The Medicinal Phage—Regulatory Roadmap for Phage Therapy under EU Pharmaceutical Legislation
Abstract
:1. Introduction
2. What Are Phages?
2.1. Structure and Occurrence of Phages
2.2. Infection Behaviour and Pharmacological Mode of Action
2.3. Do Phages Have a Pharmacological Action in the Legal Sense?
3. Application Settings of Phage Therapy
3.1. One-Fits-All in Advance vs. Patient-Specific on Demand
3.2. Interaction between Phage Bank and Medicinal Product Manufacturers
4. What Are Phages under Pharmaceutical Regulation and What Are They Not?
4.1. Are Phages Pharmaceutical Substances?
4.2. Active Substance and/or Medicinal Product and Its Dosage Form
4.3. Not Cells or Tissues
4.4. Not Blood, Not Blood Products
4.5. Not Xenogeneic Medicinal Products
4.6. Not Immunological Medicinal Products (Vaccines)
4.7. Not Biocides
4.8. Not Medical Devices
4.9. Genetically Modified (Micro-) Organism
4.9.1. Wild Type Phages and Genetically Modified Phages
4.9.2. (No) CRISPR Specifics?
4.9.3. Phages from Phage Training
4.9.4. Wild Type Phage from GMO-Bacteria and the Concept of Null Segregants
4.10. Some Are Advanced Therapy Medicinal Products (ATMP)
4.11. Some Are Biological Medicinal Products (Biologicals), Some Could Be, Some Are Not
4.12. Conclusion on the Classification: Not Specifically Regulated Medicinal Product with One Exception
5. Significance of the Medicinal Product Type, the Preparation and Application Scenarios for the Legal Handling of Phage Therapeutics
5.1. No Prohibition of Phage Therapy
5.2. Amplification of Phages in Phage Banks or a Specialised Facility without Preparation of the Medicinal Product in Final Dosage Form
5.3. Centralised, Patient-Independent, Industrial, Uniform Preparation in Advance
5.4. Decentralised Patient-Specific Preparation on Demand in (Hospital Based) Pharmacies
5.4.1. Legal Framework
5.4.2. Wild Type Phages
5.4.3. Magistral ATMP-Phages outside the ATMP-Regulation?
5.5. Patient-Specific Preparation by Physicians and Application in Medical Practices
5.6. (De)Centralised Patient-Specific, Industrial Preparation on Demand, outside Pharmacies
5.6.1. Legal Framework and Medicinal Products Based on Wild Type Phages
5.6.2. Phage-Based ATMP
5.7. The Meaning of the Discussion on the Magistral Preparation
5.8. The Meaning of the Incorporation of Phages into the European Pharmacopoeia
5.9. Phages in Compassionate Use, Named Patient Use, Off-Label Use & Experimental Therapy
6. Phage Therapy and Nagoya Justice
7. Veterinary Medicine
8. Food Sector
9. Regulatory Outlook
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brives, C.; Pourraz, J. Phage therapy as a potential solution in the fight against AMR: Obstacles and possible futures. Palgrave Commun. 2020, 6, 100. [Google Scholar] [CrossRef]
- Kloß, F.; Gerbach, S. Hürden und Aussichten neuer antimikrobieller Konzepte in Forschung und Entwicklung. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2018, 61, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Willy, C.; Bugert, J.J.; Classen, A.Y.; Li, D.; Düchting, A.; Gross, J.; Hammerl, J.A.; Korf, I.H.E.; Kühn, C.; Lieberknecht-Jouy, S.; et al. Phage Therapy in Germany-Update 2023. Viruses 2023, 15, 588. [Google Scholar] [CrossRef] [PubMed]
- Petrovic Fabijan, A.; Iredell, J.; Danis-Wlodarczyk, K.; Kebriaei, R.; Abedon, S.T. Translating phage therapy into the clinic: Recent accomplishments but continuing challenges. PLoS Biol. 2023, 21, e3002119. [Google Scholar] [CrossRef]
- Hatfull, G.F.; Dedrick, R.M.; Schooley, R.T. Phage Therapy for Antibiotic-Resistant Bacterial Infections. Annu. Rev. Med. 2022, 73, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Walter, N.; Mirzaei, M.; Deng, L.; Willy, C.; Alt, V.; Rupp, M. The Potential of Bacteriophage Therapy as an Alternative Treatment Approach for Antibiotic-Resistant Infections. Med. Princ. Pract. 2023, 33, 1–9. [Google Scholar] [CrossRef]
- European Medicines Agency. Guideline on the evaluation of medicinal products indicated for treatment of bacterial infections, 19 May 2022, CPMP/EWP/558/95 Rev 3.
- European Medicines Agency. Guideline on the evaluation of medicinal products indicated for treatment of bacterial infections, 15 December 2011, CPMP/EWP/558/95 rev 2.
