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Abstract: Zoonotic infections of humans with influenza A viruses (IAVs) from animal reservoirs can
result in severe disease in individuals and, in rare cases, lead to pandemic outbreaks; this is exem-
plified by numerous cases of human infection with avian IAVs (AIVs) and the 2009 swine influenza
pandemic. In fact, zoonotic transmissions are strongly facilitated by manmade reservoirs that were
created through the intensification and industrialization of livestock farming. This can be witnessed
by the repeated introduction of IAVs from natural reservoirs of aquatic wild bird metapopulations
into swine and poultry, and the accompanied emergence of partially- or fully-adapted human path-
ogenic viruses. On the other side, human adapted IAV have been (and still are) introduced into
livestock by reverse zoonotic transmission. This link to manmade reservoirs was also observed be-
fore the 20th century, when horses seemed to have been an important reservoir for IAVs but lost
relevance when the populations declined due to increasing industrialization. Therefore, to reduce
zoonotic events, it is important to control the spread of IAV within these animal reservoirs, for ex-
ample with efficient vaccination strategies, but also to critically surveil the different manmade res-
ervoirs to evaluate the emergence of new IAV strains with pandemic potential.

Keywords: influenza A viruses; zoonosis; livestock farming; pandemic; animal-human interface;
avian influenza; swine influenza; equine influenza

1. Introduction

Influenza A viruses (IAVs) are the causative agent for seasonal epidemics in the hu-
man population and account for a substantial morbidity and mortality that results in a
considerable economic burden [1,2]. The ability of IAVs to rapidly cross interspecies bar-
riers and circulate in a variety of avian and mammalian species of wildlife and livestock
creates a breeding ground for zoonotic strains with pandemic potential. Since the begin-
ning of the 20th century, zoonotic spillover events have given rise to the generation of
multiple, well-documented pandemic IAVs [3-5]. Intensification of animal husbandry, in-
creasing encroachment into wildlife habitats for agricultural use, and increased connec-
tivity of livestock populations through (transboundary) trade, created favorable condi-
tions that are associated with the establishment of new IAV lineages in these reservoirs
but also created new interfaces for human infections [6-11]. Some examples include the
2009 pandemic swine influenza virus [12] and an increasing number of reported zoonotic
spillover infections with avian IAVs (AIVs) from poultry [13,14]. Hence, mechanisms
need to be in place to prevent zoonotic transmissions and lurking epidemics or even pan-
demics. As outlined below in more detail, it is important to understand that humans had
significant influence on the generation, broadening, and deepening of some of the IAV
reservoirs. We therefore have to be aware of these viral reservoirs and have to monitor
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emerging and circulating virus strains. In the following, we will introduce human-rele-
vant IAV hosts species, the respective host-human interfaces, and discuss their im-
portance for zoonotic spillover.

2. Viral Properties

IAVs are subtyped based on the genetic and antigenic properties of their two major
surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA). While HA mediates
cell attachment and subsequent host cell entry, NA possesses a receptor-destroying func-
tion that facilitates egress from an infected cell [5]. To date, 18 HA (H1-18) and 11 NA
(N1-11) subtypes are described [15]. Due to their exposed location on the virion surface,
HA and NA are subject to selection pressure by the humoral immunity. In a process that
is known as antigenic drift, HA and NA undergo changes by the selection of point muta-
tions that randomly occur during genome amplification and allow immune escape. Anti-
genic drift is the reason why human IAVs can overcome immunity in the human popula-
tion and why seasonal adjustments to the associated vaccines are required. Aside from
these minor changes, IAVs are also capable of altering their genome composition. The
segmented IAV genome favors a process called reassortment, in which genomic infor-
mation is exchanged upon co-infection of a single cell with at least two distinct IAV
strains. This exchange of genome segments enables a rapid viral evolution that can lead
to the generation of novel antigenic combinations to which the human population is im-
munologically naive (antigenic shift) [16].

