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Abstract: The two human tumor viruses, Epstein–Barr virus (EBV) and Kaposi sarcoma-associated 

herpesvirus (KSHV), have been mostly studied in isolation. Recent studies suggest that co-infection 

with both viruses as observed in one of their associated malignancies, namely primary effusion lym-

phoma (PEL), might also be required for KSHV persistence. In this review, we discuss how EBV and 

KSHV might support each other for persistence and lymphomagenesis. Moreover, we summarize 

what is known about their innate and adaptive immune control which both seem to be required to 

ensure asymptomatic persistent co-infection with these two human tumor viruses. A better under-

standing of this immune control might allow us to prepare for vaccination against EBV and KSHV 

in the future. 
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1. Introduction to EBV and KSHV 

The two human γ-herpesviruses, Epstein–Barr virus (EBV) and Kaposi sarcoma-as-

sociated herpesvirus (KSHV), are WHO class I carcinogens [1]. They are associated with 

lymphomas and carcinomas that fortunately only develop in a small percentage of per-

sistently EBV and KSHV infected individuals [2–5]. EBV persists in more than 95% of the 

adult human population and KSHV is most frequent in Sub-Saharan Africa with a sero-

prevalence of more than 50% in many countries but below 10% in Northern Europe and 

Northern America [4,6]. Both viruses are thought to be primarily transmitted via saliva 

exchange, and infect B cells in submucosal secondary lymphoid tissues, such as tonsils 

[6,7]. EBV might cross the mucosal epithelium via transcytosis [8,9]. EBV establishes latent 

antigen expression after infection that drives B cells into proliferation and rescues them 

from cell death. This leads to B cell immortalization, as can be observed in vitro during 

the generation of lymphoblastoid cell lines (LCLs) by EBV infection of primary human B 

cells [10]. The latency III program that is found in LCLs consists of six EBV nuclear anti-

gens (EBNA1, 2, 3A, 3B, 3C and -LP), two latent membrane proteins (LMP1 and 2), two 

small non-translated RNAs (EBER1 and 2) and more than 40 miRNAs. It can also be de-

tected in naïve tonsillar B cells of healthy virus carriers [11]. In germinal center B cells, 

latent EBV protein expression is reduced to EBNA1, LMP1 and LMP2. This latency II pro-

gram is thought to provide CD40 and B cell receptor (BCR)-like signaling to rescue in-

fected B cells from the germinal center reaction. This differentiation allows EBV to gain 

access to the memory B cell pool in which all latent EBV protein expression is turned off 

(latency 0) or EBNA1 is transiently expressed to maintain the viral DNA in homeostati-

cally proliferating memory B cells (latency I) [12,13]. From this reservoir of long-term per-

sistence, EBV reactivates into lytic replication and infectious viral particle production, 

most likely due to BCR stimulation-induced plasma cell differentiation [14]. Accordingly, 

the viral transcription factor BZLF1 that initiates lytic EBV replication in B cells is induced 
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by the plasma cell-associated transcription factors, BLIMP1 and XBP1 [15,16]. Basolateral 

infection of mucosal epithelial cells [8] might then allow for another round of lytic EBV 

replication as is pathologically observed during oral hairy leukoplakia [17] for efficient 

viral shedding into saliva and further transmission. Therefore, all latent EBV infection 

patterns that are found in B cell lymphomas, including latency I of Burkitt’s lymphoma, 

latency II of Hodgkin’s lymphoma and latency III that can be observed in some diffuse 

large B cell lymphomas (DLBCL), are already present in healthy EBV carriers. Immune 

suppression due to human immunodeficiency virus (HIV) co-infection or iatrogenic im-

mune suppression after transplantation allows these premalignant states to develop into 

the respective lymphomas. For KSHV, the sites of latent and lytic infection are much less 

well defined. However, due to the emergence of Kaposi sarcoma (KS), primary effusion 

lymphoma (PEL) and multicentric Castleman’s disease (MCD) during immune suppres-

sion, KSHV persists and is presumably immune controlled in endothelia and B cells from 

which Kaposi sarcoma and the KSHV-associated lymphomas emerge [4,5]. How the three 

KSHV latent gene products, viral FADD-like interleukin-1-β-converting enzyme inhibi-

tory protein (vFLIP), viral cyclin (vCyclin) and latent nuclear antigen (LANA), and its lytic 

gene products contribute to the non-pathogenic cellular reservoirs of persistent KSHV in-

fection remains to be defined. However, recent studies suggest that at least some of these 

benefit from co-infection by EBV for KSHV persistence. 

