Hypochlorous Acid (HOCl) as a Promising Respiratory Antiseptic
Abstract
1. Introduction
2. Antiseptics of Interest
3. HOCl
3.1. Key Role of HOCl in the Innate Immune System
3.2. Production of Exogenous HOCl
3.3. Reaction Mechanisms of Externally Applied HOCl
4. Systemic Relevance of Respiratory Microbiome Reduction
4.1. Mucosal Environment and Reactive Oxygen Species
4.2. Implications for Inhalation
5. HOCl-Containing Products
Product Name | Manufacturer | Country | Total Free Chlorine (ppm) | Medical Device Class | Approval | Recommended Use |
---|---|---|---|---|---|---|
Plasma Liquid® Nasal Spray | Regeno GmbH | Mannheim, Germany | <600 [57] | IIa | CE marked | Cleansing and moisturizing the nasal mucosa |
Granudacyn® Mouth Wash | Mölnlycke Health Care GmbH | Düsseldorf, Germany | 105 [58] | IIa | CE marked | Mouthwash for oral hygiene and pathogen reduction |
Oji Biosafety Room Air Disinfection System | oji Europe GmbH, | Nauen, Germany | <0.5 (regulatory limit [59], *) | not applicable | not applicable | Long-term air disinfection to reduce airborne pathogens |
Veriforte® Wound Irrigation Solution | P.G.F. Industry Solutions GmbH | Elixhausen, Austria | 93 [58] | IIb | CE marked | Cleansing and irrigation of acute and chronic wounds |
Actimaris® Nasal Spray | ActiMaris AG | Appenzell, Switzerland | 440 [60] | I | CE marked | Cleansing and moisturizing the nasal mucosa |
Hydroliq Fogging Solution | Hydroliq AG | Lucerne, Switzerland | <0.5 (regulatory limit [59], *) | not applicable | not applicable | Surface and air disinfection in various settings |
Microdacyn60® Wound Care Solution | Oculus Innovative Sciences Netherlands B.V. | Delft, Netherlands | 80 [58] | IIb | CE marked | Cleansing and irrigation of acute and chronic wounds |
Spectricept™ Skincare Solution | SpectrumX Direct Limited | Knutsford, United Kingdom | unknown | IIa | CE marked | Skincare solution for cleansing and moisturizing |
OraWize+ Mouthwash/Dental Rinse | Tec-Safe | Maccelsfield, United Kingdom | 100–200 [13] | IIa | CE marked | Mouthwash for oral hygiene and pathogen reduction |
Briotech Topical Skin Spray | Briotech EU | Vantaa, Finland | unknown | not applicable | unknown | Topical spray for cleansing and moisturizing the skin |
6. Dosage and Safety Considerations on HOCl-Inhalation
7. Discussion
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Butler, M.S.; Henderson, I.R.; Capon, R.J.; Blaskovich, M.A.T. Antibiotics in the clinical pipeline as of December 2022. J. Antibiot. 2023, 76, 431–473. [Google Scholar] [CrossRef] [PubMed]
- Tazawa, K.; Jadhav, R.; Azuma, M.M.; Fenno, J.C.; McDonald, N.J.; Sasaki, H. Hypochlorous acid inactivates oral pathogens and a SARS-CoV-2-surrogate. BMC Oral Health 2023, 23, 111. [Google Scholar] [CrossRef] [PubMed]
- Boecker, D.; Zhang, Z.; Breves, R.; Herth, F.; Kramer, A.; Bulitta, C. Antimicrobial efficacy, mode of action and in vivo use of hypochlorous acid (HOCl) for prevention or therapeutic support of infections. GMS Hyg. Infect Control 2023, 18, Doc07. [Google Scholar] [CrossRef] [PubMed]
- Kiamco, M.M.; Zmuda, H.M.; Mohamed, A.; Call, D.R.; Raval, Y.S.; Patel, R.; Beyenal, H. Hypochlorous-Acid-Generating Electrochemical Scaffold for Treatment of Wound Biofilms. Sci. Rep. 2019, 9, 2683. [Google Scholar] [CrossRef]
- Barakat, N.A.; Rasmy, S.A.; Hosny, A.E.D.M.S.; Kashef, M.T. Effect of povidone-iodine and propanol-based mecetronium ethyl sulphate on antimicrobial resistance and virulence in Staphylococcus aureus. Antimicrob. Resist. Infect. Control 2022, 11, 139. [Google Scholar] [CrossRef]
- Chen, C.J.; Chen, C.C.; Ding, S.J. Effectiveness of hypochlorous acid to reduce the biofilms on titanium alloy surfaces in vitro. Int. J. Mol. Sci. 2016, 17, 1161. [Google Scholar] [CrossRef]
- Hacioglu, M.; Oyardi, O.; Yilmaz, F.N.; Nagl, M. Comparative Fungicidal Activities of N-Chlorotaurine and Conventional Antiseptics against Candida spp. isolated from vulvovaginal candidiasis. J. Fungi 2022, 8, 682. [Google Scholar] [CrossRef]
- Tamaki, S.; Bui, V.N.; Ngo, L.H.; Ogawa, H.; Imai, K. Virucidal effect of acidic electrolyzed water and neutral electrolyzed water on avian influenza viruses. Arch. Virol. 2014, 159, 405–412. [Google Scholar] [CrossRef]
