transport functions. J. Biochem. 2016, 160, 69–75. [Google Scholar] [CrossRef]
- Pumroy, R.A.; Cingolani, G. Diversification of importin-α isoforms in cellular trafficking and disease states. Biochem. J. 2015, 466, 13–28. [Google Scholar] [CrossRef]
- Stewart, M. Molecular mechanism of the nuclear protein import cycle. Nat. Rev. Mol. Cell Biol. 2007, 8, 195–208. [Google Scholar] [CrossRef]
- Döhner, K.; Serrero, M.C.; Sodeik, B. The role of nuclear pores and importins for herpes simplex virus infection. Curr. Opin. Virol. 2023, 62, 101361. [Google Scholar] [CrossRef]
- Flint, S.J.; Racaniello, V.R.; Rall, G.F.; Hatziioannou, T.; Skalka, A.M. Principles of Virology, Volume 2: Pathogenesis and Control; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Desai, P.J. A null mutation in the UL36 gene of herpes simplex virus type 1 results in accumulation of unenveloped DNA-filled capsids in the cytoplasm of infected cells. J. Virol. 2000, 74, 11608–11618. [Google Scholar] [CrossRef]
- Fuchs, W.; Klupp, B.G.; Granzow, H.; Mettenleiter, T.C. Essential function of the pseudorabies virus UL36 gene product is independent of its interaction with the UL37 protein. J. Virol. 2004, 78, 11879–11889. [Google Scholar] [CrossRef]
- Lee, J.I.; Luxton, G.W.; Smith, G.A. Identification of an essential domain in the herpesvirus VP1/2 tegument protein: The carboxy terminus directs incorporation into capsid assemblons. J. Virol. 2006, 80, 12086–12094. [Google Scholar] [CrossRef]
- Luxton, G.W.; Lee, J.I.; Haverlock-Moyns, S.; Schober, J.M.; Smith, G.A. The pseudorabies virus VP1/2 tegument protein is required for intracellular capsid transport. J. Virol. 2006, 80, 201–209. [Google Scholar] [CrossRef]
- Shanda, S.K.; Wilson, D.W. UL36p is required for efficient transport of membrane-associated herpes simplex virus type 1 along microtubules. J. Virol. 2008, 82, 7388–7394. [Google Scholar] [CrossRef] [PubMed]
- Abaitua, F.; Hollinshead, M.; Bolstad, M.; Crump, C.M.; O’Hare, P. A Nuclear localization signal in herpesvirus protein VP1-2 is essential for infection via capsid routing to the nuclear pore. J. Virol. 2012, 86, 8998–9014. [Google Scholar] [CrossRef] [PubMed]
- Kosugi, S.; Hasebe, M.; Matsumura, N.; Takashima, H.; Miyamoto-Sato, E.; Tomita, M.; Yanagawa, H. Six classes of nuclear localization signals specific to different binding grooves of importin alpha. J. Biol. Chem. 2009, 284, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Hennig, T.; Abaitua, F.; O’Hare, P. Functional Analysis of Nuclear Localization Signals in VP1-2 Homologues from All Herpesvirus Subfamilies. J. Virol. 2014, 88, 5391–5405. [Google Scholar] [CrossRef]
- Kosugi, S.; Hasebe, M.; Tomita, M.; Yanagawa, H. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc. Natl. Acad. Sci. USA 2009, 106, 10171–10176. [Google Scholar] [CrossRef]
- Ariawan, D.; Thananthirige, K.P.M.; El-Omar, A.; van der Hoven, J.; Genoud, S.; Stefen, H.; Fath, T.; van Eersel, J.; Ittner, L.M.; Tietz, O. Design of peptide therapeutics as protein–protein interaction inhibitors to treat neurodegenerative diseases. RSC Adv. 2024, 14, 34637–34642. [Google Scholar] [CrossRef]
- Munasinghe, T.S.; Edwards, M.R.; Tsimbalyuk, S.; Vogel, O.A.; Smith, K.M.; Stewart, M.; Foster, J.K.; Bosence, L.A.; Aragão, D.; Roby, J.A.; et al. MERS-CoV ORF4b employs an unusual binding mechanism to target IMPα and block innate immunity. Nat. Commun. 2022, 13, 1604. [Google Scholar] [CrossRef] [PubMed]