2. Persistence of KSHV in EBV Infected B Cells 

KSHV infection has been associated with primary effusion lymphomas (PELs) since 

1995, and KSHV detection has been an important part of the PEL diagnosis ever since 

[18,19]. Knockdown of LANA as well as vCyclin and vFLIP has led to growth inhibition 

and apoptosis in PEL cell lines, and leads to a reduction in KSHV genome levels [20]. 

Further, knockdown of the viral interferon regulatory factor 3 (vIRF3) has also been 

shown to reduce proliferation of PEL cells and increase apoptosis levels [21]. All this sup-

ports the association of PEL with KSHV infection. 

In addition to KSHV, about 90% of PELs show persistence of EBV [22–24]. Co-infec-

tion is frequently detected in established PEL cell lines, with both viral genomes main-

tained and independently replicated and partitioned to the daughter cells [22,25,26]. In 

vitro studies showed that KSHV alone can infect but not transform peripheral B cells and 

therefore cannot persist long term [27–29]. In vivo dual-infection studies in mice with re-

constituted human immune system components (humanized mice) have added evidence 

that co-infection with EBV increases the probability of KSHV persistence [30,31]. Co-in-

fection with EBV activates B cells and supports long-term KSHV infection and cell prolif-

eration through transformation depending on expression of at least one transforming EBV 

gene [25,27]. Persistence of KSHV is not dependent on EBV lytic gene expression, as KSHV 

can also persist in cells infected with an EBV BZLF1 knockout virus that lacks lytic gene 

expression in vitro and in vivo [30]. 

B cell transformation has been shown to be dependent on five viral latent antigens, 

namely EBNA2, EBNA-LP, EBNA3A, EBNA3C and LMP1. Proliferation of infected cells 

is initiated by EBNA2 through expression of cell cycle genes such as c-myc and cyclins D2 

and E [32,33]. EBNA-LP is reported to enhance this EBNA2-induced gene activation 

[34,35]. EBNA3A and EBNA3C block the DNA damage response; however, animal exper-

iments have shown that they are not necessary for EBV persistence [32,33,36]. LMP1 ex-

pression contributes to transformation and proliferation as well as cell survival by engag-

ing NF-κB signaling pathways and mimicking CD40 signaling [37–39]. EBV LMP1 sup-

ports latency establishment through inhibition of lytic replication, and transcriptional con-

trol in PEL allows for sporadic expression of LMP1 and non-coding RNAs [40–46]. Ex-

pression of these gene products creates conditions permitting KSHV persistent infection 

and PEL emergence [27]. 

The link of EBV and PEL proliferation is further supported by the fact that EBV ge-

nome loss reduces both KSHV genome maintenance and proliferation [25,27,47]. The exact 
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mechanism is unknown, but EBV co-infection seems to maintain KSHV genomes, as evi-

dent by the increased amount of KSHV genomes per cell observed in co-infected cells 

[25,27,30,48]. Later during co-infection, expression of both EBV and KSHV is restricted to 

a reduced latent EBV gene expression. It is mostly restricted to EBNA1 and non-translated 

RNAs (latency I), as KSHV LANA induces methylation and silencing of the major latent 

promoters Qp and Cp that regulates expression of EBV latency III genes [49]. 

While EBNA1 might only contribute little to B cell transformation, loss of its expres-

sion in EBV+ KSHV+ PEL cell lines reduced proliferation, indicating a role of EBNA1 in the 

promotion of KSHV persistence and B cell growth [40,47].  