- Kamal Arefin, M.; Banu, S.S.; Nasir Uddin, A.K.M.; Nurul Fattah Rumi, S.K.; Khan, M.; Kaiser, A.; Arafat, M.S.; Chowdhury, J.A.; Khan, M.A.S.; Hasan, M.J. Virucidal Effect of Povidone Iodine on SARS-CoV-2 in Nasopharynx: An Open-Label Randomized Clinical Trial. Indian. J. Otolaryngol. Head. Neck Surg. 2022, 74, 3283–3292. [Google Scholar] [CrossRef]
- Meister, T.L.; Brüggemann, Y.; Todt, D.; Conzelmann, C.; Müller, J.A.; Groß, R.; Münch, J.; Krawczyk, A.; Steinmann, J.; Steinmann, J. Virucidal efficacy of different oral rinses against severe acute respiratory syndrome Coronavirus 2. J. Infect. Dis. 2020, 222, 1289–1292. [Google Scholar] [CrossRef]
- Kramer, A.; Eggers, M.; Exner, M.; Simon, A.; Steinmann, E.; Zwicker, P. Recommendation of the German Society of Hospital Hygiene (DGKH): Prevention of COVID-19 by virucidal gargling and virucidal nasal spray—Updated version April 2022. GMS Hyg. Infect. Control 2022, 17, Doc13. [Google Scholar] [CrossRef]
- Choudhury, M.I.M.; Shabnam, N.; Ahsan, T.; Kabir, M.S.; Md Khan, R.; Ahsan, S.A. Effect of 1% Povidone Iodine Mouthwash/Gargle, Nasal and Eye Drop in COVID-19 patient. Biores. Commun. 2021, 7, 919–923. [Google Scholar] [CrossRef]
- Davies, K.; Buczkowski, H.; Welch, S.R.; Green, N.; Mawer, D.; Woodford, N.; Roberts, A.D.G.; Nixon, P.J.; Seymour, D.W.; Killip, M.J. Effective in vitro inactivation of SARS-CoV-2 by commercially available mouthwashes. J. Gen. Virol. 2021, 102, 001578. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, M.; Enzenhofer, E.; Schneider, S.; Rauch, M.; Bodenteich, A.; Neumann, K.; Prieschl-Grassauer, E.; Grassauer, A.; Lion, T.; Mueller, C.A. Efficacy of a Carrageenan nasal spray in patients with common cold: A randomized controlled trial. Respir. Res. 2013, 14, 124. [Google Scholar] [CrossRef] [PubMed]
- Meister, T.L.; Todt, D.; Brüggemann, Y.; Steinmann, J.; Banava, S.; Brill, F.H.H.; Pfaender, S.; Steinmann, E. Virucidal activity of nasal sprays against severe acute respiratory syndrome coronavirus-2. J. Hosp. Infect. 2022, 120, 9–13. [Google Scholar] [CrossRef]
- Marcinkiewicz, J.; Nagl, M.; Kyriakopoulos, A.; Walczewska, M.; Skóra, M.; Skalska, P. Current Opinion on the Therapeutic Capacity of Taurine-Containing Halogen Derivatives in Infectious and Inflammatory Diseases. In Taurine 12; Advances in Experimental Medicine and Biology; Schaffer, S.W., El Idrissi, A., Murakami, S., Eds.; Springer: Cham, Switzerland, 2022; Volume 1370, pp. 83–98. [Google Scholar] [CrossRef]
- Hiemstra, P.S.; McCray, P.B.; Bals, R. The innate immune function of airway epithelial cells in inflammatory lung disease. Eur. Respir. J. 2015, 45, 1150–1162. [Google Scholar] [CrossRef]
- Küster, I.; Kramer, A.; Bremert, T.; Langner, S.; Hosemann, W.; Beule, A.G. Eradication of MRSA skull base osteitis by combined treatment with antibiotics and sinonasal irrigation with sodium hypochlorite. Eur. Arch. Oto-Rhino-Laryngol. 2016, 273, 1951–1956. [Google Scholar] [CrossRef]
- Nguyen, G.T.; Green, E.R.; Mecsas, J. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance. Front. Cell Infect. Microbiol. 2017, 7, 373. [Google Scholar] [CrossRef]
- Andrés, C.M.C.; Pérez de la Lastra, J.M.; Juan, C.A.; Plou, F.J.; Pérez-Lebeña, E. Hypochlorous Acid Chemistry in Mammalian Cells—Influence on Infection and Role in Various Pathologies. Int. J. Mol. Sci. 2022, 23, 10735. [Google Scholar] [CrossRef]
- Ulfig, A.; Leichert, L.I. The effects of neutrophil-generated hypochlorous acid and other hypohalous acids on host and pathogens. Cell. Mol. Life Sci. 2021, 78, 385–414. [Google Scholar] [CrossRef]
- Block, M.S.; Rowan, B.G. Hypochlorous Acid: A Review. J. Oral Maxillofac. Surg. 2020, 78, 1461–1466. [Google Scholar] [CrossRef]
- Ampiaw, R.E.; Yaqub, M.; Lee, W. Electrolyzed water as a disinfectant: A systematic review of factors affecting the production and efficiency of hypochlorous acid. J. Water Process Eng. 2021, 43, 102228. [Google Scholar] [CrossRef]
- USDA. Hypochlorous Acid. Technical Evaluation Report. 2015. Available online: https://www.ams.usda.gov/sites/default/files/media/Hypochlorous%20Acid%20TR%2008%2013%2015.pdf (accessed on 6 April 2024).
