RNA Structural Requirements for Nucleocapsid Protein-Mediated Extended Dimer Formation
Abstract
1. Introduction
2. Materials and Methods
2.1. Protein Preparation
2.2. Oligonucleotides
2.3. Construction of Plasmids
2.4. Synthesis, Labeling, and Purification of L RNAs
2.5. RNA Dimerization Assay
2.6. Analysis of the Thermal Stability of the LdLB Dimer
3. Results
3.1. Design and Analysis of Mutant RNAs
3.2. Role of Loop B in NCp12-Mediated RNA Dimerization
3.3. Role of Loop A and the G Bulge in NCp12-Mediated RNA Dimerization
3.4. Effect of the Length of Stem C on NCp12-Mediated RNA Dimerization
3.5. Effects of NCp7 and NCp10 on L3 RNA Dimerization
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dubois, N.; Marquet, R.; Paillart, J.-C.; Bernacchi, S. Retroviral RNA Dimerization: From Structure to Functions. Front. Microbiol. 2018, 9, 527. [Google Scholar] [CrossRef] [PubMed]
- Onafuwa-Nuga, A.; Telesnitsky, A. The Remarkable Frequency of Human Immunodeficiency Virus Type 1 Genetic Recombination. Microbiol. Mol. Biol. Rev. 2009, 73, 451–480. [Google Scholar] [CrossRef] [PubMed]
- Pornillos, O.; Ganser-Pornillos, B.K. Maturation of Retroviruses. Curr. Opin. Virol. 2019, 36, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Stoltzfus, C.M.; Snyder, P.N. Structure of B77 Sarcoma Virus RNA: Stabilization of RNA after Packaging. J. Virol. 1975, 16, 1161–1170. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Rein, A. Maturation of Dimeric Viral RNA of Moloney Murine Leukemia Virus. J. Virol. 1993, 67, 5443–5449. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Gorelick, R.J.; Rein, A. Characterization of Human Immunodeficiency Virus Type 1 Dimeric RNA from Wild-Type and Protease-Defective Virions. J. Virol. 1994, 68, 5013–5018. [Google Scholar] [CrossRef] [PubMed]
- Stewart, L.; Schatz, G.; Vogt, V.M. Properties of Avian Retrovirus Particles Defective in Viral Protease. J. Virol. 1990, 64, 5076–5092. [Google Scholar] [CrossRef] [PubMed]
- Shehu-Xhilaga, M.; Kraeusslich, H.G.; Pettit, S.; Swanstrom, R.; Lee, J.Y.; Marshall, J.A.; Crowe, S.M.; Mak, J. Proteolytic Processing of the P2/Nucleocapsid Cleavage Site Is Critical for Human Immunodeficiency Virus Type 1 RNA Dimer Maturation. J. Virol. 2001, 75, 9156–9164. [Google Scholar] [CrossRef] [PubMed]
- Ohishi, M.; Nakano, T.; Sakuragi, S.; Shioda, T.; Sano, K.; Sakuragi, J. The Relationship between HIV-1 Genome RNA Dimerization, Virion Maturation and Infectivity. Nucleic Acids Res. 2011, 39, 3404–3417. [Google Scholar] [CrossRef] [PubMed]
- Méric, C.; Spahr, P.F. Rous Sarcoma Virus Nucleic Acid-Binding Protein P12 Is Necessary for Viral 70S RNA Dimer Formation and Packaging. J. Virol. 1986, 60, 450–459. [Google Scholar] [CrossRef]
- Méric, C.; Gouilloud, E.; Spahr, P.F. Mutations in Rous Sarcoma Virus Nucleocapsid Protein P12 (NC): Deletions of Cys-His Boxes. J. Virol. 1988, 62, 3328–3333. [Google Scholar] [CrossRef] [PubMed]
- Bieth, E.; Gabus, C.; Darlix, J.L. A Study of the Dimer Formation of Rous Sarcoma Virus RNA and of Its Effect on Viral Protein Synthesis in Vitro. Nucleic Acids Res. 1990, 18, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Darlix, J.L.; Gabus, C.; Nugeyre, M.T.; Clavel, F.; Barré-Sinoussi, F. Cis Elements and Trans-Acting Factors Involved in the RNA Dimerization of the Human Immunodeficiency Virus HIV-1. J. Mol. Biol. 1990, 216, 689–699. [Google Scholar] [CrossRef]
