Cyclooxygenase-2/Prostaglandin E2 Pathway Facilitates Infectious Bronchitis Virus-Induced Necroptosis in Chicken Macrophages, a Caspase-Independent Cell Death
Abstract
:1. Introduction
2. Materials and Methods
2.1. Viruses
2.2. Chicken Macrophage Cell Line
2.3. Reagents and Treatment
2.4. Experimental Design
2.5. Determination of Intracellular and Extracellular IBV Genome Load by Reverse Transcription and qPCR
2.6. Apoptosis and Necroptosis Assay
2.7. Caspase-1 and Caspase-9 Assays
2.8. NF-κB Activation
2.9. Detection of Apoptosis/Necroptosis by Immunofluorescence
2.10. Statistical Analysis
3. Results
3.1. Impact of Serum Concentration on Viral Shedding and Genome Load During IBV Infection in Chicken Macrophages
3.2. Impact of Serum Concentration on Cell Viability, Apoptosis, and Necroptosis in IBV-Infected Chicken Macrophages
3.3. Effects of Apoptosis Inhibition on IBV Genome Load in Macrophages
3.3.1. Apoptosis Inhibition and Viral Genome Load
3.3.2. Effects of Caspase Inhibition on Cell Viability, Apoptosis, and Necroptosis in IBV DMV/1639-Infected Cells
3.4. Cyclooxygenase-2/Prostaglandin E2 (COX-2/PGE2) Pathway Manipulation Alters Necroptosis and Cell Viability in IBV-Infected Chicken Macrophages
3.5. Impact of Inhibition of NLRP3 Inflammasome and RIPK1 on Cell Viability, Apoptosis, and Necroptosis in IBV-Infected Chicken Macrophages
3.6. Impact of COX-2/PGE2, Caspases, NLRP3 Inflammasome, and RIPK1 Pathways on Caspase-1, Caspase-3, and NF-κB Activities
3.6.1. Regulation of Caspase-1 Activity by NLRP3 Inflammasome and RIPK1 Pathways in Chicken Macrophages During IBV Infection
3.6.2. Regulation of Caspase-9 Activity by NLRP3 Inflammasome and RIPK1 Pathways in Chicken Macrophages During IBV Infection
3.6.3. Regulation of NF-κB Activation by COX-2/PGE2, NLRP3 Inflammasome, and RIPK1 Pathways in Chicken Macrophages During IBV Infection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hudson, C.B.; Beaudette, F.R. Infection of the Cloaca with the Virus of Infectious Bronchitis. Science 1932, 76, 34. [Google Scholar] [CrossRef] [PubMed]
- Cavanagh, D. Coronavirus avian infectious bronchitis virus. Vet. Res. 2007, 38, 281–297. [Google Scholar] [PubMed]
- Gelb, J., Jr.; Ladman, B.S.; Pope, C.R.; Ruano, J.M.; Brannick, E.M.; Bautista, D.A.; Coughlin, C.M.; Preskenis, L.A. Characterization of nephropathogenic infectious bronchitis virus DMV/1639/11 recovered from Delmarva broiler chickens in 2011. Avian Dis. 2013, 57, 65–70. [Google Scholar]
- Hassan, M.S.H.; Ojkic, D.; Coffin, C.S.; Cork, S.C.; van der Meer, F.; Abdul-Careem, M.F. Delmarva (DMV/1639) Infectious Bronchitis Virus (IBV) Variants Isolated in Eastern Canada Show Evidence of Recombination. Viruses 2019, 11, 1054. [Google Scholar] [CrossRef]
- Lendeckel, U.; Venz, S.; Wolke, C. Macrophages: Shapes and functions. ChemTexts 2022, 8, 12. [Google Scholar]
- Kasuga, Y.; Zhu, B.; Jang, K.-J.; Yoo, J.-S. Innate immune sensing of coronavirus and viral evasion strategies. Exp. Mol. Med. 2021, 53, 723–736. [Google Scholar]