- Briotech, Inc. Application for Inclusion in the 2021 WHO Essential Medicines List. 2021. Available online: https://www.who.int/groups/expert-committee-on-selection-and-use-of-essential-medicines/23rd-expert-committee/a18-hypochlorous (accessed on 4 September 2025).
- Cherney, D.P.; Duirk, S.E.; Tarr, J.C.; Collette, T.W. Monitoring the Speciation of Aqueous Free Chlorine from pH 1 to 12 with Raman Spectroscopy to Determine the Identity of the Potent Low-pH Oxidant. Appl. Spectrosc. 2006, 60, 764–772. [Google Scholar] [CrossRef]
- Gold, M.H.; Andriessen, A.; Bhatia, A.C.; Bitter, P.; Chilukuri, S.; Cohen, J.L.; Robb, C.W. Topical stabilized hypochlorous acid: The future gold standard for wound care and scar management in dermatologic and plastic surgery procedures. J. Cosmet. Dermatol. 2020, 19, 270–277. [Google Scholar] [CrossRef]
- Rayner, B.S.; Zhang, Y.; Brown, B.E.; Reyes, L.; Cogger, V.C.; Hawkins, C.L. Role of hypochlorous acid (HOCl) and other inflammatory mediators in the induction of macrophage extracellular trap formation. Free Radic. Biol. Med. 2018, 129, 25–34. [Google Scholar] [CrossRef]
- Islam, M.d.M.; Takeyama, N. Role of Neutrophil Extracellular Traps in Health and Disease Pathophysiology: Recent Insights and Advances. Int. J. Mol. Sci. 2023, 24, 15805. [Google Scholar] [CrossRef] [PubMed]
- Biedroń, R.; Konopiński, M.K.; Marcinkiewicz, J.; Józefowski, S. Oxidation by Neutrophils-Derived HOCl Increases Immunogenicity of Proteins by Converting Them into Ligands of Several Endocytic Receptors Involved in Antigen Uptake by Dendritic Cells and Macrophages. PLoS ONE 2015, 10, e0123293. [Google Scholar] [CrossRef]
- Zgliczyński, J.M.; Stelmaszyńska, T.; Domański, J.; Ostrowski, W. Chloramines as intermediates of oxidation reaction of amino acids by myeloperoxidase. Biochim. Biophys. Acta (BBA) Enzymol. 1971, 235, 419–424. [Google Scholar] [CrossRef]
- Sender, R.; Fuchs, S.; Milo, R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016, 14, e1002533. [Google Scholar] [CrossRef]
- Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Campbell, L.A.; Kuo, C.C. Chlamydia pneumoniae—An infectious risk factor for atherosclerosis? Nat. Rev. Microbiol. 2004, 2, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Ide, M.; Harris, M.; Stevens, A.; Sussams, R.; Hopkins, V.; Culliford, D.; Fuller, J.; Ibbett, P.; Raybould, R.; Thomas, R.; et al. Periodontitis and Cognitive Decline in Alzheimer’s Disease. PLoS ONE 2016, 11, e0151081. [Google Scholar] [CrossRef]
- Dominy, S.S.; Lynch, C.; Ermini, F.; Benedyk, M.; Marczyk, A.; Konradi, A.; Nguyen, M.; Haditsch, U.; Raha, D.; Griffin, C.; et al. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci. Adv. 2019, 5, eaau3333. [Google Scholar] [CrossRef]
- Kinane, D.F.; Stathopoulou, P.G.; Papapanou, P.N. Periodontal diseases. Nat. Rev. Dis. Primers 2017, 3, 17038. [Google Scholar] [CrossRef]
- Lundberg, J.O.; Weitzberg, E.; Gladwin, M.T. The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov. 2008, 7, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Tribble, G.D.; Angelov, N.; Weltman, R.; Wang, B.Y.; Eswaran, S.V.; Gay, I.C.; Parthasarathy, K.; Dao, D.H.V.; Richardson, K.N.; Ismail, N.M.; et al. Frequency of tongue cleaning impacts the human tongue microbiome composition and enterosalivary circulation of nitrate. Front. Cell. Infect. Microbiol. 2019, 9, 434270. [Google Scholar] [CrossRef]
- Cespuglio, R.; Amrouni, D.; Meiller, A.; Buguet, A.; Gautier-Sauvigné, S. Nitric oxide in the regulation of the sleep-wake states. Sleep. Med. Rev. 2012, 16, 265–279. [Google Scholar] [CrossRef]
