Disease Severity and Cytokine Expression in the Rhinovirus-Induced First Wheezing Episode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Protocol
2.3. Objective
2.4. Definitions
2.5. Laboratory Data
2.6. Statistics
3. Results
3.1. Study Population
3.2. Patient Characteristics
3.3. Differences in Cytokine Expression at Time of Study Entry
Cytokine | Inpatient n = 37 | Outpatient n = 10 | p-Value Univariate | p-Value Multivariate | Adjustments |
---|---|---|---|---|---|
IFN-γ | 1.6 (1.5–60) | 24 (18–180) | 0.02 | 0.03 | 1 |
IL-10 | 13 (5.0–120) | 110 (18–380) | 0.09 | 0.03 | 1 |
IL-1β | 1.6 (1.6–15) | 80 (1.6–1200) | 0.10 | 0.07 | - |
IL-6 | 25 (5.5–270) | 1000 (7.4–2200) | 0.12 | 0.09 | - |
MIP-1α | 42 (8.5–260) | 440 (69–920) | 0.03 | 0.04 | - |
RANTES | 290 (97–590) | 1300 (290–3600) | 0.005 | 0.002 | - |
TNF-α | 52 (16–820) | 810 (60–4100) | 0.01 | 0.01 | - |
Eotaxin-2 | 780 (680–1100) | 670 (420–810) | 0.054 | 0.31 | 3 |
ENA-78 | 1400 (410–2700) | 120 (36–670) | 0.003 | <0.001 | - |
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ENA-78 | epithelial-derived neutrophil-activating peptide 78, CXCL5 |
IFN-γ | interferon gamma |
IL-1β | interleukin 1 beta |
IL-10 | interleukin 10 |
MIP-1α | macrophage inflammatory protein-1 alpha |
PBMC | peripheral blood mononuclear cell |
RANTES | Regulated upon activation, normal T-cell expressed and presumably secreted, CCL5 |
TNF-α | tumor necrosis factor-alpha |
RV | rhinovirus |
References
- Jartti, T.; Smits, H.H.; Bønnelykke, K.; Bircan, O.; Elenius, V.; Konradsen, J.R.; Maggina, P.; Makrinioti, H.; Stokholm, J.; Hedlin, G.; et al. Bronchiolitis needs a revisit: Distinguishing between virus entities and their treatments. Allergy Eur. J. Allergy Clin. Immunol. 2019, 74, 40–52. [Google Scholar]
- Mahant, S.; Parkin, P.C.; Thavam, T.; Imsirovic, H.; Tuna, M.; Knight, B.; Webster, R.; Schuh, S.; To, T.; Gill, P.J. Rates in Bronchiolitis Hospitalization, Intensive Care Unit Use, Mortality, and Costs From 2004 to 2018. JAMA Pediatr. 2022, 176, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Nair, H.; Nokes, D.J.; Gessner, B.D.; Dherani, M.; Madhi, S.A.; Singleton, R.J.; O’Brien, K.L.; Roca, A.; Wright, P.F.; Bruce, N.; et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: A systematic review and meta-analysis. Lancet 2010, 375, 1545–1555. [Google Scholar] [CrossRef] [PubMed]
- Meissner, H.C. Viral Bronchiolitis in Children. N. Engl. J. Med. 2016, 374, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Holman, R.C.; Shay, D.K.; Curns, A.T.; Lingappa, J.R.; Anderson, L.J. Risk factors for bronchiolitis-associated deaths among infants in the United States. Pediatr. Infect. Dis. J. 2003, 22, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Tabarani, C.M.; Bonville, C.A.; Suryadevara, M.; Branigan, P.; Wang, D.; Huang, D.; Rosenberg, H.F.; Domachowske, J.B. Novel inflammatory markers, clinical risk factors and virus type associated with severe respiratory syncytial virus infection. Pediatr. Infect. Dis. J. 2013, 32, e437–e442. [Google Scholar] [CrossRef] [PubMed]
- Makrinioti, H.; Hasegawa, K.; Lakoumentas, J.; Xepapadaki, P.; Tsolia, M.; Castro-Rodriguez, J.A.; Feleszko, W.; Jartti, T.; Johnston, S.L.; Bush, A.; et al. The role of respiratory syncytial virus- and rhinovirus-induced bronchiolitis in recurrent wheeze and asthma-A systematic review and meta-analysis. Pediatr. Allergy Immunol. 2022, 33, e13741. [Google Scholar] [CrossRef] [PubMed]
