Molecular Epidemiology Reveals the Co-Circulation of Two Genotypes of Coxsackievirus B5 in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Molecular Typing and Full-Length Genome Sequencing
2.3. Phylogeny and Bioinformatics Analysis
2.4. Recombination Analysis
2.5. Prediction of Amino Acid Mutation Sites of CVB5
3. Results
3.1. Summary of CVB5 Base Data
3.2. Genotype Distribution of Global CVB5
3.3. Phylogenetic Analysis of CVB5 in China
3.4. Inference of the CVB5 Geographic Diffusion Pattern in China
3.5. Recombinant Analysis of CVB5
3.6. Phylogenetic Analysis of CVB5 Globally
3.7. Amino Acid Sites Prediction of CVB5
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simmonds, P.; Gorbalenya, A.E.; Harvala, H.; Hovi, T.; Knowles, N.J.; Lindberg, A.M.; Oberste, M.S.; Palmenberg, A.C.; Reuter, G.; Skern, T.; et al. Recommendations for the nomenclature of enteroviruses and rhinoviruses. Arch. Virol. 2020, 165, 793–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, P.J.; Siddell, S.G.; Lefkowitz, E.J.; Mushegian, A.R.; Adriaenssens, E.M.; Alfenas-Zerbini, P.; Davison, A.J.; Dempsey, D.M.; Dutilh, B.E.; García, M.L.; et al. Changes to virus taxonomy and to the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2021). Arch. Virol. 2021, 166, 2633–2648. [Google Scholar] [CrossRef] [PubMed]
- Shiohama, T.; Omata, T.; Muta, K.; Kodama, K.; Fujii, K.; Shimojo, N. Focal Coxsackie virus B5 encephalitis with synchronous seizure cluster and eruption: Infantile case. Pediatr. Int. Off. J. Jpn. Pediatr. Soc. 2016, 58, 415–417. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Jia, L.; Yin, J.; Wu, Z.; Wang, Z.; Li, P.; Hao, R.; Wang, L.; Wang, Y.; Qiu, S.; et al. An outbreak of aseptic meningitis caused by a distinct lineage of coxsackievirus B5 in China. Int. J. Infect. Dis. 2014, 23, 101–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, H.; Huang, X.; Kang, K.; Li, X.; Tang, X.; Ren, Y.; Wang, Y.; Zhao, G.; Xu, B. Recombination in human coxsackievirus B5 strains that caused an outbreak of viral encephalitis in Henan, China. Arch. Virol. 2013, 158, 2169–2173. [Google Scholar] [CrossRef]
- Hu, Y.F.; Zhao, R.; Xue, Y.; Yang, F.; Jin, Q. Full genome sequence of a novel coxsackievirus B5 strain isolated from neurological hand, foot, and mouth disease patients in China. J. Virol. 2012, 86, 11408–11409. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.F.; Yang, F.; Du, J.; Zhang, T.; Xue, Y.; Jin, Q. Coxsackievirus B5, associated with neurological hand, foot and mouth disease, China. J. Infect. 2012, 65, 189–191. [Google Scholar] [CrossRef]
- Rao, C.D.; Yergolkar, P.N.; Shankarappa, K.S. Antigenic Diversity of Enteroviruses Associated with Nonpolio Acute Flaccid Paralysis, India, 2007–2009. Emerg. Infect. Dis. 2012, 18, 1833–1840. [Google Scholar] [CrossRef]
- Kim, K.W.; Ho, A.; Alshabee-Akil, A.; Hardikar, A.A.; Kay, T.W.; Rawlinson, W.D.; Craig, M.E. Coxsackievirus B5 Infection Induces Dysregulation of microRNAs Predicted to Target Known Type 1 Diabetes Risk Genes in Human Pancreatic Islets. Diabetes 2016, 65, 996–1003. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.C.; Yang, S.L.; Yang, H.; Lin, T.Y.; Hsieh, Y.C.; Huang, K.A.; Kuo, C.Y.; Chiu, C.H.; Huang, Y.C.; Chu, S.M.; et al. Clinical characteristics of echovirus 11 and coxsackievirus B5 infections in Taiwanese children requiring hospitalization. J. Microbiol. Immunol. Infect. 2020, 54, 581–587. [Google Scholar] [CrossRef]