- Prats, A.C.; Roy, C.; Wang, P.A.; Erard, M.; Housset, V.; Gabus, C.; Paoletti, C.; Darlix, J.L. Cis Elements and Trans-Acting Factors Involved in Dimer Formation of Murine Leukemia Virus RNA. J. Virol. 1990, 64, 774–783. [Google Scholar] [CrossRef] [PubMed]
- Laughrea, M.; Jetté, L. A 19-Nucleotide Sequence Upstream of the 5’ Major Splice Donor Is Part of the Dimerization Domain of Human Immunodeficiency Virus 1 Genomic RNA. Biochemistry 1994, 33, 13464–13474. [Google Scholar] [CrossRef] [PubMed]
- Muriaux, D.; Fossé, P.; Paoletti, J. A Kissing Complex Together with a Stable Dimer Is Involved in the HIV-1Lai RNA Dimerization Process in Vitro. Biochemistry 1996, 35, 5075–5082. [Google Scholar] [CrossRef] [PubMed]
- Skripkin, E.; Paillart, J.C.; Marquet, R.; Ehresmann, B.; Ehresmann, C. Identification of the Primary Site of the Human Immunodeficiency Virus Type 1 RNA Dimerization in Vitro. Proc. Natl. Acad. Sci. USA 1994, 91, 4945–4949. [Google Scholar] [CrossRef] [PubMed]
- Laughrea, M.; Jetté, L. Kissing-Loop Model of HIV-1 Genome Dimerization: HIV-1 RNAs Can Assume Alternative Dimeric Forms, and All Sequences Upstream or Downstream of Hairpin 248-271 Are Dispensable for Dimer Formation. Biochemistry 1996, 35, 1589–1598. [Google Scholar] [CrossRef]
- Paillart, J.C.; Skripkin, E.; Ehresmann, B.; Ehresmann, C.; Marquet, R. A Loop-Loop “Kissing” Complex Is the Essential Part of the Dimer Linkage of Genomic HIV-1 RNA. Proc. Natl. Acad. Sci. USA 1996, 93, 5572–5577. [Google Scholar] [CrossRef]
- Muriaux, D.; De Rocquigny, H.; Roques, B.P.; Paoletti, J. NCp7 Activates HIV-1Lai RNA Dimerization by Converting a Transient Loop-Loop Complex into a Stable Dimer. J. Biol. Chem. 1996, 271, 33686–33692. [Google Scholar] [CrossRef]
- Andersen, E.S.; Contera, S.A.; Knudsen, B.; Damgaard, C.K.; Besenbacher, F.; Kjems, J. Role of the Trans-Activation Response Element in Dimerization of HIV-1 RNA. J. Biol. Chem. 2004, 279, 22243–22249. [Google Scholar] [CrossRef] [PubMed]
- Windbichler, N.; Werner, M.; Schroeder, R. Kissing Complex-Mediated Dimerisation of HIV-1 RNA: Coupling Extended Duplex Formation to Ribozyme Cleavage. Nucleic Acids Res. 2003, 31, 6419–6427. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ulyanov, N.B.; Mujeeb, A.; Du, Z.; Tonelli, M.; Parslow, T.G.; James, T.L. NMR Structure of the Full-Length Linear Dimer of Stem-Loop-1 RNA in the HIV-1 Dimer Initiation Site. J. Biol. Chem. 2006, 281, 16168–16177. [Google Scholar] [CrossRef] [PubMed]
- Keane, S.C.; Van, V.; Frank, H.M.; Sciandra, C.A.; McCowin, S.; Santos, J.; Heng, X.; Summers, M.F. NMR Detection of Intermolecular Interaction Sites in the Dimeric 5’-Leader of the HIV-1 Genome. Proc. Natl. Acad. Sci. USA 2016, 113, 13033–13038. [Google Scholar] [CrossRef] [PubMed]