3. IAV Pandemics in Humans

It was not until 1933 that Smith and colleagues isolated IAV from throat-washing
samples of infected human patients [17]. Hence, influenza outbreaks that occurred prior
to the first third of the 20th century have been assigned to influenza viruses either by
clinical manifestation or retrospectively by the isolation of the virus from preserved tissue.
The first influenza pandemic in the late modern period that is thought to be caused by an
IAV was the so-called Russian flu in 1889-1890. The Russian flu most likely emerged first
in the Central Asian part of the Russian Empire and spread to the west along the trade
routes to Europe, the US, and finally to Africa and Asia, and accounted for a significant
number of deaths [18]. A series of sero-archaeological studies that were carried out in the
1950s and 1960s suggested that an H2N2 virus caused the 1889-1890 pandemic [19,20],
whereas other studies have failed to provide evidence for a pandemic H2N2 virus [21-
23]. In 1965, serological studies found that antibodies were reactive to horse-derived H3
in the majority of people born before 1891 [24-26]. It is thus believed that a horse-derived
H3NB8 was the causative agent of the Russian flu [27]. Others, however, assume that, based
on the clinical picture, the pandemic was caused by a zoonotic coronavirus [28,29]. Since
the beginning of the 20th century, four major and well-documented IAV pandemics have
occurred. The first and most devastating pandemic with about 50 million deaths was the
1918 Spanish flu that was caused by an HIN1 virus. It is currently unclear whether the
1918 H1INT1 virus was spilled-over directly from avian species to humans or whether it
was transmitted from an intermediate host [30]. Furthermore, it is unclear where the virus
first emerged. One theory is that the pandemic virus emerged in an American military
camp in Kansas and from there the Spanish flu reached the battlefields in Western Europe
after the US entered World War 1. Others suspect that the virus may have emerged at a
large military base on the Western Front, where 100,000 soldiers lived in close proximity
to several farms with poultry, geese, and swine, and were frequently exposed to various
gases of war causing respiratory irritation and distress [31-33]. In any case, it is very likely
that World War I contributed to the spread of the virus. Following the pandemic outbreak,
the 1918 pandemic HIN1 virus became endemic to the human population. In 1957, the
Asian flu (H2N2) emerged as a reassortant of an avian H2N2 virus and the seasonal de-
scendant of the 1918 HIN1 strain in China [34,35]. The pandemic virus became endemic
thereafter and continued to circulate as a seasonal strain, displacing the previous seasonal
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HINT strain [36,37]. Similarly, the 1968 Hong Kong Influenza was caused by genetic re-
assortment of the antigenically drifted H2N2 virus and an avian H3N? virus giving rise
to the pandemic H3N2 subtype [34,35]. The seasonal descendant of the pandemic H3N2
replaced the human H2N2 strain and continues circulating to date. Intriguingly, in 1977,
almost 20 years after its disappearance, a human H1IN1 virus re-emerged in northern
China causing a minor pandemic outbreak, and has been co-circulating with the H3N2
seasonal strain in the human population ever since [38,39]. As this virus exhibited a strik-
ing similarity on nucleotide level to seasonal HIN1 of the 1950s, it is now thought that the
re-introduction is due to a manmade laboratory accident or failed vaccine trials [39]. Im-
portantly, the Spanish flu, Asian flu, and the Hong Kong flu either emerged directly from
an avian virus or were the result of a reassortment event of a human seasonal strain with
an avian virus. In contrast, the most recent 2009 pandemic was caused by a zoonotic trans-
mission of a HIN1 swine influenza virus. The 2009 pandemic virus emerged as a quadru-
ple reassortant of a triple reassortant virus of the North American swine lineage, contain-
ing gene segments of avian, swine, and human origin and an HIN1 Eurasian avian-like
swine virus from swine [40].

In summary;, all of the pandemic IAV strains since 1889 have emerged from an animal
host either in whole or in part as a reassortant with a human or mammalian adapted virus.

4. Avian Reservoir Species

To date all of the known classical HA (H1-16) and NA (N1-9) subtypes (notable ex-
ceptions are H17-18 and N10-11) have been found in wild aquatic birds and were also
isolated from many of these species, such as ducks, geese, and gulls, although H13 and
H16 seem to be restricted to some species of the order Charadriiformes, most prominently
gulls [41-47]. Aquatic wild birds of the order Anserifomes and Charadriiformes are thus be-
lieved to constitute the natural IAV reservoir [5]. However, the migratory behavior of
many of these species and their overlapping habitats with other animals has led to a global
dissemination, introduction, and adaptation of AIVs into new host populations [48]. Con-
sequently, transmitted IAVs have established several host-specific lineages in humans,
swine, and horses.