- Barber, G.N. Host defense, viruses, and apoptosis. Cell Death Differ. 2001, 8, 113–126. [Google Scholar] [PubMed]
- Cho, Y.S.; Challa, S.; Moquin, D.; Genga, R.; Ray, T.D.; Guildford, M.; Chan, F.K.-M. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 2009, 137, 1112–1123. [Google Scholar]
- Grootjans, S.; Vanden Berghe, T.; Vandenabeele, P. Initiation and execution mechanisms of necroptosis: An overview. Cell Death Differ. 2017, 24, 1184–1195. [Google Scholar]
- Sander, W.J.; O’Neill, H.G.; Pohl, C.H. Prostaglandin E2 As a Modulator of Viral Infections. Front. Physiol. 2017, 8, 89. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Farooq, M.; Isham, I.M.; Ali, A.; Hassan, M.S.H.; Herath-Mudiyanselage, H.; Ranaweera, H.A.; Najimudeen, S.M.; Abdul-Careem, M.F. Cyclooxygenase-2/prostaglandin E2 pathway regulates infectious bronchitis virus replication in avian macrophages. J. Gen. Virol. 2024, 105, 001949. [Google Scholar] [CrossRef]
- Kalinski, P. Regulation of immune responses by prostaglandin E2. J. Immunol. 2012, 188, 21–28. [Google Scholar] [CrossRef]
- Tummers, B.; Green, D.R. Caspase-8: Regulating life and death. Immunol. Rev. 2017, 277, 76–89. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Zhang, Y.; He, X. Role of NLRP3 inflammasome in regulating immune response to avian pathogens in chickens. Front. Immunol. 2019, 10, 1027. [Google Scholar] [CrossRef]
- Kelley, N.; Jeltema, D.; Duan, Y.; He, Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int. J. Mol. Sci. 2019, 20, 3328. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, A.; Vandenabeele, P.; Krysko, D.V. Necroptosis: The release of damage-associated molecular patterns and its physiological relevance. Immunity 2013, 38, 209–223. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Ali, A.; Farooq, M.; Isham, I.M.; Suhail, S.M.; Herath-Mudiyanselage, H.; Rahimi, R.; Abdul-Careem, M.F. Cyclooxygenase-2/prostaglandin E2 pathway orchestrates the replication of infectious bronchitis virus in chicken tracheal explants. Microbiol. Spectr. 2024, 12, e0040724. [Google Scholar] [CrossRef]
- Pereira, N.A.; Song, Z. Some Commonly Used Caspase Substrates and Inhibitors Lack the Specificity Required to Monitor Individual Caspase Activity. Biochem. Biophys. Res. Commun. 2008, 377, 873–877. [Google Scholar] [CrossRef]
- Cook, J.K.; Jackwood, M.; Jones, R.C. The long view: 40 years of infectious bronchitis research. Avian Pathol. 2012, 41, 239–250. [Google Scholar] [CrossRef]
- Qureshi, M.A.; Miller, L.; Lillehoj, H.S.; Ficken, M.D. Establishment and characterization of a chicken mononuclear cell line. Vet. Immunol. Immunopathol. 1990, 26, 237–250. [Google Scholar] [CrossRef]
- Firth, C.; Charleston, M.A.; Duffy, S.; Holmes, E.C. Insights into the evolutionary history of avian viruses. Trends Microbiol. 2020, 28, 465–475. [Google Scholar] [CrossRef]
- Jackwood, M.W.; Hall, D.; Handel, A. Molecular evolution and emergence of avian gammacoronaviruses. Infect. Genet. Evol. 2012, 12, 1305–1311. [Google Scholar] [CrossRef] [PubMed]