- Teh, T.; Tiganis, T.; Kobe, B. Crystallization of importin α, the nuclear-import receptor. Acta Crystallogr. Sect. D 1999, 55, 561–563. [Google Scholar] [CrossRef] [PubMed]
- Studier, F.W. Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif. 2005, 41, 207–234. [Google Scholar] [CrossRef]
- Jagga, B.; Edwards, M.; Pagin, M.; Wagstaff, K.M.; Aragão, D.; Roman, N.; Nanson, J.D.; Raidal, S.R.; Dominado, N.; Stewart, M.; et al. Structural basis for nuclear import selectivity of pioneer transcription factor SOX2. Nat. Commun. 2021, 12, 28. [Google Scholar] [CrossRef]
- Aragão, D.; Aishima, J.; Cherukuvada, H.; Clarken, R.; Clift, M.; Cowieson, N.P.; Ericsson, D.J.; Gee, C.L.; Macedo, S.; Mudie, N.; et al. MX2: A high-flux undulator microfocus beamline serving both the chemical and macromolecular crystallography communities at the Australian Synchrotron. J. Synchrotron Radiat. 2018, 25 Pt 3, 885–891. [Google Scholar] [CrossRef]
- Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. Appl. Crystallogr. 1993, 26, 795–800. [Google Scholar] [CrossRef]
- Evans, P.R. An introduction to data reduction: Space-group determination, scaling and intensity statistics. Biol. Crystallogr. 2011, 67 Pt 4, 282–292. [Google Scholar] [CrossRef]
- Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of Coot. Acta Crystallogr. Sect. D 2010, 66, 486–501. [Google Scholar] [CrossRef] [PubMed]
- Adams, P.D.; Afonine, P.V.; Bunkóczi, G.; Chen, V.B.; Davis, I.W.; Echols, N.; Headd, J.J.; Hung, L.W.; Kapral, G.J.; Grosse-Kunstleve, R.W.; et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Biol. Crystallogr. 2010, 66 Pt 2, 213–221. [Google Scholar] [CrossRef] [PubMed]
- McCoy, A.J.; Grosse-Kunstleve, R.W.; Adams, P.D.; Winn, M.D.; Storoni, L.C.; Read, R.J. Phaser crystallographic software. Appl. Crystallogr. 2007, 40, 658–674. [Google Scholar] [CrossRef] [PubMed]
- Alvisi, G.; Manaresi, E.; Cross, E.M.; Hoad, M.; Akbari, N.; Pavan, S.; Ariawan, D.; Bua, G.; Petersen, G.F.; Forwood, J.; et al. Importin alpha/beta-dependent nuclear transport of human parvovirus B19 nonstructural protein 1 is essential for viral replication. Antivir. Res. 2023, 213, 105588. [Google Scholar] [CrossRef]
- Athukorala, A.; Donnelly, C.M.; Pavan, S.; Nematollahzadeh, S.; Djossou, V.A.; Nath, B.; Helbig, K.J.; Di Iorio, E.; McSharry, B.P.; Alvisi, G.; et al. Structural and functional characterization of siadenovirus core protein VII nuclear localization demonstrates the existence of multiple nuclear transport pathways. J. Gen. Virol. 2024, 105, 001928. [Google Scholar] [CrossRef]
- Cross, E.M.; Akbari, N.; Ghassabian, H.; Hoad, M.; Pavan, S.; Ariawan, D.; Donnelly, C.M.; Lavezzo, E.; Petersen, G.F.; Forwood, J.K.; et al. A functional and structural comparative analysis of Large Tumor Antigens reveals evolution of different importin alpha-dependent nuclear localization signals. Protein Sci. 2023, 33, e4876. [Google Scholar] [CrossRef]
- Cross, E.M.; Marin, O.; Ariawan, D.; Aragao, D.; Cozza, G.; Di Iorio, E.; Forwood, J.K.; Alvisi, G. Structural determinants of phosphorylation-dependent nuclear transport of HCMV DNA polymerase processivity factor UL44. FEBS Lett. 2023, 598, 199–209. [Google Scholar] [CrossRef]
- Hoad, M.; Cross, E.M.; Donnelly, C.M.; Sarker, S.; Roby, J.A.; Forwood, J.K. Structural Characterization of Porcine Adeno-Associated Virus Capsid Protein with Nuclear Trafficking Protein Importin Alpha Reveals a Bipartite Nuclear Localization Signal. Viruses 2023, 15, 315. [Google Scholar] [CrossRef]