Aside from EBV genes, PEL cells depend on latent KSHV gene expression, mainly 

LANA, vFLIP and vIRF3 for survival, as they interact with tumor suppressors and inhibit 

apoptotic processes [20,21,50–52]. LANA mediates the persistence of the KSHV episome 

by interaction with KSHV terminal repeat sequences [53,54]. This persistence does not 

depend on further viral genes, and episomes are lost upon LANA knockdown [55]. LANA 

also mediates replication of the episomal DNA and tethers the virus DNA to host mitotic 

chromosomes, facilitating division of the KSHV genome to the daughter cells [56]. vFLIP 

can activate NF-κB, which is constitutively active in PEL [57–59]. It averts FAS-induced 

apoptosis through interaction with the death-inducing signaling complex (DISC) that pre-

vents processing of procaspase 8 [60]. vIRF3 is required for survival of both EBV+ and 

EBV− PEL as knockdown lead to an increase in apoptosis and reduced proliferation [21].  

Apart from these molecular interactions of EBV and KSHV gene products for persis-

tence of both viruses in B cells in vitro and in mouse models, epidemiological evidence in 

Sub-Saharan Africa has suggested that KSHV infection is nearly uniformly associated 

with EBV co-infection and that EBV seropositivity is among the strongest environmental 

risk factors for KSHV seropositivity [61,62]. Therefore, EBV gene expression contributes 

to the persistence of KSHV in B cells, promoting B cell transformation, proliferation and 

survival. This allows for KSHV persistence due to EBV co-infection in vitro, in mouse 

models and in a human African patient cohort. 

3. Primary Effusion Lymphomagenesis Due to EBV and KSHV Co-Infection 

As EBV increases KSHV persistence, KSHV genome copy numbers per cell and cell 

proliferation, it is highly likely that it also impacts primary effusion lymphomagenesis. 

Development of primary effusion lymphoma is still not completely understood, but in 

vitro and recent in vivo studies suggest a role of viral lytic gene expression in driving 

tumorigenesis [30,63]. 

EBV and KSHV dual-infected humanized mice present with increased lym-

phomagenesis and enhanced levels of early EBV lytic gene expression [30,64,65]. These 

enhanced levels of EBV lytic gene expression are also detected in co-infected PELs, sup-

porting the role of lytic genes in tumorigenesis [16,30,66,67]. Infection with BZLF1-defi-

cient EBV demonstrated a reduction in lymphoma formation, whereas infection with an 

EBV variant that increases lytic replication demonstrated increased lymphomagenesis 

compared to EBV wildtype infection in humanized mice [64,68,69]. It is likely that the 

increase in tumor formation is promoted by abortive lytic EBV expression, as full lytic 

EBV reactivation would rather decrease tumor formation by the destruction of infected 

cells during the production of new viral particles [6,70]. Expression of BZLF1 induces lytic 

gene expression as well as the expression of immune evasins and proteins protecting the 

cells from apoptosis [71]. BZLF1 itself has been shown to play a prominent role in tumor 

progression through its capability to induce VEGF and IL10 secretion (Figure 1), support-

ing vascularization and suppressing T cell responses [72–76]. Lack of the late lytic gene 

BALF5 increases establishment of lymphomas from transformed B cells in immunocom-

promised mice, confirming a role of early lytic genes [77]. In EBV+ B cells, tumor necrosis 

factor (TNF), CCL5 and IL10 expression is increased upon spontaneous lytic reactivation 

[78–80]. This links lytic EBV expression to conditioning of the tumor microenvironment, 

as TNF is involved in inflammation and immune regulation, CCL5 is important in the 
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recruitment of myeloid suppressor cells and IL10 suppresses T cell responses [78–80]. 

Adding to this, EBV itself encodes for a viral homologue of IL10 (vIL10) [81]. KSHV en-

codes for a viral homologue of IL6 (vIL6) that in turn can upregulate production of human 

IL6 and IL10 [82]. vIL6 cooperates with c-myc and drives formation of plasmablastic neo-

plasms in immunocompromised mice, as well as it increased the number of tumors in a 

murine xenograft model and supported metastasis [83–86]. These cytokines increase the 

production of Vascular Endothelial Growth Factor (VEGF) and together, this promotes 

proliferation, cell survival, immunosuppression, neoangiogenesis and activation of onco-

genic signaling pathways such as the NF-κB pathway [82,87–90].  