- Blakemore, R.J.; Burnett, C.; Swanson, C.; Kharytonchyk, S.; Telesnitsky, A.; Munro, J.B. Stability and Conformation of the Dimeric HIV-1 Genomic RNA 5’UTR. Biophys. J. 2021, 120, 4874–4890. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.I.; Baba, S.; Chattopadhyay, P.; Koyanagi, Y.; Yamamoto, N.; Takaku, H.; Kawai, G. Structural Requirement for the Two-Step Dimerization of Human Immunodeficiency Virus Type 1 Genome. RNA 2000, 6, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Mujeeb, A.; Ulyanov, N.B.; Georgantis, S.; Smirnov, I.; Chung, J.; Parslow, T.G.; James, T.L. Nucleocapsid Protein-Mediated Maturation of Dimer Initiation Complex of Full-Length SL1 Stemloop of HIV-1: Sequence Effects and Mechanism of RNA Refolding. Nucleic Acids Res. 2007, 35, 2026–2034. [Google Scholar] [CrossRef] [PubMed]
- Fossé, P.; Motté, N.; Roumier, A.; Gabus, C.; Muriaux, D.; Darlix, J.L.; Paoletti, J. A Short Autocomplementary Sequence Plays an Essential Role in Avian Sarcoma-Leukosis Virus RNA Dimerization. Biochemistry 1996, 35, 16601–16609. [Google Scholar] [CrossRef] [PubMed]
- Polge, E.; Darlix, J.L.; Paoletti, J.; Fossé, P. Characterization of Loose and Tight Dimer Forms of Avian Leukosis Virus RNA. J. Mol. Biol. 2000, 300, 41–56. [Google Scholar] [CrossRef]
- Hackett, P.B.; Dalton, M.W.; Johnson, D.P.; Petersen, R.B. Phylogenetic and Physical Analysis of the 5’ Leader RNA Sequences of Avian Retroviruses. Nucleic Acids Res. 1991, 19, 6929–6934. [Google Scholar] [CrossRef]
- Banks, J.D.; Linial, M.L. Secondary Structure Analysis of a Minimal Avian Leukosis-Sarcoma Virus Packaging Signal. J. Virol. 2000, 74, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Maldonado, R.K.; Rye-McCurdy, T.; Binkley, C.; Bah, A.; Chen, E.C.; Rice, B.L.; Parent, L.J.; Musier-Forsyth, K. Rous Sarcoma Virus Genomic RNA Dimerization Capability In Vitro Is Not a Prerequisite for Viral Infectivity. Viruses 2020, 12, 568. [Google Scholar] [CrossRef] [PubMed]
- Doria-Rose, N.A.; Vogt, V.M. In Vivo Selection of Rous Sarcoma Virus Mutants with Randomized Sequences in the Packaging Signal. J. Virol. 1998, 72, 8073–8082. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.C.; Maldonado, R.J.K.; Parent, L.J. Visualizing Rous Sarcoma Virus Genomic RNA Dimerization in the Nucleus, Cytoplasm, and at the Plasma Membrane. Viruses 2021, 13, 903. [Google Scholar] [CrossRef] [PubMed]
- Ben Ali, M.; Chaminade, F.; Kanevsky, I.; Ennifar, E.; Josset, L.; Ficheux, D.; Darlix, J.-L.; Fossé, P. Structural Requirements for Nucleocapsid Protein-Mediated Dimerization of Avian Leukosis Virus RNA. J. Mol. Biol. 2007, 372, 1082–1096. [Google Scholar] [CrossRef]
- Cornille, F.; Mely, Y.; Ficheux, D.; Savignol, I.; Gerard, D.; Darlix, J.L.; Fournie-Zaluski, M.C.; Roques, B.P. Solid Phase Synthesis of the Retroviral Nucleocapsid Protein NCp10 of Moloney Murine Leukaemia Virus and Related “Zinc-Fingers” in Free SH Forms. Influence of Zinc Chelation on Structural and Biochemical Properties. Int. J. Pept. Protein Res. 1990, 36, 551–558. [Google Scholar] [CrossRef] [PubMed]
- De Rocquigny, H.; Ficheux, D.; Gabus, C.; Fournié-Zaluski, M.C.; Darlix, J.L.; Roques, B.P. First Large Scale Chemical Synthesis of the 72 Amino Acid HIV-1 Nucleocapsid Protein NCp7 in an Active Form. Biochem. Biophys. Res. Commun. 1991, 180, 1010–1018. [Google Scholar] [CrossRef]
- Chen, Y.; Maskri, O.; Chaminade, F.; René, B.; Benkaroun, J.; Godet, J.; Mély, Y.; Mauffret, O.; Fossé, P. Structural Insights into the HIV-1 Minus-Strand Strong-Stop DNA. J. Biol. Chem. 2016, 291, 3468–3482. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, D.E.; Tizard, R.; Gilbert, W. Nucleotide Sequence of Rous Sarcoma Virus. Cell 1983, 32, 853–869. [Google Scholar] [CrossRef]