- Nematollahzadeh, S.; Athukorala, A.; Donnelly, C.M.; Pavan, S.; Atelie-Djossou, V.; Di Iorio, E.; Nath, B.; Helbig, K.J.; McSharry, B.P.; Forwood, J.K.; et al. Mechanistic Insights Into an Ancient Adenovirus Precursor Protein VII Show Multiple Nuclear Import Receptor Pathways. Traffic 2024, 25, e12953. [Google Scholar] [CrossRef]
- Conti, E.; Uy, M.; Leighton, L.; Blobel, G.; Kuriyan, J. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha. Cell 1998, 94, 193–204. [Google Scholar] [CrossRef]
- Fontes, M.R.; Teh, T.; Kobe, B. Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-alpha. J. Mol. Biol. 2000, 297, 1183–1194. [Google Scholar] [CrossRef] [PubMed]
- Nakada, R.; Hirano, H.; Matsuura, Y. Structural basis for the regulation of nuclear import of Epstein-Barr virus nuclear antigen 1 (EBNA1) by phosphorylation of the nuclear localization signal. Biochem. Biophys. Res. Commun. 2017, 484, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Weller, S.K.; Coen, D.M. Herpes simplex viruses: Mechanisms of DNA replication. Cold Spring Harb. Perspect. Biol. 2012, 4, a013011. [Google Scholar] [CrossRef] [PubMed]
- Packard, J.E.; Dembowski, J.A. HSV-1 DNA Replication-Coordinated Regulation by Viral and Cellular Factors. Viruses 2021, 13, 2015. [Google Scholar] [CrossRef]
- Xing, J.; Wang, S.; Li, Y.; Guo, H.; Zhao, L.; Pan, W.; Lin, F.; Zhu, H.; Wang, L.; Li, M.; et al. Characterization of the subcellular localization of herpes simplex virus type 1 proteins in living cells. Med. Microbiol. Immunol. 2011, 200, 61–68. [Google Scholar] [CrossRef]
- Ojala, P.M.; Sodeik, B.; Ebersold, M.W.; Kutay, U.; Helenius, A. Herpes simplex virus type 1 entry into host cells: Reconstitution of capsid binding and uncoating at the nuclear pore complex in vitro. Mol. Cell. Biol. 2000, 20, 4922–4931. [Google Scholar] [CrossRef]
- Goldfarb, D.S.; Corbett, A.H.; Mason, D.A.; Harreman, M.T.; Adam, S.A. Importin alpha: A multipurpose nuclear-transport receptor. Trends Cell Biol. 2004, 14, 505–514. [Google Scholar] [CrossRef]
- Görlich, D.; Kutay, U. Transport Between the Cell Nucleus and the Cytoplasm. Annu. Rev. Cell Dev. Biol. 1999, 15, 607–660. [Google Scholar] [CrossRef]
- Alvisi, G.; Avanzi, S.; Musiani, D.; Camozzi, D.; Leoni, V.; Ly-Huynh, J.D.; Ripalti, A. Nuclear Import of HSV-1 DNA Polymerase Processivity Factor UL42 Is Mediated by a C-Terminally Located Bipartite Nuclear Localization Signal. Biochemistry 2008, 47, 13764–13777. [Google Scholar] [CrossRef]
- La Boissière, S.; Hughes, T.; O’Hare, P. HCF-dependent nuclear import of VP16. EMBO J. 1999, 18, 480–489. [Google Scholar] [CrossRef]
- Wagstaff, K.M.; Jans, D.A. Importins and beyond: Non-conventional nuclear transport mechanisms. Traffic 2009, 10, 1188–1198. [Google Scholar] [CrossRef]
- Poon, I.K.H.; Jans, D.A. Regulation of Nuclear Transport: Central Role in Development and Transformation? Traffic 2005, 6, 173–186. [Google Scholar] [CrossRef]
- Oka, M.; Yoneda, Y. Importin α: Functions as a nuclear transport factor and beyond. Proc. Jpn. Acad. Ser. B 2018, 94, 259–274. [Google Scholar] [CrossRef] [PubMed]
- Marfori, M.; Lonhienne, T.G.; Forwood, J.K.; Kobe, B. Structural basis of high-affinity nuclear localization signal interactions with importin-α. Traffic 2012, 13, 532–548. [Google Scholar] [CrossRef] [PubMed]
- Pumroy, R.A.; Ke, S.; Hart, D.J.; Zachariae, U.; Cingolani, G. Molecular determinants for nuclear import of influenza A PB2 by importin α isoforms 3 and 7. Structure 2015, 23, 374–384. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.M.; Tsimbalyuk, S.; Edwards, M.R.; Cross, E.M.; Batra, J.; Soares da Costa, T.P.; Aragão, D.; Basler, C.F.; Forwood, J.K. Structural basis for importin alpha 3 specificity of W proteins in Hendra and Nipah viruses. Nat. Commun. 2018, 9, 3703. [Google Scholar] [CrossRef]