- Fahy, J.V.; Dickey, B.F. Airway Mucus Function and Dysfunction. N. Engl. J. Med. 2010, 363, 2233–2247. [Google Scholar] [CrossRef]
- Worbs, T.; Hammerschmidt, S.I.; Förster, R. Dendritic cell migration in health and disease. Nat. Rev. Immunol. 2017, 17, 30–48. [Google Scholar] [CrossRef]
- Whitsett, J.A.; Alenghat, T. Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat. Immunol. 2015, 16, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Akira, S.; Uematsu, S.; Takeuchi, O. Pathogen Recognition and Innate Immunity. Cell 2006, 124, 783–801. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Akira, S. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat. Immunol. 2010, 11, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef]
- Wright, J.R. Immunoregulatory functions of surfactant proteins. Nat. Rev. Immunol. 2005, 5, 58–68. [Google Scholar] [CrossRef]
- Woof, J.M.; Mestecky, J. Mucosal immunoglobulins. Immunol. Rev. 2005, 206, 64–82. [Google Scholar] [CrossRef]
- Dickson, R.P.; Erb-Downward, J.R.; Freeman, C.M.; McCloskey, L.; Beck, J.M.; Huffnagle, G.B.; Curtis, J.L. Spatial Variation in the Healthy Human Lung Microbiome and the Adapted Island Model of Lung Biogeography. Ann. Am. Thorac. Soc. 2015, 12, 821–830. [Google Scholar] [CrossRef]
- Stroman, D.W.; Mintun, K.; Epstein, A.B.; Brimer, C.M.; Patel, C.R.; Branch, J.D.; Najafi-Tagol, K. Reduction in bacterial load using hypochlorous acid hygiene solution on ocular skin. Clin. Ophthalmol. 2017, 11, 707–714. [Google Scholar] [CrossRef]
- Hong, I.; Lee, H.G.; Keum, H.L.; Kim, M.J.; Jung, U.W.; Kim, K.; Kim, S.Y.; Park, T.; Kim, H.J.; Kim, J.J.; et al. Clinical and microbiological efficacy of pyrophosphate containing toothpaste: A double-blinded placebo-controlled randomized clinical trial. Microorganisms 2020, 8, 1806. [Google Scholar] [CrossRef]
- Zayed, N.; Vertommen, R.; Simoens, K.; Bernaerts, K.; Boon, N.; Srivastava, M.G.; Braem, A.; Van Holm, W.; Castro, A.B.; Teughels, W. How well do antimicrobial mouth rinses prevent dysbiosis in an in vitro periodontitis biofilm model? J. Periodontol. 2024, 95, 880–891. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food & Drug Administration. 510(k) Premarket Notification—Spectricept Skin and Wound Cleanser (K213514). 2023. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf21/K213514.pdf (accessed on 3 July 2025).
- U.S. Food & Drug Administration. 510(k) Premarket Notification—Microdacyn Wound Care Solution (K233399). 2024. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf23/K233399.pdf (accessed on 2 July 2025).
- Del Rosso, J.Q.; Bhatia, N. Status Report on Topical Hypochlorous Acid: Clinical Relevance of Specific Formulations, Potential Modes of Action, and Study Outcomes. J. Clin. Aesthetic Dermatol. 2018, 11, 36–39. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6303114/ (accessed on 14 June 2025).
- Menta, N.; Vidal, S.I.; Friedman, A. Hypochlorous Acid: A Blast from the Past. J. Drugs Dermatol. 2024, 23, 909–910. Available online: https://jddonline.com/articles/hypochlorous-acid-blast-past-S1545961624P1024X/ (accessed on 1 September 2025).
- Regeno GmbH. Patient Information Leaflet “Plasma Liquid Nasal Spray Gel.”; Regeno, GmbH: Mannheim, Germany, 2022. [Google Scholar]
- Severing, A.L.; Rembe, J.D.; Koester, V.; Stuermer, E.K. Safety and efficacy profiles of different commercial sodium hypochlorite/hypochlorous acid solutions (NaClO/HClO): Antimicrobial efficacy, cytotoxic impact and physicochemical parameters in vitro. J. Antimicrob. Chemother. 2019, 74, 365–372. [Google Scholar] [CrossRef]
- TRGS 900; Arbeitsplatzgrenzwerte. Ausschuss für Gefahrstoffe (AGS): Dortmund, Germany, 2024.