 

Figure 1. Expression of lytic EBV and KSHV genes can condition the tumor microenvironment. Pri-

mary effusion lymphoma (PEL) is associated with KSHV, however 90% of tumors also carry EBV. 

EBV and KSHV most likely contribute to the tumor environment simultaneously through their lytic 

gene expression. Lytic KSHV expression contributes through expression of K1, which promotes ex-

pression of VEGF and angiogenesis. viral G-protein coupled receptor expression promotes prolifer-

ation. Expression of the viral cytokine vIL6 promotes production of IL6 and IL10 and increases PEL 

proliferation. EBV lytic gene expression contributes through CCL5 production that attracts mono-

cytes, which as tumor associated macrophages (TAM) have immune suppressive functions. Expres-

sion of viral IL10 can suppress CD8+ T cell responses. 

Many studies demonstrate an important role for a multiplicity of KSHV genes in 

lymphomagenesis. ORF36, a viral protein kinase, leads to increased hyperproliferation of 

B cells as well as lymphoma development [91]. Transgenic expression of the transmem-

brane glycoprotein K1 promotes lymphoproliferations that show NF-κB activation [92,93]. 

K1 can also induce expression of VEGF and pro-inflammatory cytokines like IL6, IL8 and 

IL10 [93–95]. Viral G-protein coupled receptor (vGPCR) increases expression of pro-in-

flammatory cytokines and contributes to tumor formation that resembles Kaposi sarcoma 

when expression is induced in mice [96–100].  

vIRF3 drives an oncogenic transcriptional program mediated by super-enhancers 

through cooperation with cellular IRF4 and BATF [21,43]. RTA, the replication and tran-

scription activator of KSHV, can transactivate EBV latency promoters by complexing with 

RBP-Jκ [44]. This cooperation induces LMP1 expression in an EBV latency I background, 

contributing to cell growth that is EBV-driven [44]. It further interacts with the EBV lytic 

inducer BZLF1, inhibiting EBV lytic gene expression [44,45,101]. LMP1, in turn, contrib-

utes to tumor formation through inducing expression of the oncogenic protein UCH-L1 

[102]. The latent KSHV gene LANA has also been shown to induce UCH-L1, and co-infec-

tion has shown that LANA and LMP1 synergize to activate UCH-L1, promoting a tumor-

igenic phenotype with an increase in proliferation, adhesion, cell migration and apoptosis 

inhibition [102].  

This evidence shows that both EBV and KSHV contribute to the primary effusion 

lymphomagenesis and co-infection can increase the likelihood of tumor formation by 
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shaping the tumor microenvironment and providing proliferation and survival ad-

vantages. 

4. Modulation of Innate Immune Responses by EBV and KSHV 

Human γ-herpesviruses, unlike viruses that only achieve acute infections, are not 

cleared by human immune responses, and establish latent infections [6,103]. It is a fine-

tuned balance between the host immune responses and the pathogen immune evasion 

mechanisms that allows this persistence of EBV and KSHV without causing disease. This 

equilibrium, in which KSHV and EBV modulate the observed immune responses, was 

established during co-evolution over time and can be recognized in both innate and adap-

tive immunity to these viruses. Focusing on innate immunity, four classes of pathogen 

recognition receptors (PRR) are reported to be implicated in the recognition of EBV and 

KSHV: Toll-like receptors (TLR), RIG-I-like receptors (RLR), NOD-like receptors (NLR) 

and intracellular DNA-sensors like cGAS [104–106]. Activation of these pathways primar-

ily leads to NF-κB-mediated production of inflammatory cytokines, induction of type I 

interferons (IFNs) or inflammasome activation and can be mediated by infected cells such 

as B cells, plasmacytoid dendritic cells (pDCs) and endo- and epithelial cells themselves. 