- Chen, P.; Tao, Z.; Song, Y.; Liu, G.-F.; Wang, H.-Y.; Liu, Y.; Song, L.-Z.; Li, Y.; Lin, X.-J.; Cui, N.; et al. A coxsackievirus B5-associated aseptic meningitis outbreak in Shandong Province, China in 2009. J. Med. Virol. 2013, 85, 483–489. [Google Scholar] [CrossRef]
- Yao, X.; Bian, L.-L.; Lu, W.-W.; Li, J.-X.; Mao, Q.; Wang, Y.-P.; Gao, F.; Wu, X.; Ye, Q.; Li, X.; et al. Epidemiological and etiological characteristics of herpangina and hand foot mouth diseases in Jiangsu, China, 2013–2014. Hum. Vaccines Immunother. 2017, 13, 823–830. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Bian, L.-l.; Hao, X.; Hu, Y.; Yao, X.; Sun, S.-Y.; Chen, P.; Yang, C.; Du, R.; Li, J.-X.; et al. Seroepidemiology of coxsackievirus B5 in infants and children in Jiangsu province, China. Hum. Vaccines Immunother. 2018, 14, 74–80. [Google Scholar] [CrossRef]
- Dumaidi, K.; Al-Jawabreh, A.; Samarah, F.; Zraiqi, A.; Yaseen, D. Genetic diversity of the enteroviruses detected from cerebrospinal fluid (CSF) samples of patients with suspected aseptic meningitis in northern West Bank, Palestine in 2017. PLoS ONE 2018, 13, e0202243. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.-S.; Shao, C.-W.; Zhao, W.-Z.; Zhang, Y.-K.; Ji, M.; Zhu, Y.-J.; Ma, Z.-F.; Ma, S. Genomic characteristics of coxsackievirus B5 A210/KM/09 strain isolated in Yunnan, China. Zhonghua Liu Xing Bing Xue Za Zhi 2014, 35, 307–311. [Google Scholar]
- Xu, W.; Zhang, Y. Isolation and Characterization of Vaccine-Derived Polioviruses, Relevance for the Global Polio Eradication Initiative. Methods Mol. Biol. 2016, 1387, 213–226. [Google Scholar]
- Oberste, M.S.; Maher, K.; Williams, A.J.; Dybdahl-Sissoko, N.; Brown, B.A.; Gookin, M.S.; Peñaranda, S.; Mishrik, N.; Uddin, M.; Pallansch, M.A. Species-specific RT-PCR amplification of human enteroviruses: A tool for rapid species identification of uncharacterized enteroviruses. J. Gen. Virol. 2006, 87 Pt 1, 119–128. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, Y.; Hong, M.; Zhu, S.-L.; Yan, D.; Wang, D.-Y.; Li, X.-L.; Zhu, Z.; Tsewang; Xu, W. Phylogenetic evidence for multiple intertypic recombinations in enterovirus B81 strains isolated in Tibet, China. Sci. Rep. 2014, 4, 6035. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.-F.; Naguib, T.; Yang, S.-J.; Nasr, E.M.; Jorba, J.; Ahmed, N.M.; Campagnoli, R.P.; van der Avoort, H.; Shimizu, H.; Yoneyama, T.; et al. Circulation of Endemic Type 2 Vaccine-Derived Poliovirus in Egypt from 1983 to 1993. J. Virol. 2003, 77, 8366–8377. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Bouckaert, R.; Vaughan, T.G.; Barido-Sottani, J.; Duchene, S.; Fourment, M.; Gavryushkina, A.; Heled, J.; Jones, G.; Kuhnert, D.; De Maio, N.; et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2019, 15, e1006650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, D.P.; Murrell, B.; Golden, M.; Khoosal, A.; Muhire, B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015, 1, vev003. [Google Scholar] [CrossRef] [PubMed]
