Selection of Primer–Template Sequences That Bind with Enhanced Affinity to Vaccinia Virus E9 DNA Polymerase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. End-Labeling of Oligonucleotides with PNK
2.2.2. Selection of Primer–Template Sequences That Bind with Enhanced Affinity to E9 Using PT SELEX
2.2.3. Determination of Apparent Equilibrium Dissociation Constant (KD,app) between E9 and P/T Sequences Using Nitrocellulose Filter Binding Assays
2.2.4. Dissociation Rate Constant (koff) and Half-Life (t1/2) Determinations
2.2.5. DNA Loop-Back Extension Assays
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Jong, R.N.; van der Vliet, P.C.; Brenkman, A.B. Adenovirus DNA Replication: Protein Priming, Jumping Back and the Role of the DNA Binding Protein DBP. Curr. Top. Microbiol. Immunol. 2003, 272, 187–211. [Google Scholar] [CrossRef] [PubMed]
- DeStefano, J.J. Selection of primer-template sequences that bind human immunodeficiency virus reverse transcriptase with high affinity. Nucleic Acids Res. 2006, 34, 130–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, G.R.; Dash, C.; Le Grice, S.F.J.; DeStefano, J.J. Viral Reverse Transcriptases Show Selective High Affinity Binding to DNA-DNA Primer-Templates that Resemble the Polypurine Tract. PLoS ONE 2012, 7, e41712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Telesnitsky, A.; Goff, S.P. Reverse Transcriptase and the Generation of Retroviral DNA. In Retroviruses; Coffin, J.M., Hughes, S.H., Varmus, H.E., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1997; pp. 121–160. [Google Scholar]
- Post, K.; Kankia, B.; Gopalakrishnan, S.; Yang, V.; Cramer, E.; Saladores, P.; Gorelick, R.J.; Guo, J.; Musier-Forsyth, K.; Levin, J.G. Fidelity of plus-strand priming requires the nucleic acid chaperone activity of HIV-1 nucleocapsid protein. Nucleic Acids Res. 2009, 37, 1755–1766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacob, D.T.; DeStefano, J.J. A new role for HIV nucleocapsid protein in modulating the specificity of plus strand priming. Virology 2008, 378, 385–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenstermacher, K.J.; Achuthan, V.; Schneider, T.; DeStefano, J.J. An Evolutionary/Biochemical Connection between Promoter- and Primer-Dependent Polymerases Revealed by Systematic Evolution of Ligands by Exponential Enrichment. J. Bacteriol. 2018, 200, 7. [Google Scholar] [CrossRef] [Green Version]
- Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef]
- Tuerk, C.; Gold, L. Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef]
- Challberg, M.; Englund, P. Purification and properties of the deoxyribonucleic acid polymerase induced by vaccinia virus. J. Biol. Chem. 1979, 254, 7812–7819. [Google Scholar] [CrossRef]
- Jones, E.V.; Moss, B. Mapping of the vaccinia virus DNA polymerase gene by marker rescue and cell-free translation of selected RNA. J. Virol. 1984, 49, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Earl, P.L.; Jones, E.V.; Moss, B. Homology between DNA polymerases of poxviruses, herpesviruses, and adenoviruses: Nucleotide sequence of the vaccinia virus DNA polymerase gene. Proc. Natl. Acad. Sci. USA 1986, 83, 3659–3663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Traktman, P.; Sridhar, P.; Condit, R.C.; E Roberts, B. Transcriptional mapping of the DNA polymerase gene of vaccinia virus. J. Virol. 