Apart from infected cells, activated monocytes, macrophages and classical dendritic cells 

(cDCs) harboring those PRR can also induce such responses. Despite knowledge of the 

involved pathways, there is no primary immunodeficiency (PID) affecting type I IFN re-

sponses described to predispose for γ-herpesviruses, and there remains a lot of open ques-

tions on how the innate immune sensing of both viruses influences the course of infection 

[107–111]. Along this line, it was shown that in vivo depletion of pDCs, even though being 

the main source of IFN after EBV infection, had only transient effects on EBV infection or 

on CD8+ T cell responses, which were thought to be primed by DCs [107]. Furthermore, 

pDCs are transiently depleted during symptomatic primary EBV infection in humans 

[112,113]. This insensitivity to type I IFN responses might be caused by the plethora of 

gene products of all γ-herpesviruses counteracting the above-mentioned immune re-

sponses reviewed in detail by Lange et al., stressing the importance to overcome early 

defense mechanisms for persistent infections [105]. In general, similar strategies are ap-

plied by both EBV and KSHV (Figure 2), all leading to the inhibition of PRR-mediated 

responses. In the first place, viral gene products may interfere with the expression of host 

proteins involved in PRR signaling cascades, either directly via viral miRNAs, by pos-

sessing exonuclease activity or by interacting with promoter sites to inhibit anti-viral gene 

expression [114–119]. So, for example, KSHV miRNA miR-K9 and miR-K5 can directly 

target MyD88, leading to reduced pro-inflammatory cytokine production and both KSHV 

LANA and kb-ZIP can abrogate IFN-� promoter activity [115,116,120]. Next, cellular pro-

teins can be suppressed by expression of viral homologues, such as KSHV vIRF1-4 inhib-

iting the cellular interferon regulatory factors or KSHV ORF63 inhibiting inflammasome 

activation by NLRP1 mimicry [89,121–123]. In addition, viral phosphatases and kinases 

such as EBV BGLF4 can directly modulate enzyme activities thereby decreasing PRR 

downstream signaling [124–126]. In addition, viral proteins can modulate ubiquitylation 

and proteasomal degradation, exemplified by KSHV RTA, which possesses E3-ubiquitin 

ligase activity and targets, for example, MyD88 [127,128]. Finally, the direct interaction of 

gene products for both virus and host can prevent conformational changes or nuclear 

translocation, as it is the case for KSHV ORF45, which blocks the nuclear translocation of 

IRF7 [129,130]. Besides expressing viral immune evasions, the inexistence of protein ex-

pression of the EBV latency program 0 and the low expression level of all latent EBV pro-

teins can be regarded as a hiding mechanism from human immune responses [104]. Over-

all, it still remains unclear if the viral pattern recognition in infected cells or bystander 

antigens present or viral sensing dendritic cells restrict EBV and KSHV infection.  
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Figure 2. Balance between host immune responses and viral immune modulation mechanisms allow 

persistence of KSHV. TLR, RLR, NLR and intracellular DNA-sensor cGAS are the four PRRs re-

ported to sense KSHV infection (blue) and to induce NF-κB-mediated inflammatory cytokine pro-

duction, type I IFN response and inflammasome activation (white). KSHV immune evasions (red) 

counteract PRR-induced signaling pathways via different means, e.g., via reducing the expression 

of signaling proteins (miR-K9/K5, RTA, kb-ZIP), via suppression of cellular proteins by viral hom-

ologues (vIRF1-4, ORF63), via targeting signaling proteins for proteasomal degradation (RTA) or 

via inhibition of nuclear translocation of signaling proteins (ORF45). Cellular innate immune re-

sponse is modulated by reducing cytotoxicity of NK cells via driving differentiation into a late phe-

notype characterized by CD39 expression and loss of NKG2D, via downregulation of activating NK 

cell receptor ligands and via inhibiting NK cell migration by viral chemokine secretion. IFN-γ de-

rived from NK cells, CD8+ or Th1 CD4+ T cells might protect from KSHV-associated malignancies, 

although T cell correlates conferring protection from KSHV-associated malignancies are not fully 

understood. 

An additional line of early defense is mediated by innate immune cells such as NK, 

NKT and γδ T cells, whose phenotype might be directly shaped by the viral infection. 