- Hurme, P.; Komulainen, M.; Tulkki, M.; Leino, A.; Rückert, B.; Turunen, R.; Vuorinen, T.; Akdis, M.; Akdis, C.A.; Jartti, T. Cytokine expression in rhinovirus- vs. respiratory syncytial virus-induced first wheezing episode and its relation to clinical course. Front. Immunol. 2022, 13, 1044621. [Google Scholar] [CrossRef] [PubMed]
- Hurme, P.; Sahla, R.; Rückert, B.; Vahlberg, T.; Turunen, R.; Vuorinen, T.; Akdis, M.; Söderlund-Venermo, M.; Akdis, C.; Jartti, T. Human bocavirus 1 coinfection is associated with decreased cytokine expression in the rhinovirus-induced first wheezing episode in children. Clin. Transl. Allergy 2023, 13, e12311. [Google Scholar] [CrossRef] [PubMed]
- Bønnelykke, K.; Sleiman, P.; Nielsen, K.; Kreiner-Møller, E.; Mercader, J.M.; Belgrave, D.; Den Dekker, H.T.; Husby, A.; Sevelsted, A.; Faura-Tellez, G.; et al. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat. Genet. 2014, 46, 51–55. [Google Scholar] [CrossRef]
- Çalışkan, M.; Bochkov, Y.A.; Kreiner-Møller, E.; Bønnelykke, K.; Stein, M.M.; Du, G.; Bisgaard, H.; Jackson, D.J.; Gern, J.E.; Lemanske, R.F.; et al. Rhinovirus wheezing illness and genetic risk of childhood-onset asthma. N. Engl. J. Med. 2013, 368, 1398–1407. [Google Scholar] [CrossRef] [PubMed]
- Beale, J.; Jayaraman, A.; Jackson, D.J.; Macintyre, J.D.R.; Edwards, M.R.; Walton, R.P.; Zhu, J.; Ching, Y.M.; Shamji, B.; Edwards, M.; et al. Rhinovirus induced IL-25 in asthma exacerbation drives type-2 immunity and allergic pulmonary inflammation. Sci. Transl. Med. 2014, 6, 256ra134. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Rajput, C.; Hong, J.Y.; Lei, J.; Hinde, J.L.; Wu, Q.; Bentley, J.K.; Hershenson, M.B. The Innate Cytokines IL-25, IL-33, and TSLP Cooperate in the Induction of Type 2 Innate Lymphoid Cell Expansion and Mucous Metaplasia in Rhinovirus-Infected Immature Mice. J. Immunol. 2017, 199, 1308–1318. [Google Scholar] [CrossRef]
- Fonseca, W.; Lukacs, N.W.; Elesela, S.; Malinczak, C.A. Role of ILC2 in Viral-Induced Lung Pathogenesis. Front. Immunol. 2021, 12, 675169. [Google Scholar] [CrossRef] [PubMed]
- Jartti, T.; Nieminen, R.; Vuorinen, T.; Lehtinen, P.; Vahlberg, T.; Gern, J.; Camargo, C.A.; Ruuskanen, O. Short- and long-term efficacy of prednisolone for first acute rhinovirus-induced wheezing episode. J. Allergy Clin. Immunol. 2015, 135, 691–698.e9. [Google Scholar] [CrossRef]
- Jartti, T.; Lehtinen, P.; Vuorinen, T.; Osterback, R.; van den Hoogen, B.; Osterhaus, A.D.M.E.; Ruuskanen, O. Respiratory picornaviruses and respiratory syncytial virus as causative agents of acute expiratory wheezing in children. Emerg. Infect. Dis. 2004, 10, 1095–1101. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Arku, B.; Jartti, T.; Koskinen, J.; Peltola, V.; Hedman, K.; Söderlund-Venermo, M. Comparative Diagnosis of Human Bocavirus 1 Respiratory Infection With Messenger RNA Reverse-Transcription Polymerase Chain Reaction (PCR), DNA Quantitative PCR, and Serology. J. Infect. Dis. 2017, 215, 1551–1557. [Google Scholar] [CrossRef] [PubMed]