1984, 49, 125–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czarnecki, M.W.; Traktman, P. The vaccinia virus DNA polymerase and its processivity factor. Virus Res. 2017, 234, 193–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, W.F.; Klemperer, N.; Traktman, P. Characterization of a Processive Form of the Vaccinia Virus DNA Polymerase. Virology 1997, 234, 168–175. [Google Scholar] [CrossRef]
- McDonald, W.F.; Traktman, P. Vaccinia virus DNA polymerase. In vitro analysis of parameters affecting processivity. J. Biol. Chem. 1994, 269, 31190–31197. [Google Scholar] [CrossRef]
- Tarbouriech, N.; Ducournau, C.; Hutin, S.; Mas, P.J.; Man, P.; Forest, E.; Hart, D.J.; Peyrefitte, C.N.; Burmeister, W.P.; Iseni, F. The vaccinia virus DNA polymerase structure provides insights into the mode of processivity factor binding. Nat. Commun. 2017, 8, 1455. [Google Scholar] [CrossRef] [Green Version]
- Sambrook, J.; Russell, D.W. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2001. [Google Scholar]
- Gopalakrishnan, V.; Peliska, J.A.; Benkovic, S.J. Human immunodeficiency virus type 1 reverse transcriptase: Spatial and temporal relationship between the polymerase and RNase H activities. Proc. Natl. Acad. Sci. USA 1992, 89, 10763–10767. [Google Scholar] [CrossRef] [Green Version]
- Reddy, M.; Weitzel, S.; von Hippel, P. Processive proofreading is intrinsic to T4 DNA polymerase. J. Biol. Chem. 1992, 267, 14157–14166. [Google Scholar] [CrossRef]
- DeStefano, J.J.; Nair, G.R. Novel Aptamer Inhibitors of Human Immunodeficiency Virus Reverse Transcriptase. Oligonucleotides 2008, 18, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Mantovani, R. A survey of 178 NF-Y binding CCAAT boxes. Nucleic Acids Res. 1998, 26, 1135–1143. [Google Scholar] [CrossRef] [Green Version]
- Seet, B.T.; Johnston, J.B.; Brunetti, C.R.; Barrett, J.W.; Everett, H.; Cameron, C.; Sypula, J.; Nazarian, S.H.; Lucas, A.; McFadden, G. Poxviruses and Immune Evasion. Ann. Rev. Immunol. 2003, 21, 377–423. [Google Scholar] [CrossRef] [PubMed]
- Senkevich, T.G.; Yutin, N.; Wolf, Y.I.; Koonin, E.V.; Moss, B. Ancient Gene Capture and Recent Gene Loss Shape the Evolution of Orthopoxvirus-Host Interaction Genes. Mbio 2021, 12, e0149521. [Google Scholar] [CrossRef] [PubMed]
- McDougal, V.V.; Guarino, L.A. Autographa californica Nuclear Polyhedrosis Virus DNA Polymerase: Measurements of Processivity and Strand Displacement. J. Virol. 1999, 73, 4908–4918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuske, S.; Zheng, J.; Olson, E.D.; Ruiz, F.X.; Pascal, B.D.; Hoang, A.; Bauman, J.D.; Das, K.; DeStefano, J.J.; Musier-Forsyth, K.; et al. Integrative structural biology studies of HIV-1 reverse transcriptase binding to a high-affinity DNA aptamer. Curr. Res. Struct. Biol. 2020, 2, 116–129. [Google Scholar] [CrossRef]