Based on phylogenetic analysis of the viral nucleoprotein sequence, IAVs have estab-
lished three lineages in birds, one in gulls and two geographically separate lineages that
correspond to the flyways of migratory birds, the Eurasian (including the avian-like swine
lineage) and the American lineage [49-51]. Infections of aquatic birds with AIVs typically
affect the cells lining the intestinal and respiratory tracts and proceed asymptomatically
or cause only mild disease. As a result, of the intestinal replication, infectious virus is shed
in high concentrations through the feces [52,53], leading to a fecal-oral transmission of the
virus via contaminated water or feed. Clinically and genetically, two IAV pathotypes of
the H5 and H7 subtypes can be distinguished. Low pathogenicity (LP) AIVs (LPAIVs)
represent the natural reservoir-like IAVs, which circulate in aquatic wild birds. If trans-
mitted and adapted to replication in galliform poultry (e.g., chicken, turkey, or quail), LP
H5 and H7 viruses have the potential to mutate to a high pathogenicity (HP) phenotype,
enabling systemic infection. Thus, infections with HP AIVs (HPAIVs) of the H5 and H7
subtypes can cause severe illness and, depending on the viral strain and host-specific pa-
rameters, a high mortality of up to 100% in a flock [5,52,54]. Similar to the course in aquatic
wild birds, infections with LPAIVs often cause only mild disease in domestic waterfowl]
and galliform poultry. LPAI outbreaks in poultry farms were shown to be associated with
spatial proximity to waterways and, for free-range poultry, with the proximity to habitats
of wild waterfowl [55]. Importantly, while HPAIVs are naturally absent in aquatic wild
birds, they can be re-transmitted from galliform poultry to wild birds and vice versa. This
aids the distribution of the viruses along the migratory routes of the birds [56-60].

The rapid growth of the human world population since the mid-20th century and
increasing prosperity in many parts of the world had a massive impact on the expansion
and intensification of livestock farming, especially on poultry production [61]. According
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to the Food and Agriculture Association (FAO) of the United Nations, global poultry live-
stock soared from 4 to 2600 billion animals that were produced per year between 1961 and
2019 (Figure 1A). The dramatic increase in poultry production was particularly dynamic
in low and middle income countries, especially in Asia, and surpassed the production in
high income countries in the late 1980s [62,63]. To date, more than 60% and 80%, respec-
tively, of the global domestic duck and goose populations are being produced and reared
in China [64]. At the same time, the increasing incidence of infectious diseases, including
emerging HPAIL have been a cause for concern. From 1959 to 2018, at least 29 different
HPAIVs have emerged in poultry farms. These HPAIV strains emerged on nine occasions
between 1959 and 1990 (one outbreak every ~3.5 years), causing insignificant loss and
rarely being transmitted beyond the index case. In contrast, 20 genetically distinguishable
HPAIV strains have emerged in poultry in the 29-year period after 1990 (one outbreak every
~1.5 years), resulting in hundreds of millions of birds that died or were culled [65-70].
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Figure 1. Poultry and swine livestock increased worldwide since 1961, as well as zoonotic transmission events and the
establishment of IAV lineages. (A) The amount of poultry that were produced per year is shown for different global regions
as share of the worldwide production on the left y-axis. The right y-axis indicates the number of humans that were infected with
AIVs (H5NT1 cases in yellow, H7N9 cases in light blue). The red arrow indicates the start of the H5/H7 poultry vaccination cam-
paign. (B) On the left y-axis, the amount of swine livestock in different global regions as share of the worldwide production per
year is shown. The number of humans that were infected with swine IAV are shown on the right y-axis (yellow line). The estab-
lishment of major IAV lineages in swine is indicated. The data on livestock were retrieved from FAOSTAT.
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The emergence of an HP H5N1 virus in 1996, which was reported to have infected a
flock of geese in the Chinese province Guangdong, started a new age of HPAI. This line-
age, termed gs/GD, has continued to evolve and expand ever since and has been respon-
sible for an unprecedented number of outbreaks and transcontinental spreading events
excluding, until now, only Australia, South America, and Antarctica. In addition, some of
the descendant gs/GD lineages revealed substantial zoonotic potential. In 1997, the first
human cases of HP H5N1 virus infection were reported, following a previous AIV out-
break among poultry in Hong Kong. Intriguingly, the H5N1 virus that was isolated from
a 3-year-old boy from Hong Kong exhibited a high degree of genetic similarity to an HP
H5NT1 virus that was isolated in the preceding outbreaks in poultry, suggesting direct
spillover of the virus [71-73]. Direct transmission of HPAIVs from infected poultry to hu-
mans has been implicated with sporadic infection in humans in the subsequent years [74—
80]. The experimental data from the groups of Fouchier and Kawaoka showed thatin 2012,
an avian-derived HP H5N1 could acquire the ability for airborne human-human trans-
mission by only a few mutational changes [81,82], fueling the concerns that these viruses
might become pandemic. During the 19-year period from 2003 to 2021, 862 human cases
of the HP H5N1 infection, with a case fatality rate of 53%, were reported (Figure 1A), the
majority of them occurring in Egypt, Vietnam, and China [14].