- Hurme, P.; Homil, K.; Lehtinen, P.; Turunen, R.; Vahlberg, T.; Vuorinen, T.; Camargo, C.A., Jr.; Gern, J.E.; Jartti, T. Efficacy of inhaled salbutamol with and without prednisolone for first acute rhinovirus-induced wheezing episode. Clin. Exp. Allergy 2021, 51, 1121–1132. [Google Scholar]
- Allander, T.; Jartti, T.; Gupta, S.; Niesters, H.G.M.; Lehtinen, P.; Österback, R.; Vuorinen, T.; Waris, M.; Bjerkner, A.; Tiveljung-Lindell, A.; et al. Human bocavirus and acute wheezing in children. Clin. Infect. Dis. 2007, 44, 904–910. [Google Scholar] [CrossRef]
- Söderlund-Venermo, M.; Lahtinen, A.; Jartti, T.; Hedman, L.; Kemppainen, K.; Lehtinen, P.; Allander, T.; Ruuskanen, O.; Hedman, K. Clinical assessment and improved diagnosis of bocavirus-induced wheezing in children, Finland. Emerg. Infect. Dis. 2009, 15, 1423–1430. [Google Scholar] [CrossRef]
- Peltola, V.; Waris, M.; Osterback, R.; Susi, P.; Ruuskanen, O.; Hyypiä, T. Rhinovirus transmission within families with children: Incidence of symptomatic and asymptomatic infections. J. Infect. Dis. 2008, 197, 382–389. [Google Scholar] [CrossRef]
- Kantola, K.; Hedman, L.; Arthur, J.; Alibeto, A.; Delwart, E.; Jartti, T.; Ruuskanen, O.; Hedman, K.; Söderlund-Venermo, M. Seroepidemiology of human bocaviruses 1-4. J. Infect. Dis. 2011, 204, 1403–1412. [Google Scholar] [CrossRef]
- Annunziato, F.; Romagnani, C.; Romagnani, S. The 3 major types of innate and adaptive cell-mediated effector immunity. J. Allergy Clin. Immunol. 2015, 135, 626–635. [Google Scholar] [CrossRef]
- Castro, F.; Cardoso, A.P.; Gonçalves, R.M.; Serre, K.; Oliveira, M.J. Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion. Front. Immunol. 2018, 9, 847. [Google Scholar] [CrossRef]
- Altieri, A.; Piyadasa, H.; Hemshekhar, M.; Osawa, N.; Recksiedler, B.; Spicer, V.; Hiemstra, P.S.; Halayko, A.J.; Mookherjee, N. Combination of IL-17A/F and TNF-α uniquely alters the bronchial epithelial cell proteome to enhance proteins that augment neutrophil migration. J. Inflamm. 2022, 19, 26. [Google Scholar] [CrossRef] [PubMed]
- Curtsinger, J.M.; Agarwal, P.; Lins, D.C.; Mescher, M.F. Autocrine IFN-γ promotes naive CD8 T cell differentiation and synergizes with IFN-α to stimulate strong function. J. Immunol. 2012, 189, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Maurer, M.; Von Stebut, E. Macrophage inflammatory protein-1. Int. J. Biochem. Cell Biol. 2004, 36, 1882–1886. [Google Scholar] [CrossRef]
- Halwani, R.; Al-Abri, J.; Beland, M.; Al-Jahdali, H.; Halayko, A.J.; Lee, T.H.; Al-Muhsen, S.; Hamid, Q. CC and CXC chemokines induce airway smooth muscle proliferation and survival. J. Immunol. 2011, 186, 4156–4163. [Google Scholar] [CrossRef]
- Shariff, S.; Shelfoon, C.; Holden, N.S.; Traves, S.L.; Wiehler, S.; Kooi, C.; Proud, D.; Leigh, R. Human Rhinovirus Infection of Epithelial Cells Modulates Airway Smooth Muscle Migration. Am. J. Respir. Cell Mol. Biol. 2017, 56, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, R.P.; Patti, J.; Hintz, K.A.; Hill, V.; Ogra, P.L.; Welliver, R.C. Macrophage inflammatory protein-1alpha (not T helper type 2 cytokines) is associated with severe forms of respiratory syncytial virus bronchiolitis. J. Infect. Dis. 2001, 184, 393–399. [Google Scholar] [CrossRef]