- Willy, C.; Broecker, F. Phagentherapie in Deutschland—auf dem Weg zur Wiedereinführung in die Militärmedizin. Wehrmed. Forsch. 2023, 67, 237–244. [Google Scholar]
- Dedrick, R.M.; Smith, B.E.; Cristinziano, M.; Freeman, K.G.; Jacobs-Sera, D.; Belessis, Y.; Whitney Brown, A.; Cohen, K.A.; Davidson, R.M.; van Duin, D.; et al. Phage Therapy of Mycobacterium Infections: Compassionate Use of Phages in 20 Patients with Drug-Resistant Mycobacterial Disease. Clin. Infect. Dis. 2023, 76, 103–112. [Google Scholar] [CrossRef]
- Furfaro, L.L.; Payne, M.S.; Chang, B.J. Bacteriophage Therapy: Clinical Trials and Regulatory Hurdles. Front. Cell. Infect. Microbiol. 2018, 8, 376. [Google Scholar] [CrossRef]
- Khalifa, A.A.; Hussien, S.M. The promising role of bacteriophage therapy in managing total hip and knee arthroplasty related periprosthetic joint infection, a systematic review. J. Exp. Orthop. 2023, 10, 18. [Google Scholar] [CrossRef]
- Mulzer, J.; Trampuz, A.; Potapov, E.V. Treatment of chronic left ventricular assist device infection with local application of bacteriophages. Eur. J. Cardiothorac. Surg. 2020, 57, 1003–1004. [Google Scholar] [CrossRef]
- Nick, J.A.; Dedrick, R.M.; Gray, A.L.; Vladar, E.K.; Smith, B.E.; Freeman, K.G.; Malcolm, K.C.; Epperson, L.E.; Hasan, N.A.; Hendrix, J.; et al. Host and pathogen response to bacteriophage engineered against Mycobacterium abscessus lung infection. Cell 2022, 185, 1860–1874.e12. [Google Scholar] [CrossRef]
- Schooley, R.T.; Biswas, B.; Gill, J.J.; Hernandez-Morales, A.; Lancaster, J.; Lessor, L.; Barr, J.J.; Reed, S.L.; Rohwer, F.; Benler, S.; et al. Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails To Treat a Patient with a Disseminated Resistant Acinetobacter baumannii Infection. Antimicrob. Agents Chemother. 2017, 61, e00954-17. [Google Scholar] [CrossRef]
- Walter, N.; Deng, L.; Brochhausen, C.; Alt, V.; Rupp, M. Behandlung von Knochen- und Protheseninfektionen mit Bakteriophagen: Ein systematisches Review. Orthopade 2022, 51, 138–145. [Google Scholar] [CrossRef]
- Yang, Q.; Le, S.; Zhu, T.; Wu, N. Regulations of phage therapy across the world. Front. Microbiol. 2023, 14, 1250848. [Google Scholar] [CrossRef]
- Classen, A.Y.; Würstle, S.; Willy, C.; Vehreschild, M.J.G.T. Clinical use of bacteriophages—Klinische Anwendung von Bakteriophagen. PHARMAKON 2021, 9, 457–469. [Google Scholar] [CrossRef]
- Williams, J.; Severin, J.; Temperton, B.; Mitchelmore, P.J. Phage Therapy Administration Route, Regimen, and Need for Supplementary Antibiotics in Patients with Chronic Suppurative Lung Disease. Phage 2023, 4, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [CrossRef] [PubMed]
- De Kraker, M.E.A.; Stewardson, A.J.; Harbarth, S. Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? PLoS Med. 2016, 13, e1002184. [Google Scholar] [CrossRef]
- O’Neill, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. Available online: https://wellcomecollection.org/works/rdpck35v (accessed on 19 February 2024).
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef]
- Dvořáčková, M.; Růžička, F.; Benešík, M.; Pantůček, R.; Dvořáková-Heroldová, M. Antimicrobial effect of commercial phage preparation Stafal® on biofilm and planktonic forms of methicillin-resistant Staphylococcus aureus. Folia Microbiol. 2019, 64, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Bohemia Pharmaceuticals. Stafal—Professional Community Information (EN). Available online: http://avibep.org/wp-content/uploads/2019/10/Bohemia-Pharmaceuticals-_-Stafal-%E2%80%93-professional-community-information-EN.pdf (accessed on 19 February 2024).
- Górski, A. Phage Therapy; Springer International Publishing AG: Cham, Switzerland, 2019; ISBN 9783030267360. [Google Scholar]
- Verbeken, G.; Pirnay, J.P.; Lavigne, R.; Ceulemans, C.; de Vos, D.; Huys, I. Viruses That Can Cure, When Antibiotics Fail. J. Microb. Biochem. Technol. 2016, 8, 21–24. [Google Scholar]
- Wormer, E.J. Phagenforschung in Tiflis. Orthop. Rheuma 2019, 22, 64–65. [Google Scholar] [CrossRef]
- Żaczek, M.; Weber-Dąbrowska, B.; Międzybrodzki, R.; Łusiak-Szelachowska, M.; Górski, A. Phage Therapy in Poland—A Centennial Journey to the First Ethically Approved Treatment Facility in Europe. Front. Microbiol. 2020, 11, 1056. [Google Scholar] [CrossRef] [PubMed]
- Weber-Dabrowska, B.; Mulczyk, M.; Górski, A. Bacteriophage therapy of bacterial infections: An update of our institute’s experience. Arch. Immunol. Ther. Exp. 2000, 48, 547–551. [Google Scholar]
- Pirnay, J.-P.; Verbeken, G.; Ceyssens, P.-J.; Huys, I.; de Vos, D.; Ameloot, C.; Fauconnier, A. The Magistral Phage. Viruses 2018, 10, 64. [Google Scholar] [CrossRef] [PubMed]
- Pirnay, J.-P.; Ferry, T.; Resch, G. Recent progress toward the implementation of phage therapy in Western medicine. FEMS Microbiol. Rev. 2022, 46, fuab040. [Google Scholar] [CrossRef]
- Pirnay, J.-P.; Verbeken, G. Magistral Phage Preparations: Is This the Model for Everyone? Clin. Infect. Dis. 2023, 77, S360–S369. [Google Scholar] [CrossRef]
- PHAGEinLYON Clinic Program. Phage Therapy. Available online: https://www.crioac-lyon.fr/en/phagotherapie-bacteriophage/ (accessed on 19 February 2024).
- PhagoPROD. GMP Manufacturing & GLP Diagnostic: Towards a Personalised Phage Therapy against Antimicrobial Resistance. Available online: https://cordis.europa.eu/project/id/811749 (accessed on 19 February 2024).
- Phage4Cure|Developing Bacteriophages as Approved Therapy against Bacterial Infections. Establishing Bacteriophages as Approved Drug|Phage4Cure. Available online: https://phage4cure.de/en/projekt/ (accessed on 19 February 2024).