- Actimaris, A.G. Patient Information Leaflet “Actimaris Nasal Spray.”; Actimaris, A.G.: Appenzell, Switzerland, 2020. [Google Scholar]
- Sismanoglu, S.; Ercal, P. The cytotoxic effects of various endodontic irrigants on the viability of dental mesenchymal stem cells. Aust. Endod. J. 2022, 48, 305–312. [Google Scholar] [CrossRef]
- Mehendale, F.V.; Clayton, G.; Homyer, K.M.; Reynolds, D.M. HOCl vs OCl−: Clarification on chlorine-based disinfectants used within clinical settings. J. Glob. Health Rep. 2023, 7, e2023052. [Google Scholar] [CrossRef]
- Benedusi, M.; Tamburini, E.; Sicurella, M.; Summa, D.; Ferrara, F.; Marconi, P.; Cervellati, F.; Costa, S.; Valacchi, G. The Lesson Learned from the COVID-19 Pandemic: Can an Active Chemical Be Effective, Safe, Harmless-for-Humans and Low-Cost at a Time? Evidence on Aerosolized Hypochlorous Acid. Int. J. Environ. Res. Public Health 2022, 19, 13163. [Google Scholar] [CrossRef]
- Lewandowski, R.B.; Stȩpińska, M.; Osuchowski, Ł.; Kasprzycka, W.; Dobrzyńska, M.; Mierczyk, Z.; Trafny, E.A. The HOCl dry fog-is it safe for human cells? PLoS ONE 2024, 19, e0304602. [Google Scholar] [CrossRef]
- Boecker, D.; Breves, R.; Zhang, Z.; Bulitta, C. Antimicrobial Activity in the Gasphase with Hypochloric Acid. Curr. Dir. Biomed. Eng. 2021, 7, 511–514. [Google Scholar] [CrossRef]
- Rasmussen, E.D.; Robins, L.I.; Stone, J.R.; Williams, J.F. Inhalation of Microaerosolized Hypochlorous Acid (HOCl): Biochemical, Antimicrobial, and Pathological Assessment. Arch. Intern. Med. Res. 2022, 05, 311–318. [Google Scholar] [CrossRef]
- Noszticzius, Z.; Wittmann, M.; Kály-Kullai, K.; Beregvári, Z.; Kiss, I.; Rosivall, L.; Szegedi, J. Chlorine dioxide is a size-selective antimicrobial agent. PLoS ONE 2013, 8, e79157. [Google Scholar] [CrossRef]
- Leiby, K.L.; Raredon, M.S.B.; Niklason, L.E. Bioengineering the blood-gas barrier. Compr. Physiol. 2020, 10, 415–452. [Google Scholar] [CrossRef] [PubMed]
- Qadir Tantry, I.; Ali, A.; Mahmood, R. Hypochlorous acid decreases antioxidant power, inhibits plasma membrane redox system and pathways of glucose metabolism in human red blood cells. Toxicol Res. 2021, 10, 264–271. [Google Scholar] [CrossRef]
- Jin, S.J.; Piao, S.; Cha, Y.N.; Kim, C. Taurine chloramine activates Nrf2, increases HO-1 expression and protects cells from death caused by hydrogen peroxide. J. Clin. Biochem. Nutr. 2009, 45, 37–43. [Google Scholar] [CrossRef]
- Kearns, S.; Dawson, R. Cytoprotective Effect of Taurine Against Hypochlorous Acid Toxicity to PC12 Cells. In Taurine 4; Advances in Experimental Medicine and Biology; Della Corte, L., Huxtable, R., Sgaragli, G., Tipton, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; Volume 483, pp. 563–570. [Google Scholar] [CrossRef]
- Antosova, M.; Mokra, D.; Pepucha, L.; Plevkova, J.; Buday, T.; Sterusky, M.; Bencova, A. Physiology of nitric oxide in the respiratory system. Physiol. Res. Czech Acad. Sci. 2017, 66, S159–S172. [Google Scholar] [CrossRef] [PubMed]
- Storkey, C.; Davies, M.J.; Pattison, D.I. Reevaluation of the rate constants for the reaction of hypochlorous acid (HOCl) with cysteine, methionine, and peptide derivatives using a new competition kinetic approach. Free Radic. Biol. Med. 2014, 73, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Ashby, M.T.; Carlson, A.C.; Scott, M.J. Redox Buffering of Hypochlorous Acid by Thiocyanate in Physiologic Fluids. J. Am. Chem. Soc. 2004, 126, 15976–15977. [Google Scholar] [CrossRef]
- Cegolon, L.; Mirandola, M.; Salaris, C.; Salvati, M.V.; Mastrangelo, G.; Salata, C. Hypothiocyanite and Hypothiocyanite/Lactoferrin Mixture Exhibit Virucidal Activity In Vitro against SARS-CoV-2. Pathogens 2021, 10, 233. [Google Scholar] [CrossRef]
- Bárcena, C.; Mayoral, P.; Quirós, P.M. Mitohormesis, an Antiaging Paradigm. Int. Rev. Cell. Mol. Biol. 2018, 340, 35–77. [Google Scholar] [CrossRef]
- Merry, T.L.; Ristow, M. Mitohormesis in exercise training. Free Radic. Biol. Med. 2016, 98, 123–130. [Google Scholar] [CrossRef]