In early 2013, the first identified cases of human infection with a novel LPAIV of the
H7N9 subtype occurred in the Yangtze Delta region [83-85]. Phylogenetic analyses sug-
gested that this H7N9 virus might have originated in poultry and then circulated in live-
poultry markets, where it was eventually transmitted to humans through direct contact [86].
As of 2021, a total of 1568 confirmed human H7N9 cases had been reported (Figure 1A),
with a case fatality rate of 39% [13]. To date, H7N9 outbreaks remain confined to China.
While most of the infected persons were either poultry workers or recently exposed to poul-
try [87], experimental data as well as in-field studies suggest that H7N9 has a limited ability
for a non-sustained human-human transmission following prolonged and intimate direct
contact [79,88,89]. Serological studies that were carried out between 2001 and 2016 revealed
a relatively low seroprevalence for antibodies to H5 (<4%) and H7 (<0.9%) in poultry work-
ers and villagers in China and Southeast Asia [90-94]. Importantly, the introduction of a
bivalent H5/H7 vaccine for poultry in the second half of 2017 dramatically reduced both the
H?7 positive rates in poultry and the number of human H5N1 and H7N9 cases [95,96]. After
its first emergence in 2010, HPAIV of the H5N8 subtype circulated in global poultry popu-
lations and caused outbreaks in poultry flocks from 2014 onwards, first in South Korea and
Japan and then in Europe and the US [97]. In 2021, Russian authorities reported that seven
poultry workers were infected with a HP H5N8 virus in an H5SNS outbreak at a poultry farm
in southern Russia [98]. There has been no indication for human-human transmission as yet
and the reported human infections proceeded asymptomatically. This virus and its closely
related descendants caused the largest ever HP Al epizootic outbreak in wild birds and poul-
try in Europe in 2020/21, however, no further human cases were detected. In 2010, poultry
abattoir workers were reported to be infected with an IAV of the H10 subtype, following an
outbreak of LPAIV H10N7 in an Australian chicken farm [99]. Since then, three more cases
that were caused by an HION8 and H10N3 virus were documented in China [100-102]. No-
tably, AIVs of the H10 subtype are highly diverse and are regularly found in poultry, ducks,
and in live bird-markets [103-105]. In addition, occasional spillover infections with LPAIVs
of the HIN2 subtype leading to mild disease in humans have been reported since 1998 [106—
108]. Interestingly, the prevalence for H9-specific antibodies among people with frequent
contact to poultry was found to be higher (<9%) compared to the prevalence of H5 and H7
antibodies in the same group. H9 specific antibodies were also found to be present in the
general population (<3%) [90,92,94]. Fortunately, none of the above-mentioned avian IAV-
subtypes that have been transmitted to humans in the past were found to have reassorted
its genomic information with human-adapted IAVs in the field to date.
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5. Mammalian Reservoir Species
5.1. Horses