Underlining the importance of NK cell responses in EBV infection are PIDs affecting NK 

cell differentiation, activating NK cell receptors or NK cell effector functions, but also the 

observed expansion of NK cells during infectious mononucleosis (IM) with regards to 

numbers and frequency [131–134]. Expanding NK cells are in an early differentiation state; 

CD56dimCD16+/−NKG2A+NKG2C− and their protective function might be mediated either 

via activating NK cell receptors NKG2D and DNAM-1, via CD16-mediated antibody-de-

pendent cellular cytotoxicity targeting lytically-replicating EBV, or via preventing B cell 

infection by direct removal of viral particles bound to the B cell surface [132,135–138]. 

Further differentiation driven by co-infection, in case of CMV into NKG2C+KIR+ adaptive 

NK cells, was shown to go along with impaired EBV-specific immune control [139]. Sim-

ilarly, co-infection with KSHV is associated with further NK cell differentiation into CD56-

CD16+CD39+ NK cells in humanized mice, an even less cytotoxic phenotype that might 

suppress immune responses via CD39 [31]. This reduced NK cell cytotoxicity is also ob-

served in KS patients, which correlates with downregulated-activating NK cell receptors 

such as NKG2D, NKp30 or CD161 and with upregulation of the inhibitory receptor PD-1 

[140–142]. Furthermore, KSHV gene products directly protect the infected cells by 
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downregulating activating NK cell receptor ligands on their surface such as NKG2D lig-

ands MICA/B, AICL, CD155 or Nectin-2 but also via secreting the viral chemokine vMIP-

II blocking NK cell receptors involved in NK cell migration, such as CX3CR1 and CCR5 

[143–147]. Therefore, early differentiated NK cells restrict lytic EBV infection, but KSHV 

co-infection compromises the cytotoxic function of these innate lymphocytes. 

5. Adaptive Immune Responses to EBV and KSHV 

Imbalance between host and pathogen can also be caused by deviations in the adap-

tive immune response and may lead to diseases such as IM in cases of overactive immune 

responses or to the development of malignancies or chronic active EBV in cases of lacking 

immune responses. Characteristics of patients affected by γ-herpesvirus associated ma-

lignancies include impaired cytotoxic responses, especially T cell responses [148]. Reasons 

may be primary immunodeficiencies (PID) affecting TCR signaling, costimulatory mole-

cules and IFNγ signaling, but also co-infection with HIV, iatrogenic immunosuppression 

or advanced age [22,131]. 

The main cytotoxic effectors, the CD8+ T cells, highly expand in numbers during IM, 

the acute symptomatic primary EBV infection [133,149]. In IM, single EBV specificities can 

make up to 50% of the total CD8+ T cells during IM [150–152]. EBV specific T cells are 

primarily directed against immediate early (IE) gene products, to a lesser degree against 

early (E) gene products and even fewer against late (L) gene products, while latent anti-

gen-specific T cells only make up around 0.1–0.5% and are mainly directed against the 

EBNA3 family of proteins [152–155]. The hierarchy of recognized antigens also remains 

during latent infection, although upon contraction of T cell numbers, the frequencies of 

EBV-specific CD8+ T cells decrease to 2% recognizing lytic and to 1% recognizing latent 

gene products, respectively [155–158]. The expanded CD8+ T cells during IM are of an 

activated phenotype being HLA-DR+CD38+CD69+Ki-67+ but lacking lymphoid homing 

markers such as CCR7 or CD62L, thus potentially explaining the low recruitment into 

tonsils resulting in lower EBV-specific T cell responses at the site of infection [150,154,159]. 

CD4+ T cells do not expand in numbers, yet EBV-specific responses increase to up to 1% 

of total CD4+ T cells and thereby contribute to increased overall activation of CD4+ T cells 

[133,160]. Contrary to CD8+ T cells, they are more often directed against latent antigens 

and may emerge delayed with EBNA1-directed responses arising only several months 

after primary infection [160]. EBV-directed CD4+ T cells can be cytotoxic and are mostly 

of a Th1-like phenotype expressing T-bet, IFN-γ, TNFα, Perforin and Granzyme B [161–

