Viral Strategies and Cellular Countermeasures That Regulate mRNA Access to the Translation Apparatus
Abstract
1. Mechanism of mRNA Translation in Eukaryotes
2. Regulation of Translation by the Innate Immune Response
3. Viral Mechanisms for Evasion of ISG-Mediated Repression of Translation
4. Structure of Viral mRNAs
5. IRES Structure and the Mechanism of IRES-Mediated Initiation of Translation
6. eIF4E-Independent Initiation Mediated by an Alternative Cap-Binding Complex
7. Conclusions
Funding
Conflicts of Interest
References
- Jackson, R.J.; Hellen, C.U.T.; Pestova, T.V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell. Biol. 2010, 11, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Hellen, C.U.T. Translation termination and ribosome recycling in eukaryotes. Cold Spring Harb. Perspect. Biol. 2018, 10, a032656. [Google Scholar] [CrossRef] [PubMed]
- Smart, A.; Gilmer, O.; Caliskan, N. Translation inhibition mediated by interferon-stimulated genes during viral infections. Viruses 2024, 16, 1097. [Google Scholar] [CrossRef] [PubMed]
- Mears, H.V.; Sweeney, T.R. Better together: The role of IFIT protein-protein interactions in the antiviral response. J. Gen. Virol. 2018, 99, 1463–1477. [Google Scholar] [CrossRef]
- Ventoso, I.; Berlanga, J.J.; Toribio, R.; Díaz-López, I. Translational control of alphavirus-host interactions: Implications in viral evolution, tropism and antiviral response. Viruses 2024, 16, 205. [Google Scholar] [CrossRef]
- Cesaro, T.; Michiels, T. Inhibition of PKR by viruses. Front. Microbiol. 2021, 12, 757238. [Google Scholar] [CrossRef]
- Megawati, D.; Stroup, J.N.; Park, C.; Clarkson, T.; Tazi, L.; Brennan, G.; Rothenburg, S. Tanapox virus and Yaba monkey tumor virus K3 orthologs inhibit primate protein kinase R in a species-specific fashion. Viruses 2024, 16, 1095. [Google Scholar] [CrossRef]
- Li, Y.; Renner, D.M.; Comar, C.E.; Whelan, J.N.; Reyes, H.M.; Cardenas-Diaz, F.L.; Truitt, R.; Tan, L.H.; Dong, B.; Alysandratos, K.D.; et al. SARS-CoV-2 induces double-stranded RNA-mediated innate immune responses in respiratory epithelial-derived cells and cardiomyocytes. Proc. Natl. Acad. Sci. USA 2021, 118, e2022643118. [Google Scholar] [CrossRef]
- Dolliver, S.M.; Galbraith, C.; Khaperskyy, D.A. Human betacoronavirus OC43 interferes with the integrated stress response pathway in infected cells. Viruses 2024, 16, 212. [Google Scholar] [CrossRef]
- Wang, X.; Xuan, Y.; Han, Y.; Ding, X.; Ye, K.; Yang, F.; Gao, P.; Goff, S.P.; Gao, G. Regulation of HIV-1 Gag-Pol expression by Shiftless, an inhibitor of programmed-1 ribosomal frameshifting. Cell 2019, 176, 625–635.e14. [Google Scholar] [CrossRef]
- Jäger, N.; Ayyub, S.A.; Peske, F.; Liedtke, D.; Bohne, J.; Hoffmann, M.; Rodnina, M.V.; Pöhlmann, S. The inhibition of Gag-Pol expression by the restriction factor Shiftless is dispensable for the restriction of HIV-1 infection. Viruses 2024, 16, 583. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.A.; Dinman, J.D. Shiftless Is a novel member of the ribosome stress surveillance machinery that has evolved to play a role in innate immunity and cancer surveillance. Viruses 2023, 15, 2296. [Google Scholar] [CrossRef] [PubMed]
- Khan, D.; Fox, P.L. Host-like RNA elements regulate virus translation. Viruses 2024, 16, 468. [Google Scholar] [CrossRef]
- Zinoviev, A.; Hellen, C.U.T.; Pestova, T.V. Multiple mechanisms of reinitiation on bicistronic calicivirus mRNAs. Mol. Cell 2015, 57, 1059–1073. [Google Scholar] [CrossRef]
- Sherlock, M.E.; Langeberg, C.J.; Segar, K.E.; Kieft, J.S. A conserved class of viral RNA structures regulates translation reinitiation through dynamic ribosome interactions. Cell Rep. 2025, 44, 115236. [Google Scholar] [CrossRef]
- Jan, E.; Mohr, I.; Walsh, D. A cap-to-tail guide to mRNA translation strategies in virus-infected cells. Annu. Rev. Virol. 2016, 3, 283–307. [Google Scholar] [CrossRef]
- Truniger, V.; Miras, M.; Aranda, M.A. Structural and functional diversity of plant virus 3’-cap-independent translation enhancers (3’-CITEs). Front. Plant Sci. 2017, 8, 2047. [Google Scholar] [CrossRef]
- Arhab, Y.; Bulakhov, A.G.; Pestova, T.V.; Hellen, C.U.T. Dissemination of internal ribosomal entry sites (IRES) between viruses by horizontal gene transfer. Viruses 2020, 12, 612. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chapagain, S.; Chien, J.; Pereira, H.S.; Patel, T.R.; Inoue-Nagata, A.K.; Jan, E. Factor-dependent internal ribosome entry site and -1 programmed frameshifting signal in the Bemisia-associated dicistrovirus 2. Viruses 2024, 16, 695. [Google Scholar] [CrossRef]
- Abedeera, S.M.; Davila-Calderon, J.; Haddad, C.; Henry, B.; King, J.; Penumutchu, S.; Tolbert, B.S. The repurposing of cellular proteins during Enterovirus A71 infection. Viruses 2023, 16, 75. [Google Scholar] [CrossRef]
- Arhab, Y.; Pestova, T.V.; Hellen, C.U.T. Translation of overlapping open reading frames promoted by type 2 IRESs in avian calicivirus genomes. Viruses 2024, 16, 1413. [Google Scholar] [CrossRef] [PubMed]
- de Breyne, S.; Ohlmann, T. Focus on translation initiation of the HIV-1 mRNAs. Int. J. Mol. Sci. 2018, 20, 101. [Google Scholar] [CrossRef] [PubMed]
- Boris-Lawrie, K.; Liebau, J.; Hayir, A.; Heng, X. Emerging roles of m7G-Cap hypermethylation and nuclear cap-binding proteins in bypassing suppression of eIF4E-dependent translation. Viruses 2025, 17, 372. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hellen, C.U.T. Viral Strategies and Cellular Countermeasures That Regulate mRNA Access to the Translation Apparatus. Viruses 2025, 17, 766. https://doi.org/10.3390/v17060766
Hellen CUT. Viral Strategies and Cellular Countermeasures That Regulate mRNA Access to the Translation Apparatus. Viruses. 2025; 17(6):766. https://doi.org/10.3390/v17060766
Chicago/Turabian StyleHellen, Christopher U. T. 2025. "Viral Strategies and Cellular Countermeasures That Regulate mRNA Access to the Translation Apparatus" Viruses 17, no. 6: 766. https://doi.org/10.3390/v17060766
APA StyleHellen, C. U. T. (2025). Viral Strategies and Cellular Countermeasures That Regulate mRNA Access to the Translation Apparatus. Viruses, 17(6), 766. https://doi.org/10.3390/v17060766