- Zuker, M. Mfold Web Server for Nucleic Acid Folding and Hybridization Prediction. Nucleic Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef]
- Stewart-Maynard, K.M.; Cruceanu, M.; Wang, F.; Vo, M.-N.; Gorelick, R.J.; Williams, M.C.; Rouzina, I.; Musier-Forsyth, K. Retroviral Nucleocapsid Proteins Display Nonequivalent Levels of Nucleic Acid Chaperone Activity. J. Virol. 2008, 82, 10129–10142. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.J.; Rein, A.; Fivash, M.; Urbaneja, M.A.; Casas-Finet, J.R.; Medaglia, M.; Henderson, L.E. Sequence-Specific Binding of Human Immunodeficiency Virus Type 1 Nucleocapsid Protein to Short Oligonucleotides. J. Virol. 1998, 72, 1902–1909. [Google Scholar] [CrossRef] [PubMed]
- Urbaneja, M.A.; McGrath, C.F.; Kane, B.P.; Henderson, L.E.; Casas-Finet, J.R. Nucleic Acid Binding Properties of the Simian Immunodeficiency Virus Nucleocapsid Protein NCp8. J. Biol. Chem. 2000, 275, 10394–10404. [Google Scholar] [CrossRef] [PubMed]
- Morcock, D.R.; Katakam, S.; Kane, B.P.; Casas-Finet, J.R. Fluorescence and Nucleic Acid Binding Properties of Bovine Leukemia Virus Nucleocapsid Protein. Biophys. Chem. 2002, 97, 203–212. [Google Scholar] [CrossRef]
- Dey, A.; York, D.; Smalls-Mantey, A.; Summers, M.F. Composition and Sequence-Dependent Binding of RNA to the Nucleocapsid Protein of Moloney Murine Leukemia Virus. Biochemistry 2005, 44, 3735–3744. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Bean, R.L.; Vogt, V.M.; Summers, M. Solution Structure of the Rous Sarcoma Virus Nucleocapsid Protein: MuPsi RNA Packaging Signal Complex. J. Mol. Biol. 2007, 365, 453–467. [Google Scholar] [CrossRef] [PubMed]
- Beltz, H.; Azoulay, J.; Bernacchi, S.; Clamme, J.-P.; Ficheux, D.; Roques, B.; Darlix, J.-L.; Mély, Y. Impact of the Terminal Bulges of HIV-1 cTAR DNA on Its Stability and the Destabilizing Activity of the Nucleocapsid Protein NCp7. J. Mol. Biol. 2003, 328, 95–108. [Google Scholar] [CrossRef]
- Cosa, G.; Harbron, E.J.; Zeng, Y.; Liu, H.-W.; O’Connor, D.B.; Eta-Hosokawa, C.; Musier-Forsyth, K.; Barbara, P.F. Secondary Structure and Secondary Structure Dynamics of DNA Hairpins Complexed with HIV-1 NC Protein. Biophys. J. 2004, 87, 2759–2767. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Marquet, R.; Isel, C.; Ehresmann, C.; Ehresmann, B. tRNAs as Primer of Reverse Transcriptases. Biochimie 1995, 77, 113–124. [Google Scholar] [CrossRef]
- Prats, A.C.; Sarih, L.; Gabus, C.; Litvak, S.; Keith, G.; Darlix, J.L. Small Finger Protein of Avian and Murine Retroviruses Has Nucleic Acid Annealing Activity and Positions the Replication Primer tRNA onto Genomic RNA. EMBO J. 1988, 7, 1777–1783. [Google Scholar] [CrossRef] [PubMed]
- Barat, C.; Lullien, V.; Schatz, O.; Keith, G.; Nugeyre, M.T.; Grüninger-Leitch, F.; Barré-Sinoussi, F.; LeGrice, S.F.; Darlix, J.L. HIV-1 Reverse Transcriptase Specifically Interacts with the Anticodon Domain of Its Cognate Primer tRNA. EMBO J. 1989, 8, 3279–3285. [Google Scholar] [CrossRef] [PubMed]
- Seif, E.; Niu, M.; Kleiman, L. In Virio SHAPE Analysis of tRNA(Lys3) Annealing to HIV-1 Genomic RNA in Wild Type and Protease-Deficient Virus. Retrovirology 2015, 12, 40. [Google Scholar] [CrossRef] [PubMed]