Horses are a reservoir for two mammalian-adapted IAV-lineages, the H7N7 (historic)
and H3NS8 subtypes (contemporary) constituting the equine-1 and equine-2 lineages, re-
spectively. In 1956, an IAV strain of the H7N7 subtype belonging to the equine 1-lineage
was isolated from a horse in Prague following an epizootic outbreak in former Czechoslo-
vakia [109]. The virus spread through the US in the 1960s, causing only relatively mild
diseases. In 1963, following an IAV outbreak in racehorses in Florida that affected 60-70%
of the animals, a H3N8 virus was identified and designated as the equine 2-lineage
[110,111]. However, molecular clock analysis revealed that the equine H7N?7 lineage had
already emerged in the middle of the 19th century, coinciding with the 1872-73 horse ep-
izootic outbreak [112,113]. Similarly, a time-calibrated phylogeny of the H3N8 equine lin-
eage genomic surface glycoprotein sequences revealed that they emerged during the
1800s [112]. As reviewed by Morens and Taubenberger, horses were probably a major
reservoir for IAVs before the 20th century and transmission between horses and humans
may have occurred frequently [114]. One major event, thought to be a form of influenza
due to the displayed symptoms and disease progression, was the same as the aforemen-
tioned 1872-73 horse epizootic event, which spread through the US along the rail lines
where horses were transported [115]. An extraordinarily high mortality and morbidity
rate in horses paralyzed the country, as travel and transport by horses had to be stopped.
During this time, cases of influenza in humans were often linked to exposure to horses
[114]. As outlined above, a horse-derived H3NS8 virus is thought to have caused the 1889-
1890 human pandemic. Sero-archaeological studies that were carried out in 1965 found
antibodies that were reactive to the equine H3N8 subtype in elderly people [24-26]; more
than 80% of the tested people born before 1891 had specific antibodies. Importantly, this
was before the first documented introduction of an H3 virus into the human or swine
population in 1968, fueling the assumption that an H3 virus circulated around 1890. The
last widespread influenza epizootic in horses was in 1915/16 [114,116]. Notably, the world
horse population peaked between 1910 and 1920 with 110 million horses and declined to
~60 million to date [64,117]. In the US, the horse population peaked with ~25 million horses
in 1914 and then declined until 1964 (~1.5 million horses) and finally increased again to
about 10 million horses to date [118]. In contrast, the European horse population has de-
clined consistently [64]. While the H7N7 strain probably became extinct in the 1970s [119],
the H3NS strain still evolves globally in horse populations. As yet, no infections of hu-
mans have been reported. However, several more recent studies have found antibodies
against equine H3N8, mainly in people with exposure to horses. Nevertheless, the anti-
body titers were very low and a cross-reactivity to human seasonal H3N2 viruses cannot
be excluded [120-122]. Experimental infection of volunteers in the 1960s showed a general
susceptibility to equine IAVs with asymptomatic or mild disease progression in two thirds
of the study participants [123-125]. In addition, the H3N8 equine viruses have gained ac-
cess from equine to canine populations on at least two occasions in the United Kingdom
in 2002 and in the US since 1999 [126-128]. While only limited dog-dog spread was re-
ported from a few kennels in the UK, the US canine cases developed into regional epi-
demics with cases being detected until at least 2016 [129].

With the onset of industrialization and mechanization, horses were no longer re-
quired to assist in tasks such as transportation or agricultural work. Today, the overlap
between humans and horses is limited to leisure activities and sport [117]. Despite being
an important reservoir in pre-industrial times, in a globalized and highly modernized
world the importance of equine species as IAV reservoir has therefore decreased because
of a declining population. Other animals, such as swine, whose numbers have steadily
increased, have gained in importance.
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5.2. Swine

Today’s diversity of IAVs in swine is the result of multiple historic and on-going
spillover events, mainly from humans to swine and the viruses’ subsequent genetic drift
and shift [130]. To date, H1, H3, N1, and N2 subtypes have been regularly isolated from
pigs of all continents [131], which is strikingly similar to the past and present endemic
subtypes in the human population (H1, H2, H3, N1 and N2). The first report of influenza
in swine was in the US during the 1918 pandemic where John Koen observed that pigs
exhibited the same symptoms, such as fever and coughing, and had a similar course of
disease as influenza diseased people. Furthermore, he noted that a family’s influenza out-
break was followed by the infection of their pigs and vice versa [132]. The introduction of
the pandemic 1918 virus into American swine populations, which was first isolated in
1930 from pigs, led to the establishment of the first endemic swine IAV lineage designated
as “classical-swine” HIN1 [133]. However, cross-species transmission has led to the intro-
duction of additional H1 lineages in swine. The “Eurasian avian-like swine” H1 lineage
was established as the result of a spillover of an avian-derived HINI1 virus that was cir-
culating in Northern Europe in the late 1970s [134]. Furthermore, several “human sea-
sonal” H1-lineages were established following spillovers of human seasonal H1 viruses
into swine herds. Human seasonal HIN1 viruses were first recognized in the European
swine populations in the 1990s [135]. Other seasonal H1 viruses were introduced into the
US swine populations by two independent events and were first identified in 2005
[136,137]. Besides the three H1 lineages (“classical-swine”, “Eurasian avian-like swine”,
and “human seasonal swine”), at least two H3N2 lineages circulate in swine. Following
the emergence of human H3N2 in 1968, seasonal human H3N2 strains spilled over into
swine populations on many occasions, but largely failed to establish sustained long-term
transmission in pigs [138]. Nevertheless, since the mid-1980s, two swine H3N2 lineages
have been established independently. First, in 1984 a reassortant of the human seasonal
H3N2 and the “Eurasian avian-like swine” lineage emerged in European swine holdings.
Second, in 1998, when a triple reassortant between human seasonal H3N2, the “classical-
swine”, and an avian IAV strain emerged in the US [139,140]. Reassortment events be-
tween the swine HIN1 and H3N2 lineages occur regularly and give rise to viruses with
distinct genotypes that co-circulate among swine [141]. It is interesting to note that, as the
only exception, the human pandemic H2N2 virus apparently has not been transmitted
into swine populations.