- Olimpo, J.T.; DeStefano, J.J. Duplex structural differences and not 2’-hydroxyls explain the more stable binding of HIV-reverse transcriptase to RNA-DNA versus DNA-DNA. Nucleic Acids Res. 2010, 38, 4426–4435. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.T.; Tuske, S.; Das, K.; DeStefano, J.J.; Arnold, E. Structure of HIV-1 reverse transcriptase bound to a novel 38-mer hairpin template-primer DNA aptamer. Protein Sci. 2016, 25, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Das, K.; Balzarini, J.; Miller, M.T.; Maguire, A.; DeStefano, J.J.; Arnold, E. Conformational States of HIV-1 Reverse Transcriptase for Nucleotide Incorporation vs Pyrophosphorolysis—Binding of Foscarnet. ACS Chem. Biol. 2016, 11, 2158–2164. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, F.X.; Hoang, A.; Das, K.; Arnold, E. Structural Basis of HIV-1 Inhibition by Nucleotide-Competing Reverse Transcriptase Inhibitor INDOPY-1. J. Med. Chem. 2019, 62, 9996–10002. [Google Scholar] [CrossRef]
- Yasutake, Y.; Hattori, S.-I.; Hayashi, H.; Matsuda, K.; Tamura, N.; Kohgo, S.; Maeda, K.; Mitsuya, H. HIV-1 with HBV-associated Q151M substitution in RT becomes highly susceptible to entecavir: Structural insights into HBV-RT inhibition by entecavir. Sci. Rep. 2018, 8, 1624. [Google Scholar] [CrossRef]
- Yasutake, Y.; Hattori, S.-I.; Tamura, N.; Matsuda, K.; Kohgo, S.; Maeda, K.; Mitsuya, H. Structural features in common of HBV and HIV-1 resistance against chirally-distinct nucleoside analogues entecavir and lamivudine. Sci. Rep. 2020, 10, 3021. [Google Scholar] [CrossRef] [Green Version]
Sequence Name 1 | KD,app (nM) 2 | koff (min−1) | t1/2 (min) 3 |
---|---|---|---|
Control 4 5′---ATCATGGTAGCGTCGATAATT-3′ 3′---TAGTACCATCGCAGCTATTAAGCGT-5′ | UTD 5 | ND 6 | ND |
E9-R5-3 5′---AGGCAGAGACGCCGTGACCTC-3′ 3′---TCCGTCTCTGCGGCACTGGAGGTCC-5′ | UTD | ND | ND |
E9-R5-4 5′---GTAATACCCCTAACCTACCAG-3′ 3′---CATTATGGGGATTGGATGGTCCCTC-5′ | UTD | ND | ND |
E9-R5-12 5′---CTGCCCATGGACACCCAACAG-3′ 3′---GACGGGTACCTGTGGGTTGTCCGTC-5′ | 93 ± 7 | 0.083 ± 0.019 | 8.6 ± 2.0 |
E9-R5-12 60 nt loop-back (see Figure 5) | ND | 0.094 ± 0.020 | 7.6 ± 1.8 |
E9-R5-12 50 nt loop-back (see Figure 5) | ND | 0.107 ± 0.039 | 7.1 ± 2.4 |
E9-R5-12 40 nt loop-back (see Figure 5) | ND | UTD | UTD |
E9-R5-12 gacta-1 7 5′---CTGCCCATGGACACCCGACTA-3′ 3′---GACGGGTACCTGTGGGCTGATCGTC-5′ | UTD | ND | ND |
E9-R5-12 gacta-2 5′---CTGCCCATGGAGACTAAACAG-3′ 3′---GACGGGTACCTCTGATTTGTCCGTC-5′ | UTD | ND | ND |
E9-R5-12 gacta-3 5′---CTGCCCGACTACACCCAACAG-3′ 3′---GACGGGCTGATGTGGGTTGTCCGTC-5′ | UTD | ND | ND |
E9-R5-12 gacta-4 5′---CGACTAATGGACACCCAACAG-3′ 3′---GCTGATTACCTGTGGGTTGTCCGTC-5′ | UTD | ND | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
DeStefano, J.J.; Iseni, F.; Tarbouriech, N. Selection of Primer–Template Sequences That Bind with Enhanced Affinity to Vaccinia Virus E9 DNA Polymerase. Viruses 2022, 14, 369. https://doi.org/10.3390/v14020369
DeStefano JJ, Iseni F, Tarbouriech N. Selection of Primer–Template Sequences That Bind with Enhanced Affinity to Vaccinia Virus E9 DNA Polymerase. Viruses. 2022; 14(2):369. https://doi.org/10.3390/v14020369
Chicago/Turabian StyleDeStefano, Jeffrey J., Frédéric Iseni, and Nicolas Tarbouriech. 2022. "Selection of Primer–Template Sequences That Bind with Enhanced Affinity to Vaccinia Virus E9 DNA Polymerase" Viruses 14, no. 2: 369. https://doi.org/10.3390/v14020369
APA StyleDeStefano, J. J., Iseni, F., & Tarbouriech, N. (2022). Selection of Primer–Template Sequences That Bind with Enhanced Affinity to Vaccinia Virus E9 DNA Polymerase. Viruses, 14(2), 369. https://doi.org/10.3390/v14020369