Analysis of Selected Physical Properties of Conifer Cones with Relevance to Energy Production Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Origin of Cones
2.2. Variability of Research Material
2.3. Gross and Net Calorific Value
2.4. Ash Content
2.5. Bulk Density and Volume Conversion Factor
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gendek, A.; Nurek, T. Variability of energy woodchips and their economic effects. Folia For. Pol. Ser. A 2016, 58, 62–71. [Google Scholar] [CrossRef]
- Moskalik, T.; Sadowski, J.; Sarzyński, W.; Zastocki, D. Efficiency of slash bundling in mature coniferous stands. Sci. Res. Essays 2013, 8, 1478–1486. [Google Scholar]
- Moskalik, T.; Sadowski, J.; Zastocki, D. Some technological and economic aspects of logging residues bundling. Sylwan 2016, 160, 31–39. [Google Scholar]
- Hakkila, P.; Parikka, M. Fuel resources from the forest. In Bioenergy from Sustainable Forestry: Guiding Principles and Practice; Richardson, J., Björheden, R., Hakkila, P., Lowe, A.T., Smith, C.T., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; pp. 19–48. [Google Scholar]
- Stampfer, K.; Kanzian, C. Current state and development possibilities of wood chip supply chains in Austria. Croat. J. For. Eng. 2006, 27, 135–145. [Google Scholar]
- Yoshioka, T.; Aruga, K.; Nitami, T.; Sakai, H.; Kobayashi, H. A case study on the costs and the fuel consumption of harvesting, transporting, and chipping chains for logging residues in Japan. Biomass Bioenergy 2006, 30, 342–348. [Google Scholar] [CrossRef]
- Eker, M. Assessment of procurement systems for unutilized logging residues for Brutian pine forest of Turkey. Afr. J. Biotechnol. 2011, 10, 2455–2468. [Google Scholar]
- Röser, D.; Mola-Yudego, B.; Prinz, R.; Emer, B.; Sikanen, L. Chipping operations and efficiency in different operational environments. Silva Fenn. 2012, 46, 275–286. [Google Scholar] [CrossRef]
- Mustelier, N.L.; Almeida, M.F.; Cavalheiro, J.; Castro, F. Evaluation of Pellets Produced with Undergrowth to be Used as Biofuel. Waste Biomass Valoriz. 2012, 3, 285–294. [Google Scholar] [CrossRef]
- Yemshanov, D.; McKenney, D.W.; Hope, E.; Lempriere, T. Renewable Energy from Forest Residues—How Greenhouse Gas Emission Offsets Can Make Fossil Fuel Substitution More Attractive. Forests 2018, 9, 79. [Google Scholar] [CrossRef]
- Aniszewska, M.; Gendek, A. Logistics of the supplies of selected forest tree species’ cones. Part 1. Cone density and substitution coefficient. Ann. Wars. Univ. Life Sci. SGGW Agric. 2016, 67, 121–130. [Google Scholar]
- Aniszewska, M.; Gendek, A. Logistics of delivery of cones of selected species of forest trees. Part 2: Cone transport. Ann. Wars. Univ. Life Sci. SGGW Agric. 2016, 68, 113–121. [Google Scholar]
- Gendek, A. Combustion heat and calorific value of the mix of sawdust and cones of common pine (Pinus sylvestris L.). Ann. Wars. Univ. Life Sci. SGGW Agric. 2015, 66, 137–144. [Google Scholar]
- Aniszewska, M.; Gendek, A. Porównanie ciepła spalania i wartości opałowej szyszek wybranych gatunków drzew leśnych. Leśne Prace Badaw. 2014, 75, 231–236. [Google Scholar]
- Aniszewska, M.; Kuszpit, D. Analysis of acquisition and potential usage of conifer cones from Polish seed extraction houses between 2009–2012. Ann. Wars. Univ. Life Sci. SGGW Agric. 2015, 65, 93–101. [Google Scholar]
- Gokdai, D.; Borazan, A.A.; Acikbas, G. Effect of Marble: Pine Cone Waste Ratios on Mechanical Properties of Polyester Matrix Composites. Waste Biomass Valoriz. 2017, 8, 1855–1862. [Google Scholar] [CrossRef]
- Statistics Poland (Central Statistical Office). Leśnictwo. Forestry 2016; Główny Urząd Statystyczny: Warszawa, Poland, 2016.