- García, C.; Soriano-Fallas, A.; Lozano, J.; Leos, N.; Gomez, A.M.; Ramilo, O.; Mejias, A. Decreased innate immune cytokine responses correlate with disease severity in children with respiratory syncytial virus and human rhinovirus bronchiolitis. Pediatr. Infect. Dis. J. 2012, 31, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Sugai, K.; Kimura, H.; Miyaji, Y.; Tsukagoshi, H.; Yoshizumi, M.; Sasaki-Sakamoto, T.; Matsunaga, S.; Yamada, Y.; Kashiwakura, J.I.; Noda, M.; et al. MIP-1α level in nasopharyngeal aspirates at the first wheezing episode predicts recurrent wheezing. J. Allergy Clin. Immunol. 2016, 137, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Castan, L.; Magnan, A.; Bouchaud, G. Chemokine receptors in allergic diseases. Allergy 2017, 72, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Q.; Gao, X.X.; Chung, F.T. Association of RANTES gene polymorphisms with susceptibility to childhood asthma: A meta-analysis. Medicine 2020, 99, E20953. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Mirzakhani, H.; Kiefer, A.; Koelle, J.; Vuorinen, T.; Rauh, M.; Yang, Z.; Krammer, S.; Xepapadaki, P.; Lewandowska-Polak, A.; et al. Regulated on Activation, Normal T cell Expressed and Secreted (RANTES) drives the resolution of allergic asthma. iScience 2021, 24, 103163. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Li, H.; Li, J.; Yang, Z.N.; Li, J.L.; Zheng, H.W.; Chen, Y.L.; Shi, H.J.; Guo, L.; Liu, L.D. Role of neutrophil chemoattractant CXCL5 in SARS-CoV-2 infection-induced lung inflammatory innate immune response in an in vivo hACE2 transfection mouse model. Zool. Res. 2020, 41, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Li, N.; Yang, Z.; Li, H.; Zheng, H.; Yang, J.; Chen, Y.; Zhao, X.; Mei, J.; Shi, H.; et al. Role of CXCL5 in Regulating Chemotaxis of Innate and Adaptive Leukocytes in Infected Lungs Upon Pulmonary Influenza Infection. Front. Immunol. 2021, 12, 785457. [Google Scholar] [CrossRef] [PubMed]
- Schuurhof, A.; Janssen, R.; de Groot, H.; Hodemaekers, H.M.; de Klerk, A.; Kimpen, J.L.L.; Bont, L. Local interleukin-10 production during respiratory syncytial virus bronchiolitis is associated with post-bronchiolitis wheeze. Respir. Res. 2011, 12, 121. [Google Scholar] [CrossRef] [PubMed]
- Leahy, T.R.; McManus, R.; Doherty, D.G.; Grealy, R.; Carr, M.J.; Slattery, D.; Ryan, T. Viral Bronchiolitis is Associated With Altered Cytokine Gene Expression and Lymphocyte Activation Status. Pediatr. Infect. Dis. J. 2016, 35, e326–e338. [Google Scholar] [CrossRef]
- Mella, C.; Suarez-Arrabal, M.C.; Lopez, S.; Stephens, J.; Fernandez, S.; Hall, M.W.; Ramilo, O.; Mejias, A. Innate immune dysfunction is associated with enhanced disease severity in infants with severe respiratory syncytial virus bronchiolitis. J. Infect. Dis. 2013, 207, 564–573. [Google Scholar] [CrossRef]
- Sun, L.; Cornell, T.T.; Levine, A.; Berlin, A.A.; Hinkovska-Galcheva, V.; Fleszar, A.J.; Lukacs, N.W.; Shanley, T.P. Dual role of interleukin-10 in the regulation of respiratory syncitial virus (RSV)-induced lung inflammation. Clin. Exp. Immunol. 2013, 172, 263–279. [Google Scholar] [CrossRef] [PubMed]