- McDonnell, G.; Russell, A.D. Antiseptics and Disinfectants: Activity, Action, and Resistance. Clin. Microbiol. Rev. 1999, 12, 147–179. [Google Scholar] [CrossRef] [PubMed]
- McKenna, S.M.; Davies, K.J.A. The inhibition of bacterial growth by hypochlorous acid. Possible role in the bactericidal activity of phagocytes. Biochem. J. 1988, 254, 685–692. [Google Scholar] [CrossRef]
- Nadhan, R.; Patra, D.; Krishnan, N.; Rajan, A.; Gopala, S.; Ravi, D.; Srinivas, P. Perspectives on mechanistic implications of ROS inducers for targeting viral infections. Eur. J. Pharmacol. 2021, 890, 173621. [Google Scholar] [CrossRef]
- Kayesh, M.E.H.; Kohara, M.; Tsukiyama-Kohara, K. Effects of oxidative stress on viral infections: An overview. npj Viruses 2025, 3, 27. [Google Scholar] [CrossRef] [PubMed]
- Hati, S.; Bhattacharyya, S. Impact of Thiol-Disulfide Balance on the Binding of Covid-19 Spike Protein with Angiotensin-Converting Enzyme 2 Receptor. ACS Omega 2020, 5, 16292–16298. [Google Scholar] [CrossRef]
- Karimi, M.; Crossett, B.; Cordwell, S.J.; Pattison, D.I.; Davies, M.J. Characterization of disulfide (cystine) oxidation by HOCl in a model peptide: Evidence for oxygen addition, disulfide bond cleavage and adduct formation with thiols. Free Radic. Biol. Med. 2020, 154, 62–74. [Google Scholar] [CrossRef]
- Landino, L.M.; Lessard, E.E. Lactate Dehydrogenase-B Oxidation and Inhibition by Singlet Oxygen and Hypochlorous Acid. Oxygen 2024, 4, 432–448. [Google Scholar] [CrossRef]
- Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020, 581, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Schrödinger, L.L.C. The PyMOL Molecular Graphics System. 2024. Available online: https://pymol.org (accessed on 23 June 2025).
- Debnath, U.; Mitra, A.; Dewaker, V.; Prabhakar, Y.S.; Tadala, R.; Krishnan, K.; Wagh, P.; Velusamy, U.; Baliyan, A.; Kurpad, A.V.; et al. Conformational perturbation of SARS-CoV-2 spike protein using N-acetyl cysteine: An exploration of probable mechanism of action to combat COVID-19. J. Biomol. Struct. Dyn. 2024, 42, 5042–5052. [Google Scholar] [CrossRef]
- Andrés, C.M.C.; Pérez de la Lastra, J.M.; Andrés Juan, C.; Plou, F.J.; Pérez-Lebeña, E. Impact of Reactive Species on Amino Acids—Biological Relevance in Proteins and Induced Pathologies. Int. J. Mol. Sci. 2022, 23, 14049. [Google Scholar] [CrossRef]
- Hicks, S.N.; Chaiwatpongsakorn, S.; Costello, H.M.; McLellan, J.S.; Ray, W.; Peeples, M.E. Five Residues in the Apical Loop of the Respiratory Syncytial Virus Fusion Protein F2 Subunit Are Critical for Its Fusion Activity. J. Virol. 2018, 92, e00621-18. [Google Scholar] [CrossRef]
- McLellan, J.S.; Yang, Y.; Graham, B.S.; Kwong, P.D. Structure of Respiratory Syncytial Virus Fusion Glycoprotein in the Postfusion Conformation Reveals Preservation of Neutralizing Epitopes. J. Virol. 2011, 85, 7788–7796. [Google Scholar] [CrossRef] [PubMed]
- McLellan, J.S.; Chen, M.; Leung, S.; Graepel, K.W.; Du, X.; Yang, Y.; Zhou, T.; Baxa, U.; Yasuda, E.; Beaumont, T.; et al. Crystal Structure of Respiratory Syncytial Virus Fusion Glycoprotein Stabilized in the Prefusion Conformation by Human Antibody D25. Science 2013, 340, 1113–1117. [Google Scholar] [CrossRef] [PubMed]
- Florido, M.; Chiu, J.; Hogg, P.J. Influenza A Virus Hemagglutinin Is Produced in Different Disulfide-Bonded States. Antioxid. Redox Signal. 2021, 35, 1081–1092. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Chuang, C.Y.; Huang, H.C.; Fang, W. Inactivation of Avian Influenza Virus Aerosol Using Membrane-Less Electrolyzed Water Spraying. Aerobiology 2023, 1, 70–81. [Google Scholar] [CrossRef]
- Urushidani, M.; Kawayoshi, A.; Kotaki, T.; Saeki, K.; Mori, Y.; Kameoka, M. Inactivation of SARS-CoV-2 and influenza A virus by dry fogging hypochlorous acid solution and hydrogen peroxide solution. PLoS ONE 2022, 17, e0261802. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xin, H.; Zhao, D.; Zheng, W.; Tian, W.; Ma, H.; Liu, K.; Hu, H.; Wang, T.; Soupir, M. Free chlorine loss during spraying of membraneless acidic electrolyzed water and its antimicrobial effect on airborne bacteria from poultry house. Ann. Agric. Environ. Med. 2014, 21, 249–255. [Google Scholar] [CrossRef]