- PhagoFlow|Praktikabilitätstestung Patientenspezifisch Individuell Hergestellter „Cocktails“ von Phagen, die Gegen Betreffende Bakterien Wirken Sollen. Available online: https://www.phagoflow.de/ (accessed on 19 February 2024).
- European Medicines Agency. Workshop on the Therapeutic Use of Bacteriophages. Available online: https://www.ema.europa.eu/en/events/workshop-therapeutic-use-bacteriophages (accessed on 19 February 2024).
- Debarbieux, L.; Pirnay, J.-P.; Verbeken, G.; De Vos, D.; Merabishvili, M.; Huys, I.; Patey, O.; Schoonjans, D.; Vaneechoutte, M.; Zizi, M.; et al. A bacteriophage journey at the European Medicines Agency. FEMS Microbiol. Lett. 2016, 363, fnv225. [Google Scholar] [CrossRef]
- Pelfrene, E.; Sebris, Z.; Cavaleri, M. Regulatory Aspects of the Therapeutic Use of Bacteriophages: Europe. In Bacteriophages: Biology, Technology, Therapy, 1st ed.; Harper, D.R., Abedon, S.T., Burrowes, B.H., McConville, M.L., Eds.; Springer International Publishing; Imprint Springer: Cham, Switzerland, 2021; pp. 1165–1177. ISBN 978-3-319-41985-5. [Google Scholar]
- Vázquez, R.; Díez-Martínez, R.; Domingo-Calap, P.; García, P.; Gutiérrez, D.; Muniesa, M.; Ruiz-Ruigómez, M.; Sanjuán, R.; Tomás, M.; Tormo-Mas, M.Á.; et al. Essential Topics for the Regulatory Consideration of Phages as Clinically Valuable Therapeutic Agents: A Perspective from Spain. Microorganisms 2022, 10, 717. [Google Scholar] [CrossRef]
- Verbeken, G.; Pirnay, J.-P. European regulatory aspects of phage therapy: Magistral phage preparations. Curr. Opin. Virol. 2022, 52, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Council of Europe. Public Consultation on New General Chapter on Phage Therapy Active Substances and Medicinal Products for Human and Veterinary use in Pharmeuropa 35.2 [Online], 6 April 2023. Available online: https://www.edqm.eu/en/about-edqm/-/asset_publisher/wQwK2Umbt4vx/content/public-consultation-on-new-general-chapter-on-phage-therapy-active-substances-and-medicinal-products-for-human-and-veterinary-use-in-pharmeuropa-35.2 (accessed on 19 February 2024).
- European Commission. Proposal for a Directive of the European Parliament and of the Council on the Union Code Relating to Medicinal Products for Human Use, and Repealing Directive 2001/83/EC and Directive 2009/35/EC, COM/2023/192 final, 2023/0132(COD); European Commission: Brussels, Belgium, 2023.
- European Medicines Agency. Committee for Medicinal Products for Human Use (CHMP), Concept Paper on the Establishment of a Guideline on the Development and Manufacture of Human Medicinal Products Specifically Designed for Phage Therapy, 4 December 2023, EMA/CHMP/BWP/486838/2023; European Medicines Agency: Amsterdam, The Netherlands, 2023.
- Pacia, D.M.; Brown, B.L.; Minssen, T.; Darrow, J.J. CRISPR-phage antibacterials to address the antibiotic resistance crisis: Scientific, economic, and regulatory considerations. J. Law. Biosci. 2024, 11, lsad030. [Google Scholar] [CrossRef] [PubMed]
- Harper, D.R.; Abedon, S.T.; Burrowes, B.H.; McConville, M.L. (Eds.) Bacteriophages: Biology, Technology, Therapy, 1st ed.; Springer International Publishing; Imprint Springer: Cham, Switzerland, 2021; ISBN 978-3-319-41985-5. [Google Scholar]
- Riedel, S.; Hobden, J.A.; Miller, S.; Morse, S.A.; Mietzner, T.A.; Detrick, B.; Mitchell, T.G.; Sakanari, J.A.; Hotez, P.; Mejia, R. Jawetz, Melnick, & Adelberg’s Medical Microbiology, 28th ed.; McGraw-Hill Education LLC: New York, NY, USA, 2019; ISBN 9781260012026. [Google Scholar]
- Nobrega, F.L.; Vlot, M.; de Jonge, P.A.; Dreesens, L.L.; Beaumont, H.J.E.; Lavigne, R.; Dutilh, B.E.; Brouns, S.J.J. Targeting mechanisms of tailed bacteriophages. Nat. Rev. Microbiol. 2018, 16, 760–773. [Google Scholar] [CrossRef] [PubMed]
- Bergh, O.; Børsheim, K.Y.; Bratbak, G.; Heldal, M. High abundance of viruses found in aquatic environments. Nature 1989, 340, 467–468. [Google Scholar] [CrossRef] [PubMed]
- Wommack, K.E.; Colwell, R.R. Virioplankton: Viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 2000, 64, 69–114. [Google Scholar] [CrossRef] [PubMed]
- Ashelford, K.E.; Day, M.J.; Fry, J.C. Elevated abundance of bacteriophage infecting bacteria in soil. Appl. Environ. Microbiol. 2003, 69, 285–289. [Google Scholar] [CrossRef]
- Williamson, K.E.; Radosevich, M.; Wommack, K.E. Abundance and diversity of viruses in six Delaware soils. Appl. Environ. Microbiol. 2005, 71, 3119–3125. [Google Scholar] [CrossRef]
- Barr, J.J. A bacteriophages journey through the human body. Immunol. Rev. 2017, 279, 106–122. [Google Scholar] [CrossRef]