- Rex, D.A.B.; Keshava Prasad, T.S.; Kandasamy, R.K. Revisiting Regulated Cell Death Responses in Viral Infections. Int. J. Mol. Sci. 2022, 23, 7023. [Google Scholar] [CrossRef] [PubMed]
- Thomas, K.W.; Monick, M.M.; Staber, J.M.; Yarovinsky, T.; Carter, A.B.; Hunninghake, G.W. Respiratory syncytial virus inhibits apoptosis and induces NF-kappa B activity through a phosphatidylinositol 3-kinase-dependent pathway. J. Biol. Chem. 2002, 277, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Kim, H.J.; Park, J.S. Serum-induced inhibition of apoptosis in human cells. J. Cell. Biochem. 2014, 115, 1999–2007. [Google Scholar]
- Pereira, H.F.; Almeida, R.M.; Soares, C.M. Serum proteins and their role in cell survival during viral infections. Viruses 2017, 9, 248. [Google Scholar]
- Vanden Berghe, T.; Vanlangenakker, N.; Festjens, N. Necroptosis: A novel cell death program. J. Leukoc. Biol. 2014, 96, 255–266. [Google Scholar]
- Shao, Y.; Wang, X.; Liu, X. Strain-specific immune modulation by avian coronaviruses. Front. Vet. Sci. 2018, 5, 54. [Google Scholar]
- Zhao, Y.; Yuan, Y.; Chen, Y. The role of macrophages in viral infections. Virol. J. 2015, 12, 99. [Google Scholar] [CrossRef]
- Yuan, C.; Ma, Z.; Xie, J.; Shen, Y.; Yang, S.; Wang, Y.; Li, M.; Liu, H.; Zhang, H. The Role of Cell Death in SARS-CoV-2 Infection. Signal Transduct. Target. Ther. 2023, 8, 357. [Google Scholar] [CrossRef]
- Han, X.; Tian, Y.; Guan, R.; Gao, W.; Yang, X.; Zhou, L.; Wang, H. Infectious Bronchitis Virus Infection Induces Apoptosis during Replication in Chicken Macrophage HD11 Cells. Viruses 2017, 9, 198. [Google Scholar] [CrossRef] [PubMed]
- Callus, B.; Vaux, D. Caspase Inhibitors: Viral, Cellular, and Chemical. Cell Death Differ. 2007, 14, 73–78. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, L.; Li, W. Caspase inhibition enhances virus-induced apoptosis in influenza-infected cells. J. Virol. 2021, 95, 1079–1090. [Google Scholar]
- Luo, J.; Zhang, Y.; Lin, S. Caspase inhibition shifts cell death toward necroptosis in Zika virus-infected cells. Cell Death Dis. 2019, 10, 112–120. [Google Scholar]
- Raj, A.; Zhang, H.; Kadirvel, R. Broad-spectrum caspase inhibition prevents excessive cell death during Zika virus infection. Virol. J. 2020, 17, 35–45. [Google Scholar]
- Xie, Z.; Tan, C.; Wu, J. Variability in host cell death pathways in response to different strains of IBV. Virol. Rep. 2018, 12, 150–158. [Google Scholar]
- Xie, W.; Lu, Y.; Yuan, X.; Li, Q.; He, J.; Zhang, Y. Inhibition of COX-2 as a potential therapeutic strategy for the treatment of influenza virus infections. J. Virol. 2020, 94, e02067-19. [Google Scholar]
- Li, Q.; Li, M.; Lu, Y.; Zhang, Y.; He, J.; Yuan, X.; Li, Q. Cyclooxygenase-2 inhibition decreases HIV replication in infected monocytes/macrophages. J. Immunol. 2019, 202, 1345–1353. [Google Scholar]
- Vandenabeele, P.; Vanden Berghe, T.; Vanlangenakker, N.; Parthoens, E.; Deckers, W.; Devos, M.; Festjens, N.; Guerin, C.J.; Brunk, U.T.; Declercq, W. Necroptosis: The introduction of regulated necrosis into the cellular death repertoire. Cell Death Differ. 2010, 17, 53–56. [Google Scholar]