- Amatore, D.; Sgarbanti, R.; Aquilano, K.; Baldelli, S.; Limongi, D.; Civitelli, L.; Nencioni, L.; Garaci, E.; Ciriolo, M.R.; Palamara, A.T. Influenza virus replication in lung epithelial cells depends on redox-sensitive pathways activated by NOX4-derived ROS. Cell. Microbiol. 2015, 17, 131–145. [Google Scholar] [CrossRef]
- Venkitanarayanan, K.S.; Ezeike, G.O.I.; Hung, Y.C.; Doyle, M.P. Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on Plastic Kitchen Cutting Boards by Electrolyzed Oxidizing Water. J. Food Prot. 1999, 62, 857–860. [Google Scholar] [CrossRef]
- Kubota, A.; Goda, T.; Tsuru, T.; Yonekura, T.; Yagi, M.; Kawahara, H.; Yoneda, A.; Tazuke, Y.; Tani, G.; Ishii, T.; et al. Efficacy and safety of strong acid electrolyzed water for peritoneal lavage to prevent surgical site infection in patients with perforated appendicitis. Surg. Today 2015, 45, 876–879. [Google Scholar] [CrossRef]
- Fernández, L.G.; Matthews, M.R.; Seal, L. Intraabdominal Lavage of Hypochlorous Acid: A New Paradigm for the Septic and Open Abdomen. Wounds 2020, 32, 107–114. [Google Scholar]
- Kampf, G. Antibiotic Resistance Can Be Enhanced in Gram-Positive Species by Some Biocidal Agents Used for Disinfection. Antibiotics 2019, 8, 13. [Google Scholar] [CrossRef]
- Li, K.; Deng, Z.; Lei, C.; Ding, X.; Li, J.; Wang, C. The Role of Oxidative Stress in Tumorigenesis and Progression. Cells 2024, 13, 441. [Google Scholar] [CrossRef]
- Gorrini, C.; Harris, I.S.; Mak, T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 2013, 12, 931–947. [Google Scholar] [CrossRef]
- Bauer, G. HOCl and the control of oncogenesis. J. Inorg. Biochem. 2018, 179, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Leung, T.H.; Zhang, L.F.; Wang, J.; Ning, S.; Knox, S.J.; Kim, S.K. Topical hypochlorite ameliorates NF-κB-mediated skin diseases in mice. J. Clin. Investig. 2013, 123, 5361–5370. [Google Scholar] [CrossRef]
- Natarelli, N.; Nong, Y.; Maloh, J.; Sivamani, R. Hypochlorous Acid: Applications in Dermatology. J. Integr. Dermatol. Available online: https://jintegrativederm.org/article/view/93/17 (accessed on 23 February 2025).
- Jandova, J.; Snell, J.; Hua, A.; Dickinson, S.; Fimbres, J.; Wondrak, G.T. Topical hypochlorous acid (HOCl) blocks inflammatory gene expression and tumorigenic progression in UV-exposed SKH-1 high risk mouse skin. Redox Biol. 2021, 45, 102042. [Google Scholar] [CrossRef]
- Snell, J.A.; Jandova, J.; Wondrak, G.T. Hypochlorous Acid: From Innate Immune Factor and Environmental Toxicant to Chemopreventive Agent Targeting Solar UV-Induced Skin Cancer. Front. Oncol. 2022, 12, 887220. [Google Scholar] [CrossRef] [PubMed]
- Zwicker, P.; Freitag, M.; Heidel, F.H.; Kocher, T.; Kramer, A. Antiseptic efficacy of two mouth rinses in the oral cavity to identify a suitable rinsing solution in radiation- or chemotherapy induced mucositis. BMC Oral Health 2023, 23, 176. [Google Scholar] [CrossRef]
- Robins, L.I.; Keim, E.K.; Robins, D.B.; Edgar, J.S.; Meschke, J.S.; Gafken, P.R.; Williams, J.F. Modifications of IL-6 by Hypochlorous Acids: Effects on Receptor Binding. ACS Omega 2021, 6, 35593–35599. [Google Scholar] [CrossRef] [PubMed]
- Marcinkiewicz, J.; Grabowska, A.; Bereta, J.; Stelmaszynska, T. Taurine chloramine, a product of activated neutrophils, inhibits in vitro the generation of nitric oxide and other macrophage inflammatory mediators. J. Leukoc. Biol. 1995, 58, 667–674. [Google Scholar] [CrossRef]
- Mueller, C.A.; Winter, M.; Renner, B. A Concept for the Reduction of Mucosal SARS-CoV-2 Load using Hypochloric Acid Solutions. Drug Res. 2021, 71, 348–350. [Google Scholar] [CrossRef]
- Mueller, C.A.; Winter, M.; Lippert, A.; Hochauf-Stange, K.; Renner, B. Double-Blind, Randomised, Placebo-Controlled Study to Investigate the Efficacy of Nasal Spray and Mouth Wash Containing Hypochlorous Acid in SARS-CoV-2 Infected Patients; Deutsches Register Klinischer Studien (DRKS). 2022. Available online: https://drks.de/search/de/trial/DRKS00030721 (accessed on 24 April 2024).