- Foulongne, V.; Sauvage, V.; Hebert, C.; Dereure, O.; Cheval, J.; Gouilh, M.A.; Pariente, K.; Segondy, M.; Burguière, A.; Manuguerra, J.-C.; et al. Human skin microbiota: High diversity of DNA viruses identified on the human skin by high throughput sequencing. PLoS ONE 2012, 7, e38499. [Google Scholar] [CrossRef]
- Łusiak-Szelachowska, M.; Weber-Dąbrowska, B.; Żaczek, M.; Borysowski, J.; Górski, A. The Presence of Bacteriophages in the Human Body: Good, Bad or Neutral? Microorganisms 2020, 8, 2012. [Google Scholar] [CrossRef]
- Nguyen, S.; Baker, K.; Padman, B.S.; Patwa, R.; Dunstan, R.A.; Weston, T.A.; Schlosser, K.; Bailey, B.; Lithgow, T.; Lazarou, M.; et al. Bacteriophage Transcytosis Provides a Mechanism To Cross Epithelial Cell Layers. mBio 2017, 8, e01874-17. [Google Scholar] [CrossRef]
- Strathdee, S.A.; Hatfull, G.F.; Mutalik, V.K.; Schooley, R.T. Phage therapy: From biological mechanisms to future directions. Cell 2023, 186, 17–31. [Google Scholar] [CrossRef]
- Verbeken, G.; Pirnay, J.-P.; Lavigne, R.; Jennes, S.; De Vos, D.; Casteels, M.; Huys, I. Call for a dedicated European legal framework for bacteriophage therapy. Arch. Immunol. Ther. Exp. 2014, 62, 117–129. [Google Scholar] [CrossRef]
- Zündorf, I. Beyond classical phage therapy—endolysins and synthetic phages Jenseits der klassischen Phagentherapie—Endolysine und rekombinante Phagen. PHARMAKON 2021, 9, 486–491. [Google Scholar] [CrossRef]
- Gibb, B.; Hyman, P.; Schneider, C.L. The Many Applications of Engineered Bacteriophages-An Overview. Pharmaceuticals 2021, 14, 634. [Google Scholar] [CrossRef] [PubMed]
- Mahler, M.; Costa, A.R.; van Beljouw, S.P.B.; Fineran, P.C.; Brouns, S.J.J. Approaches for bacteriophage genome engineering. Trends Biotechnol. 2023, 41, 669–685. [Google Scholar] [CrossRef] [PubMed]
- Mitsunaka, S.; Yamazaki, K.; Pramono, A.K.; Ikeuchi, M.; Kitao, T.; Ohara, N.; Kubori, T.; Nagai, H.; Ando, H. Synthetic engineering and biological containment of bacteriophages. Proc. Natl. Acad. Sci. USA 2022, 119, e2206739119. [Google Scholar] [CrossRef]
- Payaslian, F.; Gradaschi, V.; Piuri, M. Genetic manipulation of phages for therapy using BRED. Curr. Opin. Biotechnol. 2021, 68, 8–14. [Google Scholar] [CrossRef]
- Barnard, A.M.L.; Fairhead, H.I.M. A commentary on the development of engineered phage as therapeutics. Drug Discov. Today 2021, 26, 2095–2098. [Google Scholar] [CrossRef] [PubMed]
- Regulski, K.; Champion-Arnaud, P.; Gabard, J. Bacteriophage Manufacturing: From Early Twentieth-Century Processes to Current GMP. In Bacteriophages: Biology, Technology, Therapy, 1st ed.; Harper, D.R., Abedon, S.T., Burrowes, B.H., McConville, M.L., Eds.; Springer International Publishing; Imprint Springer: Cham, Switzerland, 2021; pp. 699–729. ISBN 978-3-319-41985-5. [Google Scholar]
- Agboluaje, M.; Sauvageau, D. Bacteriophage Production in Bioreactors. Methods Mol. Biol. 2018, 1693, 173–193. [Google Scholar] [CrossRef]
- García, R.; Latz, S.; Romero, J.; Higuera, G.; García, K.; Bastías, R. Bacteriophage Production Models: An Overview. Front. Microbiol. 2019, 10, 1187. [Google Scholar] [CrossRef]
- Emslander, Q.; Vogele, K.; Braun, P.; Stender, J.; Willy, C.; Joppich, M.; Hammerl, J.A.; Abele, M.; Meng, C.; Pichlmair, A.; et al. Cell-free production of personalized therapeutic phages targeting multidrug-resistant bacteria. Cell Chem. Biol. 2022, 29, 1434–1445.e7. [Google Scholar] [CrossRef]
- Dąbrowska, K.; Górski, A.; Abedon, S.T. Bacteriophage Pharmacology and Immunology. In Bacteriophages: Biology, Technology, Therapy, 1st ed.; Harper, D.R., Abedon, S.T., Burrowes, B.H., McConville, M.L., Eds.; Springer International Publishing; Imprint Springer: Cham, Switzerland, 2021; pp. 295–339. ISBN 978-3-319-41985-5. [Google Scholar]
- Wienhold, S.-M.; Lienau, J.; Witzenrath, M. Towards Inhaled Phage Therapy in Western Europe. Viruses 2019, 11, 295. [Google Scholar] [CrossRef] [PubMed]
- Łusiak-Szelachowska, M.; Zaczek, M.; Weber-Dąbrowska, B.; Międzybrodzki, R.; Kłak, M.; Fortuna, W.; Letkiewicz, S.; Rogóż, P.; Szufnarowski, K.; Jończyk-Matysiak, E.; et al. Phage neutralization by sera of patients receiving phage therapy. Viral Immunol. 2014, 27, 295–304. [Google Scholar] [CrossRef] [PubMed]
- van Belleghem, J.D.; Dąbrowska, K.; Vaneechoutte, M.; Barr, J.J. Phage Interaction with the Mammalian Immune System. In Phage Therapy: A Practical Approach, 1st ed.; Górski, A., Międzybrodzki, R., Borysowski, J., Eds.; Springer: Cham, Switzerland, 2019; pp. 91–122. ISBN 978-3-030-26735-3. [Google Scholar]