164]. During asymptomatic primary infection, similarly high viral load levels as in IM 

patients were detected in a cohort of Gambian children, though without the accompany-

ing CD8+ T cell expansion, questioning the protective effect of these cells during early 

years of life when seroconversion often occurs [165]. Nevertheless, successful adoptive 

transfer experiments of EBV-specific CD8+ T cells in lymphoma and PTLD patients, and 

depletion experiments in humanized mice leading to increased lymphomagenesis under-

line the protective value of EBV-specific CD8+ T cells [166,167]. Those lines of evidence are 

absent for KSHV-specific immunity. Epidemiology and PID predisposing for KSHV-asso-

ciated diseases speak strikingly for an involvement of T cells, but experimental data are 

scarce [22,131]. In the early 21st century, substantial effort was put into identifying tar-

geted epitopes, but only recent studies by Roshan and Nalwoga systematically investi-

gated KSHV-directed IFN-γ responses on a proteome-wide scale [168–170]. Both studies 

showed very weak KSHV-directed T cell responses around 1 log lower in magnitude com-

pared to EBV and CMV controls, and high heterogeneity between patients with no immu-

nodominant antigen being recognized by most individuals. In addition, the amount of 

recognized KSHV antigen derived peptide pools of 1–5 per individuum differs greatly 

from EBV infection with a mean of 21 different proteins recognized per patient [155]. Ear-

lier reported work on the predominant recognition of early and late lytic KSHV-antigens 

was based on trends seen in seven individuals only and does not seem to be confirmed in 

the study by Nalwoga et al. [168,171]. The hierarchy observed in responses towards EBV 
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antigens might have to do with the direct priming of T cells by infected B cells and with 

evasions expressed in late lytic stages which simultaneously reduces the presentation of 

those genes, making it more unlikely to be recognized by T cells [155,172]. This leaves 

room for speculations that the lack of hierarchy in KSHV-directed responses might be a 

hint towards cross-primed responses that could be initiated by dendritic cells.  

In contrast to EBV, there is no severe or prototypic illness associated with primary 

KSHV infection allowing for the characterization of protective immune correlates 

[170,173,174]. Even though there are cases described in which mononucleosis or lymphad-

enopathy were associated with acute or reactivated KSHV infection, most reported pa-

tients suffer only from mild symptoms such as rashes or fever which are, contrary to EBV-

related IM, not accompanied by a massive cytotoxic T cell expansion [173–176]. One of the 

first prospective studies characterizing the immune composition upon KSHV seroconver-

sion showed no changes in T cell numbers or in phenotype, but occurrence of KSHV-di-

rected IFN-γ responses along with KSHV viremia [173]. T cell responses seemed to peak 

only 1–2 years after seroconversion. Focusing more on chronic KSHV infection, another 

study observed no changes in �� T cell subset frequencies, but a higher frequency of �� 

V�1 T cells in KSHV+HIV− individuals compared to age-matched KSHV- controls [177]. 

These �� V�1 T cells were strongly reactive against KSHV-infected PEL cell lines, which 

contrasts to what was observed for �� T cells: in vitro experiments using CTL clones or 

Jurkat cells showed that PEL cell lines elicit only weak T cell responses, probably due to 

the interference of KSHV with MHC class I and II restricted antigen presentation [178–

180]. However, implications of the impaired immunogenicity of PEL cell lines in a clinical 

setting remain unclear since most studies focusing on KSHV-directed T cell responses do 

not specifically focus on PEL patients but only differentiate between healthy and diseased 

virus carriers, including MCD and KS patients. Even there, data are somewhat contradic-

tory with Roshan et al. reporting greater diversity in recognized antigens in diseased pa-

tients and earlier studies from Guihot and Lambert reporting the opposite with a greater 

diversity in healthy patients [169,181,182]. Nevertheless, all three studies demonstrated 

that in vitro, KSHV-restricted CD4+ and CD8+ T cells derived from healthy volunteers and 

diseased patients can be both mono- or polyfunctional, expressing IFN-γ, IL-2, CD107, 

MIP-1B and TNFα [169,183–185]. This cytokine profile is in agreement with PIDs affecting 