- Sastre, B.; García-García, M.L.; Cañas, J.A.; Calvo, C.; Rodrigo-Muñoz, J.M.; Casas, I.; Mahíllo-Fernández, I.; Del Pozo, V. Bronchiolitis and recurrent wheezing are distinguished by type 2 innate lymphoid cells and immune response. Pediatr. Allergy Immunol. 2021, 32, 51–59. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, J.; Zou, Y.; Chen, L.; Xu, Q.; Wang, Y.; Xie, M.; Liu, X.; Zhao, J.; Wang, C.Y. Regulatory T Cells, a Viable Target Against Airway Allergic Inflammatory Responses in Asthma. Front. Immunol. 2022, 13, 902318. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Trickett, A.; Kwan, Y.L. T cell stimulation and expansion using anti-CD3/CD28 beads. J. Immunol. Methods 2003, 275, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, N.; Nehar-Belaid, D.; Grassmann, J.D.S.; Stoeckius, M.; Smibert, P.; Stitzel, M.L.; Pascual, V.; Banchereau, J.; Williams, A.; Ucar, D. Single Cell Analysis of Blood Mononuclear Cells Stimulated Through Either LPS or Anti-CD3 and Anti-CD28. Front. Immunol. 2021, 12, 636720. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Inpatient (n = 37) | Outpatient (n = 10) | p-Value |
---|---|---|---|
Age, months | 13.3 (5.7) | 12.4 (5.4) | 0.63 |
Male sex, no. | 29 (78%) | 6 (60%) | 0.25 |
Weight, kg | 10.5 (2.1) | 10.6 (2.1) | 0.85 |
Preceding wheezing, days | 1 (1–1) | 1 (1–2) | 0.11 |
Preceding cough, days | 2 (1–3) | 2 (3–5) | 0.08 |
Preceding rhinitis, days | 3 (2–5) | 4 (3–6) | 0.06 |
Preceding temperature over 37.5 °C | 1 (0–2) | 0 (0–2) | 0.48 |
Clinical score, points | 6 (4–9) | 5 (4–7) | 0.39 |
Oxygen saturation, % | 96 (95–98) | 98 (97–100) | 0.02 |
Temperature, °C | 37.5 (0.6) | 37.2 (0.5) | 0.24 |
CRP, mg/L | 15 (7–23) | 7 (2–16) | 0.048 |
B-Eos (1 × 109/L) | 0.53 (0.35–0.84) * | 0.48 (0.31–0.61) * | 0.42 |
B-Eos > 0.4 × 109/L | 24 (67%) * | 5 (56%) * | 0.70 |
Total IgE | 26 (11–56) | 12 (6–24) * | 0.06 |
Eczema, no. | 11 (30%) | 0 (0%) | 0.09 |
Atopic eczema, no. | 11 (30%) | 0 (0%) | 0.09 |
Sensitization, no. | 15 (41%) | 0 (0%) * | 0.02 |
Food, no. | 13 (35%) | 0 (0%) * | 0.04 |
Aero, no. | 10 (27%) | 0 (0%) * | 0.17 |
Perennial, no. | 9 (24%) | 0 (0%) * | 0.17 |
Parental asthma, no. | 7 (19%) | 2 (20%) | 1.0 |
Parental allergy, no. | 27 (73%) | 2 (20%) | 0.004 |
Parental smoking, no. | 16 (43%) | 6 (60%) | 0.48 |
S-25-OHD, nmol/L | 5150 (770–18,200) | 2000 (1.6–59,750) | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hurme, P.; Kähkönen, M.; Rückert, B.; Vahlberg, T.; Turunen, R.; Vuorinen, T.; Akdis, M.; Akdis, C.A.; Jartti, T. Disease Severity and Cytokine Expression in the Rhinovirus-Induced First Wheezing Episode. Viruses 2024, 16, 924. https://doi.org/10.3390/v16060924
Hurme P, Kähkönen M, Rückert B, Vahlberg T, Turunen R, Vuorinen T, Akdis M, Akdis CA, Jartti T. Disease Severity and Cytokine Expression in the Rhinovirus-Induced First Wheezing Episode. Viruses. 2024; 16(6):924. https://doi.org/10.3390/v16060924
Chicago/Turabian StyleHurme, Pekka, Miisa Kähkönen, Beate Rückert, Tero Vahlberg, Riitta Turunen, Tytti Vuorinen, Mübeccel Akdis, Cezmi A. Akdis, and Tuomas Jartti. 2024. "Disease Severity and Cytokine Expression in the Rhinovirus-Induced First Wheezing Episode" Viruses 16, no. 6: 924. https://doi.org/10.3390/v16060924
APA StyleHurme, P., Kähkönen, M., Rückert, B., Vahlberg, T., Turunen, R., Vuorinen, T., Akdis, M., Akdis, C. A., & Jartti, T. (2024). Disease Severity and Cytokine Expression in the Rhinovirus-Induced First Wheezing Episode. Viruses, 16(6), 924. https://doi.org/10.3390/v16060924