- Pirnay, J.-P.; Merabishvili, M.; De Vos, D.; Verbeken, G. Bacteriophage Production in Compliance with Regulatory Requirements. Methods Mol. Biol. 2024, 2734, 89–115. [Google Scholar] [CrossRef] [PubMed]
- Dannheim, A.; Korf, I.; Wienecke, S.; Ziehr, H. Phage manufacturing process for an old therapy in new clothes—Herstellungsverfahren von Phagen für eine alte Therapie in neuen Kleidern. PHARMAKON 2021, 9, 446–453. [Google Scholar] [CrossRef]
- Hitchcock, N.M.; Devequi Gomes Nunes, D.; Shiach, J.; Valeria Saraiva Hodel, K.; Dantas Viana Barbosa, J.; Alencar Pereira Rodrigues, L.; Coler, B.S.; Botelho Pereira Soares, M.; Badaró, R. Current Clinical Landscape and Global Potential of Bacteriophage Therapy. Viruses 2023, 15, 1020. [Google Scholar] [CrossRef] [PubMed]
- Briot, T.; Kolenda, C.; Ferry, T.; Medina, M.; Laurent, F.; Leboucher, G.; Pirot, F. Paving the way for phage therapy using novel drug delivery approaches. J. Control. Release 2022, 347, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Dennehy, J.J.; Abedon, S.T. Adsorption: Phage Acquisition of Bacteria. In Bacteriophages: Biology, Technology, Therapy, 1st ed.; Harper, D.R., Abedon, S.T., Burrowes, B.H., McConville, M.L., Eds.; Springer International Publishing; Imprint Springer: Cham, Switzerland, 2021; pp. 93–117. ISBN 978-3-319-41985-5. [Google Scholar]
- Barbu, E.M.; Cady, K.C.; Hubby, B. Phage Therapy in the Era of Synthetic Biology. Cold Spring Harb. Perspect. Biol. 2016, 8, a023879. [Google Scholar] [CrossRef]
- Huys, I.; Pirnay, J.-P.; Lavigne, R.; Jennes, S.; De Vos, D.; Casteels, M.; Verbeken, G. Paving a regulatory pathway for phage therapy. Europe should muster the resources to financially, technically and legally support the introduction of phage therapy. EMBO Rep. 2013, 14, 951–954. [Google Scholar] [CrossRef]
- European Commission. Guidance Document on the Demarcation between the Cosmetic Products Directive 76/768 and the Medicinal Products Directive 2001/83 as Agreed between the Commission Services and the Competent Authorities of Member States, p. 9 (On the Applicability of this Text as an Interpretative Reference: CJEU, Judgment, 6.9.2012, C 308/11, margins 18 et sqq.); European Commission: Brussels, Belgium.
- Court of Justice of the European Union. Judgment, 15.11.2007, C-319/05, margin 68.
- Court of Justice of the European Union. Judgment, 06.09.2012, C-308/11, margin 31, 36.
- Court of Justice of the European Union. Judgment, 30.04.2009, C-27/08, margin 23; Judgment, 06.09.2012, C-308/11, margin 35.
- Bretaudeau, L.; Tremblais, K.; Aubrit, F.; Meichenin, M.; Arnaud, I. Good Manufacturing Practice (GMP) Compliance for Phage Therapy Medicinal Products. Front. Microbiol. 2020, 11, 1161. [Google Scholar] [CrossRef] [PubMed]
- Pirnay, J.-P.; De Vos, D.; Verbeken, G.; Merabishvili, M.; Chanishvili, N.; Vaneechoutte, M.; Zizi, M.; Laire, G.; Lavigne, R.; Huys, I.; et al. The phage therapy paradigm: Prêt-à-porter or sur-mesure? Pharm. Res. 2011, 28, 934–937. [Google Scholar] [CrossRef]
- Pirnay, J.-P. Phage Therapy in the Year 2035. Front. Microbiol. 2020, 11, 1171. [Google Scholar] [CrossRef] [PubMed]
- Chan, B.K.; Abedon, S.T.; Loc-Carrillo, C. Phage cocktails and the future of phage therapy. Future Microbiol. 2013, 8, 769–783. [Google Scholar] [CrossRef] [PubMed]
- Ferry, T.; Kolenda, C.; Laurent, F.; Leboucher, G.; Merabischvilli, M.; Djebara, S.; Gustave, C.-A.; Perpoint, T.; Barrey, C.; Pirnay, J.-P.; et al. Personalized bacteriophage therapy to treat pandrug-resistant spinal Pseudomonas aeruginosa infection. Nat. Commun. 2022, 13, 4239. [Google Scholar] [CrossRef] [PubMed]
- Terwilliger, A.L.; Gu Liu, C.; Green, S.I.; Clark, J.R.; Salazar, K.C.; Hernandez Santos, H.; Heckmann, E.R.; Trautner, B.W.; Ramig, R.F.; Maresso, A.W. Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research: Personalized Infectious Disease Medicine for the Most Vulnerable At-Risk Patients. Phage 2020, 1, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Würstle, S.; Stender, J.; Hammerl, J.A.; Vogele, K.; Rothe, K.; Willy, C.; Bugert, J.J. Practical Assessment of an Interdisciplinary Bacteriophage Delivery Pipeline for Personalized Therapy of Gram-Negative Bacterial Infections. Pharmaceuticals 2022, 15, 186. [Google Scholar] [CrossRef]
- Eckert, N. Infektionstherapie: Auf der Suche nach Alternativen. Dtsch. Arztebl. 2019, 116, A2078–A2084. [Google Scholar]