- Crooks, G.E.; Hon, G.C.; Chandonia, J.; Brenner, S. EWebLogo: A sequence logo generator. Genome Res. 2004, 14, 1188–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murrell, B.; Wertheim, J.O.; Moola, S.; Weighill, T.; Scheffler, K.; Pond, S.L.K. Detecting Individual Sites Subject to Episodic Diversifying Selection. PLoS Genet. 2012, 8, e1002764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weaver, S.; Shank, S.D.; Spielman, S.J.; Li, M.; Muse, S.V.; Pond, S.L.K. Datamonkey 2.0: A modern web application for characterizing selective and other evolutionary processes. Mol. Biol. Evol. 2018, 35, 773–777. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-W.; Ni, X.; Qian, S.; Wang, Q.; Jiang, R.-M.; Xu, W.; Zhang, Y.-C.; Yu, G.; Chen, Q.; Shang, Y.; et al. Chinese guidelines for the diagnosis and treatment of hand, foot and mouth disease (2018 edition). World J. Pediatr. 2018, 14, 437–447. [Google Scholar] [CrossRef]
- Oberste, M.S.; Maher, K.; Kilpatrick, D.R.; Flemister, M.R.; Brown, B.A.; Pallansch, M.A. Typing of human enteroviruses by partial sequencing of VP1. J. Clin. Microbiol. 1999, 37, 1288–1293. [Google Scholar] [CrossRef] [Green Version]
- Hamby, B.; Pallansch, M.A.; Kew, O. Reemergence of an epidemic coxsackievirus B5 genotype. J. Infect. Dis. 1987, 156, 288–292. [Google Scholar] [CrossRef]
- Khetsuriani, N.; Lamonte-Fowlkes, A.; Oberst, S.; Pallansch, M.A. Enterovirus surveillance--United States, 1970–2005. Morb. Mortal. Wkly. Rep. Surveill. Summ. 2006, 55, 1–20. [Google Scholar]
- Hyeon, J.-Y.; Hwang, S.; Kim, H.; Song, J.; Ahn, J.; Kang, B.; Kim, K.; Choi, W.; Chung, J.K.; Kim, C.-H.; et al. Accuracy of Diagnostic Methods and Surveillance Sensitivity for Human Enterovirus, South Korea, 1999–2011. Emerg. Infect. Dis. 2013, 19, 1268–1275. [Google Scholar] [CrossRef]
- Kopecká, H.; Brown, B.; Pallansch, M.A. Genotypic variation in coxsackievirus B5 isolates from three different outbreaks in the United States. Virus Res. 1995, 38, 125–136. [Google Scholar] [CrossRef]
- Bielejec, F.; Baele, G.; Vrancken, B.; Suchard, M.A.; Rambaut, A.; Lemey, P. SpreaD3: Interactive Visualization of Spatiotemporal History and Trait Evolutionary Processes. Mol. Biol. Evol. 2016, 33, 2167–2169. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; Shi, D.; Fu, J.; Zhang, L.; Chen, R.; Zheng, B.; Wang, X.; Xu, S.; Zhu, L.; Wang, K. Atomic Structures of Coxsackievirus B5 Provide Key Information on Viral Evolution and Survival. J. Virol. 2022, 96, e00105-22. [Google Scholar] [CrossRef]
- Oberste, M.S.; Nix, W.A.; Maher, K.; Pallansch, M.A. Improved molecular identification of enteroviruses by RT-PCR and amplicon sequencing. J. Clin. Virol. Off. Publ. Pan Am. Soc. Clin. Virol. 2003, 26, 375–377. [Google Scholar] [CrossRef]
- Huang, H.-W.; Chu, P.-H.; Pan, C.-H.; Wang, C.-F.; Lin, C.-C.; Lu, P.-L.; Chen, Y.S.; Shi, Y.-Y.; Su, H.-J.; Chou, L.-C.; et al. Evolutionary histories of coxsackievirus B5 and swine vesicular disease virus reconstructed by phylodynamic and sequence variation analyses. Sci. Rep. 2018, 8, 8821. [Google Scholar] [CrossRef] [Green Version]