- Tsimbalyuk, S.; Donnelly, C.M.; Forwood, J.K. Structural characterization of human importin alpha 7 in its cargo-free form at 2.5 Å resolution. Sci. Rep. 2022, 12, 315. [Google Scholar] [CrossRef]
HaHV1 NLS1 and Mouse Importin-α2 (PDB Code: 9PYR) | |
---|---|
Data collection (high-resolution statistics in parentheses) | |
Wavelength (Å) | 0.95374 |
Data collection temperature (K) | 298 |
Detector Type | Dectris EIGER × 16 M |
Detector | Pixel |
Resolution range (Å) | 29.71–2.60 |
Space group | P21 21 21 |
Unit cell (Å); (o) | 78.5 90.8 100.9; 90 90 90 |
Total reflections | 173,168 |
Unique reflections | 22,759 (2745) |
Multiplicity | 5.3 (5.5) |
Completeness (%) | 99.7 (99.9) |
Mean I/σ (I) | 11.2 (2.6) |
Wilson B-factor Å2 | 51.84 |
Rpim | 0.041 (0.328) |
Refinement | |
Rwork | 0.18 |
Rfree | 0.21 |
No. of non-hydrogen atoms | 3355 |
Macromolecules | 3 |
Solvent | 14 |
Protein residues | 440 |
Bond length r.m.s.d (Å) | 0.006 |
Bond angle r.m.s.d (o) | 0.848 |
Ramachandran favoured (%) | 97.0 |
Ramachandran allowed (%) | 3.0 |
Ramachandran outliers (%) | 0.0 |
HaHV1 NLS | Mouse IMPα2 |
---|---|
Hydrogen bonds (major site) | |
GLU1491 [OE1] | SER234 [OG] |
LYS1494 [HZ2] | GLY150 [O] |
LYS1494 [HZ3] | THR155 [OG1] |
LYS1494 [HZ1] | ASP192 [OD1] |
ARG1495 [O] | ASN188 [HD21] |
ARG1495 [H] | ASN188 [OD1] |
ARG1495 [HH12] | ASN228 [OD1] |
ARG1495 [HH22] | ASN228 [OD1] |
ARG1496 [HH12] | ARG106 [O] |
ARG1496 [HH11] | LEU104 [O] |
ARG1496 [HH22] | ARG106 [O] |
ARG1497 [O] | ASN146 [HD21] |
ARG1497 [H] | ASN146 [OD1] |
ARG1497 [HH11] | GLN181 [OE1] |
Hydrogen bonds (minor site) | |
ARG1495 [H] | ASN361 [OD1] |
ARG1495 [HH22] | GLU396 [OE1] |
ARG1496 [HH22] | ASN283 [OD1] |
ARG1497 [HH12] | GLU354 [OE2] |
ARG1497 [HH21] | ASN319 [OD1] |
ARG1495 [O] | ASN361 [HD21] |
Salt bridges (minor site) | |
LYS1494 [NZ] | ASP325 [OD1] |
ARG1495 [NH1] | GLU396 [OE1] |
ARG1495 [NH2] | GLU396 [OE1] |
ARG1495 [NH2] | GLU396 [OE2] |
ARG1497 [NH1] | GLU354 [OE1] |
ARG1497 [NH1] | GLU354 [OE2] |
ARG1497 [NH2] | GLU354 [OE1] |
Salt bridges (major site) | |
GLU1491 [OE1] | ARG238 [NH1] |
LYS1494 [NZ] | ASP192 [OD1] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nath, B.K.; Swarbrick, C.M.D.; Schwab, R.H.M.; Ariawan, D.; Tietz, O.; Forwood, J.K.; Sarker, S. Structural Insights into the Nuclear Import of Haliotid Herpesvirus 1 Large Tegument Protein Homologue. Viruses 2025, 17, 1279. https://doi.org/10.3390/v17091279
Nath BK, Swarbrick CMD, Schwab RHM, Ariawan D, Tietz O, Forwood JK, Sarker S. Structural Insights into the Nuclear Import of Haliotid Herpesvirus 1 Large Tegument Protein Homologue. Viruses. 2025; 17(9):1279. https://doi.org/10.3390/v17091279
Chicago/Turabian StyleNath, Babu Kanti, Crystall M. D. Swarbrick, Renate H. M. Schwab, Daryl Ariawan, Ole Tietz, Jade K. Forwood, and Subir Sarker. 2025. "Structural Insights into the Nuclear Import of Haliotid Herpesvirus 1 Large Tegument Protein Homologue" Viruses 17, no. 9: 1279. https://doi.org/10.3390/v17091279
APA StyleNath, B. K., Swarbrick, C. M. D., Schwab, R. H. M., Ariawan, D., Tietz, O., Forwood, J. K., & Sarker, S. (2025). Structural Insights into the Nuclear Import of Haliotid Herpesvirus 1 Large Tegument Protein Homologue. Viruses, 17(9), 1279. https://doi.org/10.3390/v17091279