- Pires, D.P.; Costa, A.R.; Pinto, G.; Meneses, L.; Azeredo, J. Current challenges and future opportunities of phage therapy. FEMS Microbiol. Rev. 2020, 44, 684–700. [Google Scholar] [CrossRef]
- Fauconnier, A. Regulating phage therapy: The biological master file concept could help to overcome regulatory challenge of personalized medicines. EMBO Rep. 2017, 18, 198–200. [Google Scholar] [CrossRef]
- Henein, A. What are the limitations on the wider therapeutic use of phage? Bacteriophage 2013, 3, e24872. [Google Scholar] [CrossRef] [PubMed]
- Duyvejonck, H.; Merabishvili, M.; Vaneechoutte, M.; de Soir, S.; Wright, R.; Friman, V.-P.; Verbeken, G.; De Vos, D.; Pirnay, J.-P.; van Mechelen, E.; et al. Evaluation of the Stability of Bacteriophages in Different Solutions Suitable for the Production of Magistral Preparations in Belgium. Viruses 2021, 13, 865. [Google Scholar] [CrossRef] [PubMed]
- Pirnay, J.-P.; Verbeken, G.; Rose, T.; Jennes, S.; Zizi, M.; Huys, I.; Lavigne, R.; Merabishvili, M.; Vaneechoutte, M.; Buckling, A.; et al. Introducing yesterday’s phage therapy in today’s medicine. Future Virol. 2012, 7, 379–390. [Google Scholar] [CrossRef]
- Hyman, P. Phages for Phage Therapy: Isolation, Characterization, and Host Range Breadth. Pharmaceuticals 2019, 12, 35. [Google Scholar] [CrossRef]
- Wittmann, J.; Bunk, B.; Korf, I.; Wienecke, S.; Spröer, C. Therapie-Phagen: Voraussetzung für die Anwendung geschaffen. Biospektrum 2023, 29, 222. [Google Scholar] [CrossRef]
- Verbeken, G.; Pirnay, J.-P.; De Vos, D.; Jennes, S.; Zizi, M.; Lavigne, R.; Casteels, M.; Huys, I. Optimizing the European regulatory framework for sustainable bacteriophage therapy in human medicine. Arch. Immunol. Ther. Exp. 2012, 60, 161–172. [Google Scholar] [CrossRef]
- Khullar, L.; Harjai, K.; Chhibber, S. Exploring the therapeutic potential of staphylococcal phage formulations: Current challenges and applications in phage therapy. J. Appl. Microbiol. 2022, 132, 3515–3532. [Google Scholar] [CrossRef]
- Malik, D.J.; Sokolov, I.J.; Vinner, G.K.; Mancuso, F.; Cinquerrui, S.; Vladisavljevic, G.T.; Clokie, M.R.J.; Garton, N.J.; Stapley, A.G.F.; Kirpichnikova, A. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv. Colloid. Interface Sci. 2017, 249, 100–133. [Google Scholar] [CrossRef]
- Malik, D.J. Approaches for manufacture, formulation, targeted delivery and controlled release of phage-based therapeutics. Curr. Opin. Biotechnol. 2021, 68, 262–271. [Google Scholar] [CrossRef]
- Rosner, D.; Clark, J. Formulations for Bacteriophage Therapy and the Potential Uses of Immobilization. Pharmaceuticals 2021, 14, 359. [Google Scholar] [CrossRef]
- Vogel-Kindgen, S.; Walther, M.; Windbergs, M. Technological formulation approaches for phage therapy—Technologische Formulierungsansätze für die Phagentherapie. PHARMAKON 2021, 9, 454–460. [Google Scholar] [CrossRef]
- Baldelli, A.; Liang, M. Design of respirable sprayed microparticles of encapsulated bacteriophages. Front. Drug Deliv. 2023, 3, 1209534. [Google Scholar] [CrossRef]
- Köhler, T.; Luscher, A.; Falconnet, L.; Resch, G.; McBride, R.; Mai, Q.-A.; Simonin, J.L.; Chanson, M.; Maco, B.; Galiotto, R.; et al. Personalized aerosolised bacteriophage treatment of a chronic lung infection due to multidrug-resistant Pseudomonas aeruginosa. Nat. Commun. 2023, 14, 3629. [Google Scholar] [CrossRef] [PubMed]
- Pelfrene, E.; Willebrand, E.; Cavaleiro Sanches, A.; Sebris, Z.; Cavaleri, M. Bacteriophage therapy: A regulatory perspective. J. Antimicrob. Chemother. 2016, 71, 2071–2074. [Google Scholar] [CrossRef]
- European Commission. Proposal for a Regulation of the European Parliament and of the Council on Standards of Quality and Safety for Substances of Human Origin Intended for Human Application and Repealing Directives 2002/98/EC and 2004/23/EC; COM(2022) 338 Final, 2022/0216(COD); European Commission: Brussels, Belgium, 2022.
- Fralick, J.A.; Clark, J. Phage Display Technology and the Development of Phage-Based Vaccines. In Bacteriophages: Biology, Technology, Therapy, 1st ed.; Harper, D.R., Abedon, S.T., Burrowes, B.H., McConville, M.L., Eds.; Springer International Publishing; Imprint Springer: Cham, Switzerland, 2021; pp. 1031–1067. ISBN 978-3-319-41985-5. [Google Scholar]
- Wojewodzic, M.W. Bacteriophages Could Be a Potential Game Changer in the Trajectory of Coronavirus Disease (COVID-19). Phage 2020, 1, 60–65. [Google Scholar] [CrossRef]
- Court of Justice of the European Union. Judgment, 25.07.2016, Case C-528/16, margin 54.