- The Committee on Efficacy Assessment of Disinfecting Substances Alternative to Alcohol for Use Against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Final Report on Efficacy Assessment of Disinfecting Substances Alternative to Alcohol for Use Against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). 2020. Available online: https://www.nite.go.jp/data/000115863.pdf (accessed on 2 July 2025).
- Park, G.W.; Boston, D.M.; Kase, J.A.; Sampson, M.N.; Sobsey, M.D. Evaluation of liquid- and fog-based application of sterilox hypochlorous acid solution for surface inactivation of human norovirus. Appl. Environ. Microbiol. 2007, 73, 4463–4468. [Google Scholar] [CrossRef]
- Aherne, O.; Ortiz, R.; Fazli, M.M.; Davies, J.R. Effects of stabilized hypochlorous acid on oral biofilm bacteria. BMC Oral Health 2022, 22, 415. [Google Scholar] [CrossRef]
- Nizer WSda, C.; Inkovskiy, V.; Overhage, J. Surviving reactive chlorine stress: Responses of gram-negative bacteria to hypochlorous acid. Microorganisms 2020, 8, 1220. [Google Scholar] [CrossRef]
- Posch, W.; Vosper, J.; Noureen, A.; Zaderer, V.; Witting, C.; Bertacchi, G.; Gstir, R.; Filipek, P.A.; Bonn, G.K.; Huber, L.A.; et al. C5aR inhibition of nonimmune cells suppresses inflammation and maintains epithelial integrity in SARS-CoV-2–infected primary human airway epithelia. J. Allergy Clin. Immunol. 2021, 147, 2083–2097.e6. [Google Scholar] [CrossRef]
- Lafon, E.; Diem, G.; Witting, C.; Zaderer, V.; Bellmann-Weiler, R.M.; Reindl, M.; Bauer, A.; Griesmacher, A.; Fux, V.; Hoermann, G.; et al. Potent SARS-CoV-2-Specific T Cell Immunity and Low Anaphylatoxin Levels Correlate with Mild Disease Progression in COVID-19 Patients. Front. Immunol. 2021, 12, 684014. [Google Scholar] [CrossRef] [PubMed]
- Held, A.M.; Halko, D.J.; Hurst, J.K. Mechanisms of chlorine oxidation of hydrogen peroxide. J. Am. Chem. Soc. 1978, 100, 5732–5740. [Google Scholar] [CrossRef]
- Hakim, H.; Thammakarn, C.; Suguro, A.; Ishida, Y.; Kawamura, A.; Tamura, M.; Satoh, K.; Tsujimura, M.; Hasegawa, T.; Takehara, K. Evaluation of sprayed hypochlorous acid solutions for their virucidal activity against avian influenza virus through in vitro experiments. J. Vet. Med. Sci. 2015, 77, 211–215. [Google Scholar] [CrossRef]
- Yu, M.S.; Park, H.W.; Kwon, H.J.; Jang, Y.J. The Effect of a Low Concentration of Hypochlorous Acid on Rhinovirus Infection of Nasal Epithelial Cells. Am. J. Rhinol. Allergy 2011, 25, 40–44. [Google Scholar] [CrossRef]
- Guan, H.; Nuth, M.; Weiss, S.R.; Fausto, A.; Liu, Y.; Koo, H.; Wolff, M.S.; Ricciardi, R.P. HOCl Rapidly Kills Corona, Flu, and Herpes to Prevent Aerosol Spread. J. Dent. Res. 2023, 102, 1031–1037. [Google Scholar] [CrossRef]
- Darie, A.M.; Khanna, N.; Jahn, K.; Osthoff, M.; Bassetti, S.; Osthoff, M.; Schumann, D.M.; Albrich, W.C.; Hirsch, H.; Brutsche, M.; et al. Fast multiplex bacterial PCR of bronchoalveolar lavage for antibiotic stewardship in hospitalised patients with pneumonia at risk of Gram-negative bacterial infection (Flagship II): A multicentre, randomised controlled trial. Lancet Respir. Med. 2022, 10, 877–887. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winter, M.; Boecker, D.; Posch, W. Hypochlorous Acid (HOCl) as a Promising Respiratory Antiseptic. Viruses 2025, 17, 1219. https://doi.org/10.3390/v17091219
Winter M, Boecker D, Posch W. Hypochlorous Acid (HOCl) as a Promising Respiratory Antiseptic. Viruses. 2025; 17(9):1219. https://doi.org/10.3390/v17091219
Chicago/Turabian StyleWinter, Michael, Dirk Boecker, and Wilfried Posch. 2025. "Hypochlorous Acid (HOCl) as a Promising Respiratory Antiseptic" Viruses 17, no. 9: 1219. https://doi.org/10.3390/v17091219
APA StyleWinter, M., Boecker, D., & Posch, W. (2025). Hypochlorous Acid (HOCl) as a Promising Respiratory Antiseptic. Viruses, 17(9), 1219. https://doi.org/10.3390/v17091219