IFN-γ receptor or STAT4 that predispose for KS, with a KS tumor microenvironment in 

which PBMCs secrete high levels of Th1 cytokines, and also with KSHV encoded viral 

homologues of cellular chemokines, such as vMIPI-III, which counteract Th1 responses 

by rather skewing into a more Th2-like microenvironment for immune evasion [146,186–

190]. On the other hand, the Th2-cytokine IL-5 was reported to be associated with better 

outcomes in KS, and pulmonary KS was shown to be associated with reduced expression 

of IFN-γ and other polyfunctional effectors mentioned before, therefore resulting in a re-

duced proinflammatory environment [191,192]. These discrepancies illustrate that the ac-

tual immune correlates conferring protection from KSHV-associated malignancies are still 

not identified, and while a number of studies have focused on CD8+ T cell-mediated IFN-

γ responses, there are only a few studies investigating the importance of CD4+ or γδ T cell 

responses in KSHV infection. 

6. Conclusions and Outlook 

These immune responses against EBV and KSHV ensure co-existence without pa-

thology in most persistently infected individuals. Therefore, it should be possible to re-

establish immune control by vaccination in patients who suffer from EBV- and KSHV-

associated pathologies or are at risk for these. The global disease burden of EBV- and 

KSHV-associated diseases, with yearly tumor incidences of 300,000 and 100,000, respec-

tively, indeed argues for the development of EBV- and KSHV-specific vaccines [7,193,194]. 

Many of the respective vaccine efforts focus on the induction of neutralizing antibodies 

against EBV and KSHV [195–200]; even so, natural immunity is thought to be primarily 

mediated by cytotoxic lymphocytes [131,201]. Unfortunately, the recombinant viral vector 



Viruses 2022, 14, 2709 9 of 17 
 

 

vaccines to induce cytotoxic CD8+ T cell responses against EBV seem to be falling behind 

the neutralizing antibody-inducing vaccine efforts [202–205]. Nevertheless, an EBV-tar-

geting vaccine will probably come into existence in the next few years and we will see 

how this can influence global disease burden by this human tumor virus. 

Previously, it was shown that induction of neutralizing antibodies against EBV 

gp350, the vial envelope protein that mediates attachment via complement receptors (e.g., 

CD21) to human B cells, reduced the incidence of symptomatic primary EBV infection 

(infectious mononucleosis) by 78% [198,200]. Therefore, adolescents still seronegative for 

EBV and with a high risk to develop IM upon EBV infection [206,207] could benefit from 

a neutralizing antibody-inducing vaccine against EBV, if primary infection is thereby ren-

dered asymptomatic and not only delayed. An increased risk for EBV-associated Hodg-

kin’s lymphoma and the autoimmune disease, multiple sclerosis (MS), has been observed 

after IM [208–210]. Multiple sclerosis affects more than 2 million individuals worldwide 

[211]. Therefore, vaccine-induced EBV neutralizing antibodies could reduce these risks for 

EBV-associated diseases at the same time as IM. However, in comparison to the 32-fold 

increased risk for multiple sclerosis by EBV infection in general [212], the 2-fold increased 

risk after IM compared to asymptomatic primary infection is rather modest. Nevertheless, 

a better understanding of the mechanistic contribution of EBV infection to MS develop-

ment would enable us to assess if EBV-specific vaccination could influence this autoim-

mune disease. As EBV also seems to contribute to KSHV persistence and KSHV-associated 

tumor burden in the case of PEL, vaccination against EBV might also prove beneficial with 

regards to KSHV infection. KSHV-specific vaccination efforts might also significantly re-

duce KSHV-associated disease burden [7]. Low prevalence of this tumor virus in Middle 

and Northern Europe as well as North America might suggest that establishing robust 

immunity against KSHV by vaccination could achieve low prevalence of KSHV in Sub-

Saharan Africa and Southern Europe. One would predict that this would significantly re-

duce the disease burden by KSHV. Therefore, robust immune control in most EBV and 

KSHV carriers suggests that vaccines should be developed that reinstate this immune con-

trol in patients who suffer from diseases that are associated by these two oncogenic hu-

man γ-herpesviruses. 
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