- Yeh, T.-K.; Jean, S.-S.; Lee, Y.-L.; Lu, M.-C.; Ko, W.-C.; Lin, H.-J.; Liu, P.-Y.; Hsueh, P.-R. Bacteriophages and phage-delivered CRISPR-Cas system as antibacterial therapy. Int. J. Antimicrob. Agents 2022, 59, 106475. [Google Scholar] [CrossRef] [PubMed]
- Rohde, C.; Resch, G.; Pirnay, J.-P.; Blasdel, B.G.; Debarbieux, L.; Gelman, D.; Górski, A.; Hazan, R.; Huys, I.; Kakabadze, E.; et al. Expert Opinion on Three Phage Therapy Related Topics: Bacterial Phage Resistance, Phage Training and Prophages in Bacterial Production Strains. Viruses 2018, 10, 178. [Google Scholar] [CrossRef] [PubMed]
- Abdelsattar, A.; Dawooud, A.; Rezk, N.; Makky, S.; Safwat, A.; Richards, P.; El-Shibiny, A. How to Train Your Phage: The Recent Efforts in Phage Training. Biologics 2021, 1, 70–88. [Google Scholar] [CrossRef]
- Borin, J.M.; Avrani, S.; Barrick, J.E.; Petrie, K.L.; Meyer, J.R. Coevolutionary phage training leads to greater bacterial suppression and delays the evolution of phage resistance. Proc. Natl. Acad. Sci. USA 2021, 118, e2104592118. [Google Scholar] [CrossRef] [PubMed]
- Heinemann, J.A.; Clark, K.; Hiscox, T.C.; McCabe, A.W.; Agapito-Tenfen, S.Z. Are null segregants new combinations of heritable material and should they be regulated? Front. Genome Ed. 2022, 4, 1064103. [Google Scholar] [CrossRef]
- Wada, N.; Ueta, R.; Osakabe, Y.; Osakabe, K. Precision genome editing in plants: State-of-the-art in CRISPR/Cas9-based genome engineering. BMC Plant Biol. 2020, 20, 234. [Google Scholar] [CrossRef]
- Zimny, T.; Eriksson, D. Exclusion or exemption from risk regulation?: A comparative analysis of proposals to amend the EU GMO legislation. EMBO Rep. 2020, 21, e51061. [Google Scholar] [CrossRef]
- European Medicines Agency. Guideline on Human Cell-Based Medicinal Products, Doc. Ref. EMEA/CHMP/410869/2006; European Medicines Agency: Amsterdam, The Netherlands, 2008; p. 12.
- European Medicines Agency. CAT Monthly Report of Application Procedures, Guidelines and Related Documents on Advanced Therapies, March 2021 Meeting, EMA/CAT/184358/2021; European Medicines Agency: Amsterdam, The Netherlands.
- Fürst-Wilmes, M.; Respondek, V.; Lilienthal, N.; Brake, B.; Düchting, A. Bacteriophages as medicinal products—a regulatory perspective—Bakteriophagen als Arzneimittel—eine regulatorische Perspektive. PHARMAKON 2021, 9, 461–468. [Google Scholar] [CrossRef]
- European Medicines Agency. Workshop on the Therapeutic Use of Bacteriophages—Summary, 2 July 2015, EMA/389257/2015. Available online: https://www.ema.europa.eu/en/events/workshop-therapeutic-use-bacteriophages (accessed on 19 February 2024).
- European Medicines Agency. ICH Topic Q 5 D, Quality of Biotechnological Products: Derivation and Characterisation of Cell Substrates Used for Production of Biotechnological/Biological Products, March 1998, CPMP/ICH/294/95; European Medicines Agency: Amsterdam, The Netherlands.
- European Commission. Guidelines of 22.11.2017 Good Manufacturing Practice for Advanced Therapy Medicinal Products; C(2017) 7694 Final; European Commission: Brussels, Belgium.
- Mahalatchimy, A. Regulating Medicines in the European Union. In The Oxford Handbook of Comparative Health Law; Orentlicher, D., Hervey, T.K., Eds.; Oxford University Press: New York, NY, USA, 2022; pp. 721–754. ISBN 0190846755. [Google Scholar]
- Court of Justice of the European Union. Judgment, 16.07.2015, Joined Cases C 544/13 and C 545/13, margin 50.
- Court of Justice of the European Union. Judgment, 26.10.2016, C-276/15, margin 31.
- Fauconnier, A. Guidelines for Bacteriophage Product Certification. Methods Mol. Biol. 2018, 1693, 253–268. [Google Scholar] [CrossRef] [PubMed]
- De Vos, D.; Verbeken, G.; Quintens, J.; Pirnay, J.-P. Phage Therapy in Europe: Regulatory and Intellectual Property Protection Issues. In Phage Therapy: A Practical Approach, 1st ed.; Górski, A., Międzybrodzki, R., Borysowski, J., Eds.; Springer: Cham, Switzerland, 2019; pp. 363–377. ISBN 978-3-030-26735-3. [Google Scholar]
- Fauconnier, A. Phage Therapy Regulation: From Night to Dawn. Viruses 2019, 11, 352. [Google Scholar] [CrossRef] [PubMed]
- Council of Europe—Committe of Ministers. Resolution CM/Res(2016)1 on quality and safety assurance requirements for medicinal products prepared in pharmacies for the special needs of patients 2016.
- Council of Europe—European Directorate for the Quality of Medicines & HealthCare. Press release, 2 July 2021, Strasbourg, France, Outcome of the 170th session of the European Pharmacopoeia Commission, June 2021.
- McCallin, S.; Sacher, J.C.; Zheng, J.; Chan, B.K. Current State of Compassionate Phage Therapy. Viruses 2019, 11, 343. [Google Scholar] [CrossRef] [PubMed]
- Abdelkader, K.; Gerstmans, H.; Saafan, A.; Dishisha, T.; Briers, Y. The Preclinical and Clinical Progress of Bacteriophages and Their Lytic Enzymes: The Parts are Easier than the Whole. Viruses 2019, 11, 96. [Google Scholar] [CrossRef]
- Sybesma, W.; Rohde, C.; Bardy, P.; Pirnay, J.-P.; Cooper, I.; Caplin, J.; Chanishvili, N.; Coffey, A.; De Vos, D.; Scholz, A.H.; et al. Silk Route to the Acceptance and Re-Implementation of Bacteriophage Therapy-Part II. Antibiotics 2018, 7, 35. [Google Scholar] [CrossRef]
- European Medicines Agency. Guideline on Quality, Safety and Efficacy of Veterinary Medicinal Products Specifically Designed for Phage Therapy, 13 October 2023, EMA/CVMP/NTWP/32862/2022; European Medicines Agency: Amsterdam, The Netherlands, 2022.