- Cao, Y.; Zhang, Y.; Yuan, X.; Li, Q.; He, J.; Lu, Y.; Li, M. Cyclooxygenase-2 modulates immune responses to viral infections. Front. Immunol. 2018, 9, 1361. [Google Scholar]
- Tan, D.X.; Li, X.-J.; Yuan, X.-Y.; Li, Q.-H.; He, J.-H.; Zhang, Y.; Lu, Y.; Li, M. COX-2/PGE2 pathway in regulating viral replication and immune responses in respiratory virus infections. Front. Microbiol. 2021, 12, 619540. [Google Scholar]
- Iwakura, Y.; Kurosaki, T.; Akira, S.; Tschopp, J. The role of the NLRP3 inflammasome in immunity and inflammation. Nat. Rev. Immunol. 2011, 11, 553–557. [Google Scholar]
- Moriwaki, K.; Bertin, J.; Gough, P.J.; Chan, F.K.-M. A RIPK3–Caspase 8 Complex Mediates Atypical Pro–IL-1β Processing. J. Immunol. 2015, 194, 1938–1944. [Google Scholar] [CrossRef] [PubMed]
- Fritsch, M.; Günther, S.D.; Schwarzer, R.; Albert, M.-C.; Schorn, F.; Werthenbach, J.P.; Schiffmann, L.M.; Stair, N.; Stocks, H.; Seeger, J.M.; et al. Caspase-8 Is the Molecular Switch for Apoptosis, Necroptosis, and Pyroptosis. Nature 2019, 575, 683–687. [Google Scholar] [CrossRef]
- Allen, I.C.; Scull, M.A.; Moore, C.B.; Holl, E.K.; McElvania-TeKippe, E.; Taxman, D.J.; Guthrie, E.H.; Pickles, R.J.; Ting, J.P. The NLRP3 Inflammasome Mediates In Vivo Innate Immunity to Influenza A Virus through Recognition of Viral RNA. Immunity 2009, 30, 556–565. [Google Scholar] [CrossRef]
- Rickard, J.A.; O’Donnell, J.A.; Evans, J.M.; Lalaoui, N.; Poh, A.R.; Rogers, T.; Vince, J.E.; Lawlor, K.E.; Ninnis, R.L.; Anderton, H.; et al. RIPK1 Regulates RIPK3-MLKL-Driven Systemic Inflammation and Emergency Hematopoiesis. Cell 2014, 157, 1175–1188. [Google Scholar] [CrossRef]
- Filliol, A.; Piquet-Pellorce, C.; Le Seyec, J.; Guguen-Guillouzo, C.; Dimanche-Boitrel, M.-T.; Samson, M. RIPK1 Protects from TNF-α-Mediated Liver Damage during Hepatitis. Cell Death Dis. 2016, 7, e2462. [Google Scholar] [CrossRef]
- He, S.; He, J.; Zhang, Y.; Lu, Y.; Li, M.; Li, Q.; Akira, S.; Kurosaki, T.; Iwakura, Y.; Yuan, J.; et al. Receptor-interacting protein kinase 1 (RIPK1) is a key mediator of necroptosis and inflammation in vivo. Proc. Natl. Acad. Sci. USA 2009, 106, 22143–22148. [Google Scholar]
- Shi, W.; Jin, M.; Chen, H.; Wu, Z.; Yuan, L.; Liang, S.; Wang, X.; Memon, F.U.; Eldemery, F.; Si, H.; et al. Inflammasome Activation by Viral Infection: Mechanisms of Activation and Regulation. Front. Microbiol. 2023, 14, 1247377. [Google Scholar] [CrossRef]
- Xu, G.; Li, Y.; Zhang, S.; Peng, H.; Wang, R.; Zhao, J.; Xu, H.; Luo, J.; Wang, H.; Wang, J.; et al. SARS-CoV-2 Promotes RIPK1 Activation to Facilitate Viral Propagation. Cell Res. 2021, 31, 1230–1243. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Liu, Y.; Liu, J.; He, J.; Zhang, Y.; Lu, Y.; Li, M.; Li, Q.; Akira, S.; et al. Role of RIPK1 in regulating inflammation during viral infection. Viruses 2022, 14, 2458. [Google Scholar]