Strikingly, all of the swine IAV lineages, with the notable exception of the classical-
swine H1N1, were established after the 1970s (Figure 1B). Since then, pork production has
been restructured, with small farms continuously being replaced by large production sys-
tems and animals being kept in stocks with ever-increasing population sizes. Pigs are
widely transported across Europe and the world, providing connectivity between differ-
ent swine populations and facilitating the global distribution of swine IAV strains [142].
For instance, the introduction of swine HIN1 into Japanese pig farms could be linked to
the import of breeding stocks from North America [143]. Moreover, phylogenetic analysis
of swine IAVs from samples from the US swine populations revealed that the viral spread
of swine IAVs followed the transportation lines from the south to the Midwest [144]. Sim-
ilarly, the transmission pattern of the Eurasian avian-like swine H1 subtypes in Europe
was suggested to be trade-related. Nevertheless, regional patterns of spread remain con-
served within Europe [145]. In addition, there are almost no documented migration events
of swine IAVs between the European and American continents. This is in stark contrast to
Asia, where strains of both origins and reassortants between them co-circulate [10]. Little
is known about the status of pigs in Africa [146].

Even though swine IAVs were widely distributed in global swine populations be-
tween 1958 and 2009, there were only few reports about zoonotic infections of humans. A
total of 73 zoonotic swine IAV infections with a case fatality rate of about 10% were re-
ported in that period [107,147]. Thereof, twelve symptomatic and one lethal case were
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reported in the military base Fort Dix in the US in 1976 [148,149]. All of the diseased per-
sons were male and previously healthy. No previous exposure to swine was reported and
it is unclear how the virus was introduced into Fort Dix. Remarkably, a retrospective se-
rological study revealed that the virus had spread through the unit and up to 273 soldiers
were infected with the swine-derived HIN1 virus of the “classical-swine” lineage at that
time [150,151]. Aside from this, a total of 60 civilian cases of swine IAV in humans, mainly
young patients, have been reported in North America, Europe, Russia, and Asia. Most of
the cases were caused by different circulating or reassorted swine IAVs of the HIN1 sub-
type and only a few by H3N2 or HIN2. While the majority of these cases had direct contact
to swine, some cases were of unknown origin and human-human transmission in small
clusters was assumed as well [147].

In 2009, a swine derived HIN1 virus from Mexico led to the latest influenza pan-
demic. Interestingly, the precursor of the pandemic virus is thought to have originated
from Central-West-Mexico, the region with the highest density of swine in the country
[12]. Notably, the virus was the result of multiple reassortments and contained avian-,
swine-, and human-derived gene segments [40], highlighting the potential of swine serv-
ing as “mixing vessel” for viruses of swine, human, and avian origin. It is suspected that
the global swine trade has contributed to the viral diversity in Mexican swine, which gave
rise to the multiple reassortment virus [12]. Following the 2009 pandemic, globally occur-
ring reverse zoonotic events re-introduced the 2009 pandemic HIN1 (HIN1pdm) virus
into swine populations giving rise to novel reassortants and an increased genetic diversity
[152]. Since 2011, three surveillance studies have independently identified such reassort-
ant viruses in Chinese and European pig farms [145,153,154]. In China, six distinct HIN1
genotypes were reported, whereas 38 distinct swine IAV genotypes with 15 new combi-
nations of different HAs and NAs were found in European swine populations. Of note,
most of these new variants possessed human-preadaptation and several isolates were an-
tigenically distinct descendants of the seasonal HIN1 strain in humans [145,153]. These
studies not only demonstrated the high abundance of IAVs in the swine population, but
also highlighted that simultaneous infection with different IAV strains does occur, drives
reassortment, and creates new virus variants which pose a threat to the human popula-
tion. In 2011, reports about clustered zoonotic transmission events with a novel variant
H3N2 (H3N2v) virus containing the M segment of HINIpdm were described [155]. To
date, 429 infections with H3N2v and additional occasional infection with swine HIN1 and
H1N2 have been reported, increasing the total number of human infections with swine
IAV to 533 [107,147,156]. This drastic increase of zoonotic swine IAV cases since the 2009
pandemic might be the result of increased awareness and surveillance, or alternatively, it
could be due to the increased presence of human-transmissible reassortant strains after
the reintroduction of HIN1pdm.

In conclusion, swine only became an important reservoir for IAV of human origin
due to increasing pork production, increasing livestock herd sizes, and intensifying trans-
boundary transport. Moreover, the diversity of swine IAVs is constantly multiplied by the
introduction of new, human-derived viruses [130].