- Keith, G.; Heyman, T. Heterogeneities in Vertebrate tRNAs(Trp) Avian Retroviruses Package Only as a Primer the tRNA(Trp) Lacking Modified M2G in Position 7. Nucleic Acids Res. 1990, 18, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Baudin, F.; Marquet, R.; Isel, C.; Darlix, J.L.; Ehresmann, B.; Ehresmann, C. Functional Sites in the 5’ Region of Human Immunodeficiency Virus Type 1 RNA Form Defined Structural Domains. J. Mol. Biol. 1993, 229, 382–397. [Google Scholar] [CrossRef] [PubMed]
- Mougel, M.; Tounekti, N.; Darlix, J.L.; Paoletti, J.; Ehresmann, B.; Ehresmann, C. Conformational Analysis of the 5’ Leader and the Gag Initiation Site of Mo-MuLV RNA and Allosteric Transitions Induced by Dimerization. Nucleic Acids Res. 1993, 21, 4677–4684. [Google Scholar] [CrossRef]
- Isel, C.; Ehresmann, C.; Keith, G.; Ehresmann, B.; Marquet, R. Initiation of Reverse Transcription of HIV-1: Secondary Structure of the HIV-1 RNA/tRNA(3Lys) (Template/Primer). J. Mol. Biol. 1995, 247, 236–250. [Google Scholar] [CrossRef]
- Fossé, P.; Mougel, M.; Keith, G.; Westhof, E.; Ehresmann, B.; Ehresmann, C. Modified Nucleotides of tRNAPro Restrict Interactions in the Binary Primer/Template Complex of M-MuLV. J. Mol. Biol. 1998, 275, 731–746. [Google Scholar] [CrossRef]
- Xing, L.; Liang, C.; Kleiman, L. Coordinate Roles of Gag and RNA Helicase A in Promoting the Annealing of tRNALys,3 to HIV-1 RNA. J. Virol. 2011, 85, 1847–1860. [Google Scholar] [CrossRef]
- Xing, L.; Niu, M.; Kleiman, L. In Vitro and in Vivo Analysis of the Interaction between RNA Helicase A and HIV-1 RNA. J. Virol. 2012, 86, 13272–13280. [Google Scholar] [CrossRef]
- Gilboa, E.; Mitra, S.W.; Goff, S.; Baltimore, D. A Detailed Model of Reverse Transcription and Tests of Crucial Aspects. Cell 1979, 18, 93–100. [Google Scholar] [CrossRef]
- René, B.; Mauffret, O.; Fossé, P. Retroviral Nucleocapsid Proteins and DNA Strand Transfers. Biochim. Open 2018, 7, 10–25. [Google Scholar] [CrossRef] [PubMed]
- Watts, J.M.; Dang, K.K.; Gorelick, R.J.; Leonard, C.W.; Bess, J.W.; Swanstrom, R.; Burch, C.L.; Weeks, K.M. Architecture and Secondary Structure of an Entire HIV-1 RNA Genome. Nature 2009, 460, 711–716. [Google Scholar] [CrossRef] [PubMed]
- McCauley, M.J.; Rouzina, I.; Manthei, K.A.; Gorelick, R.J.; Musier-Forsyth, K.; Williams, M.C. Targeted Binding of Nucleocapsid Protein Transforms the Folding Landscape of HIV-1 TAR RNA. Proc. Natl. Acad. Sci. USA 2015, 112, 13555–13560. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaminade, F.; Darlix, J.-L.; Fossé, P. RNA Structural Requirements for Nucleocapsid Protein-Mediated Extended Dimer Formation. Viruses 2022, 14, 606. https://doi.org/10.3390/v14030606
Chaminade F, Darlix J-L, Fossé P. RNA Structural Requirements for Nucleocapsid Protein-Mediated Extended Dimer Formation. Viruses. 2022; 14(3):606. https://doi.org/10.3390/v14030606
Chicago/Turabian StyleChaminade, Françoise, Jean-Luc Darlix, and Philippe Fossé. 2022. "RNA Structural Requirements for Nucleocapsid Protein-Mediated Extended Dimer Formation" Viruses 14, no. 3: 606. https://doi.org/10.3390/v14030606
APA StyleChaminade, F., Darlix, J.-L., & Fossé, P. (2022). RNA Structural Requirements for Nucleocapsid Protein-Mediated Extended Dimer Formation. Viruses, 14(3), 606. https://doi.org/10.3390/v14030606