- Zhao, X.; Li, Y.; Wang, J.; Zhang, L.; Liu, H.; Zhang, Q.; Li, M.; Li, J.; Liu, Y.; Li, X. NLRP3 inflammasome and its involvement in virus-induced inflammation. J. Inflamm. Res. 2021, 14, 323–334. [Google Scholar]
- Gao, X.; Zhang, Y.; Wang, L.; Li, H.; Zhang, Q.; Li, M.; Li, J.; Liu, Y.; Li, X.; Zhang, H.; et al. COX-2/PGE2 Signaling in the Modulation of Apoptosis during Viral Infection. Inflamm. Res. 2020, 69, 207–218. [Google Scholar]
- Kulesza, A.; Paczek, L.; Burdzinska, A. The role of COX-2 and PGE2 in the regulation of immunomodulation and other functions of mesenchymal stromal cells. Biomedicines 2023, 11, 445. [Google Scholar] [CrossRef]
- Guo, Q.; Jin, Y.; Chen, X.; Ye, X.; Shen, X.; Lin, M.; Zeng, C.; Zhou, T.; Zhang, J. NF-κB in biology and targeted therapy: New insights and translational implications. Sig. Transduct. Target. Ther. 2024, 9, 53. [Google Scholar] [CrossRef]
- Li, X.; Yao, X.; Zhu, Y.; Zhang, H.; Wang, H.; Ma, Q.; Yan, F.; Yang, Y.; Zhang, J.; Shi, H.; et al. The Caspase Inhibitor Z-VAD-FMK Alleviates Endotoxic Shock via Inducing Macrophages Necroptosis and Promoting MDSCs-Mediated Inhibition of Macrophages Activation. Front. Immunol. 2019, 10, 1824. [Google Scholar] [CrossRef]
- Martinon, F.; Burns, K.; Tschopp, J. The Inflammasome: A Molecular Platform Triggering Activation of Inflammatory Caspases and Processing of ProIL-β. Mol. Cell 2002, 10, 417–426. [Google Scholar] [CrossRef]
- Norbury, C.J.; Zhivotovsky, B. DNA Damage-Induced Apoptosis. Oncogene 2004, 23, 2797–2808. [Google Scholar] [CrossRef]
- Man, S.M.; Kanneganti, T.D. Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat. Rev. Immunol. 2016, 16, 7–21. [Google Scholar] [CrossRef]
- Cui, F.; Sequeira, S.B.; Huang, Z.; Shang, G.; Cui, Q.; Yang, X. Bromosulfophthalein Suppresses Inflammatory Effects in Lipopolysaccharide-Stimulated RAW264.7 Macrophages. Immunopharmacol. Immunotoxicol. 2020, 42, 456–463. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, W.; Zhou, R. NLRP3 inflammasome activation and cell death. Cell. Mol. Immunol. 2021, 18, 2114–2127. [Google Scholar] [CrossRef]
- Hodgson, A.; Wan, F. Interference with nuclear factor kappaB signaling pathway by pathogen-encoded proteases: Global and selective inhibition. Mol. Microbiol. 2016, 99, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Othumpangat, S.; Noti, J.D.; Beezhold, D.H. Regulation of influenza A virus-induced inflammation by COX-2/PGE2 pathway. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2010, 298, L296–L303. [Google Scholar]
- Kamble, N.; Gurung, A.; Kaufer, B.B.; Pathan, A.A.; Behboudi, S. Marek’s disease virus modulates T cell proliferation via activation of cyclooxygenase 2-dependent prostaglandin E2. Front. Immunol. 2021, 12, 801781. [Google Scholar] [CrossRef] [PubMed]
- Coulombe, F.; Jaworska, J.; Verway, M.; Tzelepis, F.; Massoud, A.; Gillard, J.; Divangahi, M. Targeted prostaglandin E2 inhibition enhances antiviral immunity in the lung. Am. J. Respir. Crit. Care Med. 2014, 190, 699–712. [Google Scholar]