- Muslin, C.; Mac Kain, A.; Bessaud, M.; Blondel, B.; Delpeyroux, F. Recombination in Enteroviruses, a Multi-Step Modular Evolutionary Process. Viruses 2019, 11, 859. [Google Scholar] [CrossRef] [Green Version]
- Lukashev, A.N. Role of recombination in evolution of enteroviruses. Rev. Med. Virol. 2005, 15, 157–167. [Google Scholar] [CrossRef]
- Simmonds, P.; Welch, J. Frequency and Dynamics of Recombination within Different Species of Human Enteroviruses. J. Virol. 2006, 80, 483–493. [Google Scholar] [CrossRef]
Primer | Nucleotide Position (nt) | Sequence (5′-3′) | Orientation | Reference |
---|---|---|---|---|
0001S48 | GGGGACAAGTTTGTACAAAAAAGCAGGCTTT | Forward | [18] | |
338F | 338–1182 | GTTTCGTTCAGCACAACCCC | Forward | This study |
1134R | 1134–1383 | TCAGGCTCTTCTGGTCAGGT | Reverse | This study |
1115F | 1350–2050 | ACCTGACCAGAAGAGCCTGA | Forward | This study |
2713R | 1949–2968 | CCTTCTGTCCAGAACACGCT | Reverse | This study |
490 | 2226–2248 | TGIGTIYTITGYRTICCITGGAT | Forward | [17] |
491 | 2883–2902 | ATGTAYRTICCICCIGGNGG | Forward | [17] |
492 | 2953–2934 | GGRTTIGTIGWYTGCCA | Reverse | [17] |
493 | 3641–3622 | TCNACIANICCIGGICCYTC | Reverse | [17] |
2183F | 2183–3550 | CTTCTACCAAGGGCCCACAG | Forward | This study |
3942R | 3250–3942 | GCTTGAGCCTGGTCAGGAAT | Reverse | This study |
3350F | 3350–4360 | AAACTGCGTGTGGGAGGATT | Forward | This study |
4450R | 3650–4450 | GCCCGATTAGATTGGTGGCT | Reverse | This study |
3935F | 3935–5000 | GCTCAAGCAACTCCCACTTC | Forward | This study |
4825R | 4825–5100 | GGGATTTCAGGTGCAACACT | Reverse | This study |
4605F | 4605–5830 | TGTTGCCCAGTCAATTTCAA | Forward | This study |
5579R | 5579–6730 | TACCTTGCCGGTACACATGA | Reverse | This study |
5600F | 5600–6580 | GACACTGCTGAAACTCAACCG | Forward | This study |
6500R | 6500–6880 | GTCTGGATTTCCCTTTTGCCAC | Reverse | This study |
5991F | 5991–6730 | TTGACAACAAGTGCGGGATA | Forward | This study |
6900R | 6240–6900 | CGTGGTCTTGGGTGTTCTTT | Reverse | This study |
6758F | 6758–6940 | CTTTGTGCGTGGTGGTATGC | Forward | This study |
7380R | 6900–7380 | CCCTACCGCACCGTTATCAA | Reverse | This study |
7500A | GGGGACCACTTTGTACAAGAAAGCTGGG(T)24 | Reverse | [19] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Wei, H.; Wei, L.; Fan, H.; Yan, D.; Zhao, H.; Zhu, S.; Ji, T.; Xiao, J.; Lu, H.; et al. Molecular Epidemiology Reveals the Co-Circulation of Two Genotypes of Coxsackievirus B5 in China. Viruses 2022, 14, 2693. https://doi.org/10.3390/v14122693
He Y, Wei H, Wei L, Fan H, Yan D, Zhao H, Zhu S, Ji T, Xiao J, Lu H, et al. Molecular Epidemiology Reveals the Co-Circulation of Two Genotypes of Coxsackievirus B5 in China. Viruses. 2022; 14(12):2693. https://doi.org/10.3390/v14122693
Chicago/Turabian StyleHe, Yun, Haiyan Wei, Leilei Wei, Huan Fan, Dongmei Yan, Hua Zhao, Shuangli Zhu, Tianjiao Ji, Jinbo Xiao, Huanhuan Lu, and et al. 2022. "Molecular Epidemiology Reveals the Co-Circulation of Two Genotypes of Coxsackievirus B5 in China" Viruses 14, no. 12: 2693. https://doi.org/10.3390/v14122693
APA StyleHe, Y., Wei, H., Wei, L., Fan, H., Yan, D., Zhao, H., Zhu, S., Ji, T., Xiao, J., Lu, H., Wang, W., Guo, Q., Yang, Q., Xing, W., & Zhang, Y. (2022). Molecular Epidemiology Reveals the Co-Circulation of Two Genotypes of Coxsackievirus B5 in China. Viruses, 14(12), 2693. https://doi.org/10.3390/v14122693