5.3. Minks

Minks gained inglorious fame as a virus reservoir in the wake of the corona pan-
demic. In late 2020, it became widely known that SARS-CoV-2 had spilled over from hu-
mans to minks in fur farms where the virus then mutated and was transmitted back to
humans [157]. This highlights that the human-mink interface potentially allows for viral
spillovers. However, although various IAV subtypes have been found in minks, it is cur-
rently unknown whether IAV can be directly transmitted from minks to humans. An IAV
of the H10 subtype was isolated from minks in the 1980s and it is believed to be the result
of a direct transmission of an avian virus [158,159]. More recent studies have revealed a
wider detection of several avian-, swine-, and human-derived IAV subtypes, such as
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HON2 [160,161], H3N2 [162], HIN2 [163], and H1N1 [164,165] in minks. Additionally, in-
fections with HP H5N1 were reported [166]. As shown recently, the HIN1pdm virus was
not only re-introduced into swine but was also introduced into farmed minks [164,165].
Sun and colleagues reported a 50% and 11% prevalence of HIN1pdm and human H3N2-
specific antibodies, respectively, in nearly 2500 serum samples from 34 mink farms in the
Chinese Shandong and Hebei provinces, where the majority of the fur farms are located.
Interestingly, antibodies against the AIV subtypes H5N6 (3%), H7N9 (3%), and HON2 (20—
50%), which have been endemic in poultry in this area at this time, were also detected in
these mink-derived sera [160,161,164]. As 32% of the investigated sera contained antibod-
ies to both human and avian strains, concerns arose that the minks could, similar to swine,
serve as a mixing vessel [164]. Several studies suggested that avian- or swine-derived IAV
virus were introduced to the minks by feeding them with raw poultry or pork by-products
[161-163]. Usually, minks are kept in small cages right next to each other in holdings with
up to 10,000 animals [167], facilitating aerogenic viral spread. Even though no transmission
of IAVs from mink to human have been reported yet, the high diversity of IAV subtypes and
their co-circulation in minks could give rise to new reassortant viruses with zoonotic potential.
It should be noted that the closely related semi-domesticated mustelid species “ferret” is also
used currently as the best animal model of human influenza infection. Ferrets proved to be
highly susceptible to all of the human strains, they transmit virus by aerosols, and they gener-
ate highly strain-specific antibodies upon experimental infection [168].

5.4. Bats

In recent years bats have attracted increased attention for harboring a plethora of
different viruses and are moreover suspected to be the reservoir for several lethal zoonotic
viruses, such as Ebolavirus [169], Nipahvirus [170], and various Coronaviruses [171]. Nu-
merous studies have linked the spillover of these viruses to humans with the manmade
environmental fragmentation and deforestation that forces the resident bat populations
from their secluded rainforest habitats into peri-urbanized landscapes [172-174]. There is,
therefore, cause for concern that other zoonotic viruses of bat origin might become a threat
to humans because of these environmental changes.

For a long time, bats were not considered to be involved in the IAV ecology. How-
ever, in 2012 and 2013 genomic sequences belonging to two distinct IAV subtypes, subse-
quently designated as H17N10 and H18N11, were isolated from swab samples of bats
from Central and South America [175,176]. Serological testing of several bat species re-
vealed a high prevalence of antibodies to H17N11 (38%) and H18N11 (50%), suggesting a
wide distribution of these bat-derived IAVs in the Americas (176). Unfortunately, as sero-
logical data for other non-bat species, including humans, that share an overlapping habi-
tat with these bats are missing, it remains unclear whether H17N10 and H18N11 are able
to cross the bat-species barrier. Experimental infections recently showed that HI8N11 has
a limited ability to replicate in other species than its original host Artibeus spp. [177-179].

After serological studies discovered the presence of H9 antibodies in bats from
Ghana [180], an HIN2 subtype was isolated from the Old World bat species Rousettus
aegyptiacus in 2019 [181]. Interestingly, while Egyptian fruit bats could be experimentally
infected with the bat HIN2 virus, they were resistant to infection with an avian-derived
HON?2 virus [182]. Again, it is unclear whether bat-borne HON2 can be transmitted to other
species, like farm animals or humans invading the habitats of infected bats.