- Costa, M.J.; Pastrana, L.M.; Teixeira, J.A.; Sillankorva, S.M.; Cerqueira, M.A. Bacteriophage Delivery Systems for Food Applications: Opportunities and Perspectives. Viruses 2023, 15, 1271. [Google Scholar] [CrossRef]
- Andreoletti, O.; Budka, H.; Buncic, S.; Pierre Colin, J.D.; Collins, A.D. The use and mode of action of bacteriophages in food production—Endorsed for public consultation 22 January 2009—Public consultation 30 January—6 March 2009. EFSA J. 2009, 7, 1076. [Google Scholar] [CrossRef]
- European Commission. Proposal for a Regulation of the European Parliament and of the Council Laying Down Union Procedures for the Authorisation and Supervision of Medicinal Products for Human Use and Establishing Rules Governing the European Medicines Agency, Amending Regulation (EC) No 1394/2007 and Regulation (EU) No 536/2014 and Repealing Regulation (EC) No 726/2004, Regulation (EC) No 141/2000 and Regulation (EC) No 1901/2006; Brussels, 26.4.2023, COM(2023) 193 Final, 2023/0131 (COD); European Commission: Brussels, Belgium, 2023.
Technical/Scientific Classification | Legal Classification |
---|---|
Phages wild type, genetically modified, mutated, etc. | pharmaceutical substances, Art. 1(3) Directive 2001/83/EC see Section 4.1 active substance, Art. 1(3a) Directive 2001/83/EC see Section 4.2 |
Pharmacologically inert auxiliary substances added to phages to form ready-to-use phage-based therapeutic | excipient, Art. 1(3b) Directive 2001/83/EC see Section 4.2 |
Instrument, apparatus, article, etc., used for the application of phage therapeutics | medical devices Art. 2 Regulation (EU) No. 2017/745 see Section 4.2 and Section 4.8 |
Therapeutic (=active substance + excipient) containing wild type phages | simple medicinal product, Art. 1(2) Directive 2001/83/EC see Section 4.12 |
Therapeutic containing “trained” phages | simple medicinal product, Art. 1(2) Directive 2001/83/EC see Section 4.9.3 |
Therapeutic containing mutated phages (regardless of method used) | simple medicinal product, Art. 1(2) Directive 2001/83/EC see Section 4.9.2 |
Therapeutic containing genetically recombinant phages | gene therapy medicinal product, Annex I, Part IV, 2.1(1st sentence) Directive 2001/83/EC see Section 4.10 |
Genetically modified phages for vaccination by phage display | immunological medicinal product, Art. 1(4) Directive 2001/83/EC, not gene therapy medicinal product, Annex I, Part IV, 2.1(2nd sentence) Directive 2001/83/EC see Section 4.6 and Section 4.9.1 |
Industrial Manufacturer Pre-Manufactured and Prepared on Demand See Section 5.3 and Section 5.6 | (Hospital) Pharmacy Prepared on Demand Magistral Formula See Section 5.4 | Physician Made and Administered Prepared on Demand See Section 5.5 | |
---|---|---|---|
Phage amplification (WT, training, Recombinant) see Section 5.2 | Art. 46(f) Directive 2001/83/EC Art. 46b Directive 2001/83/EC GMP standard | Directive 2001/83/EC (n/a), Art. 3(1), therefore, no EU legal requirement for manufacturing licence or GMP standard. Thus, the respective provisions in the individual EU member states apply. | Directive 2001/83/EC (n/a), Art. 2(1), not intended to be placed on the market Regulation (EC) 726/2004 (n/a), Art. 3 not intended to be placed on the market merely EU Member State law, check whether a national authorisation is required. |
Preparation medicinal product (WTP, training, Recombinant) | mandatory manufacturing license, Art. 40(1), 46(f) Directive 2001/83/EC GMP standard | ||
WTP medicinal product placing on the market | MA by EU Member State law (-) mandatory EU centralised MA Art. 3(1) Regulation (EC) 726/2004 (?) optional EU centralised MA Art. 3(2) Regulation (EC) 726/2004 | (-) EU MA Technically speaking, the magistral formulas are placed on the market, but no MA is required under EU law, because according to Art. 6 of Directive 2001/83/EC, only medicinal products that fall within the scope of this Directive require MA. However, according to Art. 3(1) of Directive 2001/83/EC, magistral formulas are excluded from the Directive. Thus, provisions of the individual EU member states apply. see Section 5.4.3 (?) MA by EU Member State law, check whether a national authorisation is required. | |
Recombinant phages (=GTMP) placing on the market | pre-manufactured mandatory EU centralised MA Art. 3(1) Regulation (EC) 726/2004 Prepared on demand hospital exemption (=MA by EU Member State law) Art. 28 Regulation (EC) 1394/2007, Art. 3(7) Directive 2001/83/EC | ||
Legal consequences and effects see Section 9 | Harmonised EU-wide regulation | No EU harmonised regulation | no EU harmonised regulation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faltus, T. The Medicinal Phage—Regulatory Roadmap for Phage Therapy under EU Pharmaceutical Legislation. Viruses 2024, 16, 443. https://doi.org/10.3390/v16030443
Faltus T. The Medicinal Phage—Regulatory Roadmap for Phage Therapy under EU Pharmaceutical Legislation. Viruses. 2024; 16(3):443. https://doi.org/10.3390/v16030443
Chicago/Turabian StyleFaltus, Timo. 2024. "The Medicinal Phage—Regulatory Roadmap for Phage Therapy under EU Pharmaceutical Legislation" Viruses 16, no. 3: 443. https://doi.org/10.3390/v16030443
APA StyleFaltus, T. (2024). The Medicinal Phage—Regulatory Roadmap for Phage Therapy under EU Pharmaceutical Legislation. Viruses, 16(3), 443. https://doi.org/10.3390/v16030443