- Kameka, A.M.; Haddadi, S.; Kim, D.S.; Cork, S.C.; Abdul-Careem, M.F. Induction of innate immune response following infectious bronchitis coronavirus infection in the respiratory tract of chickens. Virology 2014, 450–451, 114–121. [Google Scholar] [CrossRef]
- Chen, J.; Perry, C.; Tsui, Y.C.; Nadjsombati, M.S.; Van Belleghem, J.D.; Crump, M.L.; Crome, S.Q.; Mack, M.; Goulding, J.; Shlomchik, W.D.; et al. Prostaglandin E2 and Programmed Cell Death 1 Signaling Coordinately Impair CTL Function and Survival During Chronic Viral Infection. Nat. Med. 2015, 21, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Hangai, S.; Ao, T.; Kimura, Y.; Matsuki, K.; Kawamura, T.; Negishi, H.; Nishio, J.; Kodama, T.; Taniguchi, T.; Yanai, H. PGE2 Induced in and Released by Dying Cells Functions as an Inhibitory DAMP. Proc. Natl. Acad. Sci. USA 2016, 113, 3844–3849. [Google Scholar] [CrossRef]
- Lalaoui, N.; Boyden, S.E.; Oda, H.; Wood, G.M.; Stone, D.L.; Chau, D.; Silke, J. Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease. Nature 2020, 577, 103–108. [Google Scholar] [CrossRef]
- Kalai, M.; Lamkanfi, M.; Denecker, G.; Roppe, B.B.; Declercq, W.; Vandenabeele, P. Regulation of the IL-1β converting enzyme (caspase-1) in a model of acute inflammation. J. Immunol. 2003, 171, 2599–2605. [Google Scholar]
- Lee, S.; Lee, C. Apoptosis and immune modulation in IBV infection. Avian Pathol. 2019, 48, 408–416. [Google Scholar]
- Jin, Y.; Liu, Y.; Xu, L.; Xu, J.; Xiong, Y.; Peng, Y.; Liao, W.; Liu, Y.; Wang, G.; Li, Y.; et al. Novel Role for Caspase 1 Inhibitor VX765 in Suppressing NLRP3 Inflammasome Assembly and Atherosclerosis via Promoting Mitophagy and Efferocytosis. Cell Death Dis. 2022, 13, 512. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, M.E.; Tingley, D.; Faizal, A.; Ghaffar, A.; Azhar, M.; Salman, D.; Isham, I.M.; Abdul-Careem, M.F. Cyclooxygenase-2/Prostaglandin E2 Pathway Facilitates Infectious Bronchitis Virus-Induced Necroptosis in Chicken Macrophages, a Caspase-Independent Cell Death. Viruses 2025, 17, 503. https://doi.org/10.3390/v17040503
Mahmoud ME, Tingley D, Faizal A, Ghaffar A, Azhar M, Salman D, Isham IM, Abdul-Careem MF. Cyclooxygenase-2/Prostaglandin E2 Pathway Facilitates Infectious Bronchitis Virus-Induced Necroptosis in Chicken Macrophages, a Caspase-Independent Cell Death. Viruses. 2025; 17(4):503. https://doi.org/10.3390/v17040503
Chicago/Turabian StyleMahmoud, Motamed Elsayed, Dylan Tingley, Akeel Faizal, Awais Ghaffar, Muhammed Azhar, Doaa Salman, Ishara M. Isham, and Mohamed Faizal Abdul-Careem. 2025. "Cyclooxygenase-2/Prostaglandin E2 Pathway Facilitates Infectious Bronchitis Virus-Induced Necroptosis in Chicken Macrophages, a Caspase-Independent Cell Death" Viruses 17, no. 4: 503. https://doi.org/10.3390/v17040503
APA StyleMahmoud, M. E., Tingley, D., Faizal, A., Ghaffar, A., Azhar, M., Salman, D., Isham, I. M., & Abdul-Careem, M. F. (2025). Cyclooxygenase-2/Prostaglandin E2 Pathway Facilitates Infectious Bronchitis Virus-Induced Necroptosis in Chicken Macrophages, a Caspase-Independent Cell Death. Viruses, 17(4), 503. https://doi.org/10.3390/v17040503