Despite bats being the second largest order of mammals, only little is known about
bats as hosts of IAV. Further research is needed to elucidate the importance of the human-
bat interface, including data on the seroprevalence of antibodies to the bat IAVs in humans
who have had contact to infected bat colonies or who live in close proximity to the colonies.
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6. Conclusions

Intriguingly, although IAVs circulate in a variety of different animal species, live-
stock animals are becoming especially important as a reservoir for zoonotic IAV transmis-
sion. As outlined above, the increased demand for animal products has driven the inten-
sification of livestock farming and led to the introduction, adaptation, spread, and often
endemic entrenchment of IAVs in these farmed animals. Consequently, the reported num-
ber of zoonotic infections increased in parallel to the extension and intensification of live-
stock rearing. While it cannot be excluded that zoonotic transmissions might occur also at
the wildlife-human interface, the available data point towards a subordinate role of these
interfaces in recent transmission events. Nowadays especially poultry and swine are res-
ervoirs of concern. Although it is easier for large and integrated livestock holdings, in
comparison to small backyard farms, to be equipped with improved biosecurity or bio-
containment measures, an exchange of pathogens with the environment can never be fully
prevented [183,184]. The assumption that these large holdings are important to prevent
the introduction and release of potentially zoonotic pathogens is challenged: (i) Particu-
larly large and dense populations with genetically similar animals facilitate viral spread
between the animals [185,186]; (ii) rolling circle reproduction, especially in large swine
holdings, favors the establishment of endemic pathogen circulation through the regular
introduction of new susceptible host individuals [6,186]; and (iii) management of large
livestock flocks requires huge logistics such as transport of live animals over larger dis-
tances which favors (global) pathogen dispersal [10,12,142]. Furthermore, improper ven-
tilation systems and waste disposal could lead to pathogen release, which is especially
critical in areas with a high density of animal production facilities [183]. Such conditions
might foster less adapted strains to establish new lineages and new variants to emerge by
reassortment events. In particular, swine were shown to be a potent ‘mixing vessel” for
IAVs of different species origins (e.g., swine, avian) and strains that are introduced by
humans (e.g., “classical-swine” and “human-seasonal” strains). Thus, a zoonotic event
that results in sustained human—human transmission, such as the one that caused the 2009
pandemic, is not unlikely. Minks were found to harbor an even higher diversity of avian-
, swine-, and human-derived viruses, potentially forming another highly potent mixing
vessel. Overall, intensified livestock farming has created an important interface between
humans and animals and made zoonotic events that bear the risk of emergence of a hu-
man-transmissible virus more likely [184].

According to the “One Health Approach” human and animal health and the integrity
of ecosystems influence and contribute to each other [187]. Functional ecosystems and the
prevention of infections of animals is pivotal to reduce the risk of zoonotic spillover. Vac-
cines can be a very efficient tool to control IAVs in livestock. The nationwide use of a
bivalent H5/H7 vaccine in poultry in China since the end of 2017 grossly reduced the in-
cidence of H7N9 and HP H5 IAV infections and, consecutively, reduced the rate of human
infections of H7N9 and H5NT1 to near zero [95,96]. Vaccines against equine IAV are avail-
able as well. However, it is unclear whether the extinction of the H7N7 subtype in horses
is a result of vaccination campaigns, since the last isolation was in 1979 and the first vac-
cination trials were in 1983 [188]. Interestingly, antigenic drift of equine IAV seems to be
lower than for other IAVs, delaying need for an adaptation of the vaccine strains by sev-
eral years [189]. In contrast, swine IAV are faster evolving and it is challenging to adapt
vaccines accordingly. Inactivated vaccines often do not induce efficient cross reactivity
and thus, are only efficient for the particular matching strain. Live vaccines can be more
efficient but harbor a certain risk of regaining virulence by mutation or reassortment [190].
Here, vaccine strategies involving bat IAV, which cannot reassort with classic IAVs, could
be useful [191,192]. Even though there have been promising vaccine strategies developed,
unpredictable viral evolution remains the biggest challenge. Additionally, testing and
quarantining of animals before introducing them to a new flock or location should be an
effective measure. It also needs to be examined how a re-structuring of livestock rearing
that favors less animals per space and smaller or more fragmented holdings in general
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could counteract viral spread. However, it should not go unnoted that increasing de-
mands for “green” or bio-organic production partially goes along with an inherent con-
flict. In particular, poultry free range farming that interfaces to wild bird populations are
widely opened and unfolded. Thus, risks for pathogen incursions from wild bird reser-
voirs are multiplied.

Nonetheless, the per capita consumption of pork, poultry, and eggs has constantly
risen over recent decades [64,193] and is not likely to stop soon. To meet the needs of a
growing world population with our limited resources and to manage the emergence of
zoonotic diseases efficiently, we should rethink our consumption behavior regarding an-
imal products and their production in general [194].
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