- Załęski, A. Nasiennictwo Leśnych drzew i Krzewów Iglastych; Oficyna Edytorska Wydawnictwo Świat: Warszawa, Poland, 1995; ISBN 978-83-85597-27-8. [Google Scholar]
- Murphy, P.G.; Lugo, A.E. Structure and biomass of a subtropical dry forest in Puerto Rico. Biotropica 1986, 18, 89–96. [Google Scholar] [CrossRef]
- Barszcz, A.; Rutkowska, L. Znaczenie współczynnika zmienności w określaniu jakości surowca drzewnego. Sylwan 1999, 143, 45–55. [Google Scholar]
- Peters, S.; Boutin, S.; Macdonald, E. Pre-dispersal seed predation of white spruce cones in logged boreal mixedwood forest. Can. J. For. Res. 2003, 33, 33–40. [Google Scholar] [CrossRef]
- Keane, R.E.; Reinhardt, E.D.; Scott, J.; Gray, K.; Reardon, J. Estimating forest canopy bulk density using six indirect methods. Can. J. For. Res. 2005, 35, 724–739. [Google Scholar] [CrossRef] [Green Version]
- Phanphanich, M.; Mani, S. Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour. Technol. 2011, 102, 1246–1253. [Google Scholar] [CrossRef] [PubMed]
- Mikolajczak, E. The profitability of converting sawmill by-products into energy. Drew. Pr. Nauk. Doniesienia Komun. 2012, 55, 88–102. [Google Scholar]
- Gendek, A.; Aniszewska, M.; Chwedoruk, K. Bulk density of forest energy chips. Ann. Wars. Univ. Life Sci. SGGW Agric. 2016, 67, 101–111. [Google Scholar]
- Agar, D.A. A comparative economic analysis of torrefied pellet production based on state-of-the-art pellets. Biomass Bioenergy 2017, 97, 155–161. [Google Scholar] [CrossRef]
- Frączek, J.; Kaczorowski, J.; Ślipek, Z.; Horabik, J.; Molenda, M. Standaryzacja metod pomiaru właściwości fizyczno-mechanicznych roślinnych materiałów ziarnistych. Acta Agrophys. 2003, 92, 7–158. [Google Scholar]
- Gendek, A.; Nurek, T.; Zychowicz, W.; Moskalik, T. Effects of Intentional Reduction in Moisture Content of Forest Wood Chips during Transport on Truckload Price. BioResources 2018, 13, 4310–4322. [Google Scholar] [CrossRef]
- Konieczny, S. Experience with the use of biomassin large conventional power. Folia Pomeranae Univ. Technol. Stetin. Oecon. 2011, 65, 81–87. [Google Scholar]
- Niedziółka, I.; Szpryngiel, M. Ocena cech jakościowych peletów wytworzonych z biomasy roślinnej. Inż. Rol. 2012, 2, 267–276. [Google Scholar]
- Stolarski, M.; Szczukowski, S.; Tworkowski, J.; Kwiatkowski, J.; Grzelczyk, M. Charakterystyka zrębków oraz peletów (granulatów) z biomasy wierzby i ślazowca jako paliwa. Probl. Inż. Rol. 2005, 13, 13–22. [Google Scholar]
- Tomczak, A.; Jelonek, T.; Jakubowski, M. Density of Scots pine (Pinus sylvestris L.) wood as an indicator of tree resistance to strong winds. Sylwan 2013, 157, 539–545. [Google Scholar]
- Witkowska, J.; Lachowicz, H. Variability of conventional wood density of Scots pine (Pinus sylvestris L.) depending on the selected factors. Sylwan 2013, 157, 336–347. [Google Scholar]
- Wojtan, R.; Tomusiak, R.; Zasada, M.; Dudek, A.; Michalak, K.; Wroblewski, L.; Bijak, S.; Bronisz, K. Trees and their components biomass expansion factors for Scots pine (Pinus sylvestris L.) of western Poland. Sylwan 2011, 155, 236–243. [Google Scholar]
- The Act od Parliament of Republic of Poland. Ustawa z dnia 7 Czerwca 2001 r. o Leśnym Materiale Rozmnożeniowym. Available online: http://prawo.sejm.gov.pl/isap.nsf/download.xsp/WDU20010730761/T/D20010761L.pdf (accessed on 4 July 2018).
- Solid Mineral Fuels—Determination of Gross Calorific Value by the Bomb Calorimetric Method and Calculation of Net Calorific Value; ISO 1928:2009; International Organization for Standardization: Geneva, Switzerland, 2009.
- Głodek, E. Spalanie i Współspalanie Biomasy; Instytut Ceramiki i Materiałów Budowlanych: Opole, Poland, 2010. [Google Scholar]
- Skrifvars, B.-J.; Backman, R.; Hupa, M.; Sfiris, G.; Åbyhammar, T.; Lyngfelt, A. Ash behaviour in a CFB boiler during combustion of coal, peat or wood. Fuel 1998, 77, 65–70. [Google Scholar] [CrossRef]
- Świeca, G. Zawartość Wodoru w Różnych Rodzajach Biomasy; Instytut Chemiczny Przeróbki Węgla: Zabrze, Poland, 2007. [Google Scholar]
- Werther, J.; Saenger, M.; Hartge, E.-U.; Ogada, T.; Siagi, Z. Combustion of agricultural residues. Prog. Energy Combust. Sci. 2000, 26, 1–27. [Google Scholar] [CrossRef]
- Solid Biofuels—Determination of Ash Content; ISO 18122:2015; International Organization for Standardization: Geneva, Switzerland, 2015.
- Martinka, J.; Martinka, F.; Rantuch, P.; Hrušovský, I.; Blinová, L.; Balog, K. Calorific value and fire risk of selected fast-growing wood species. J. Therm. Anal. Calorim. 2018, 131, 899–906. [Google Scholar] [CrossRef]
- Gendek, A.; Malaťák, J.; Velebil, J. Effect of harvest method and composition of wood chips on their caloric value and ash content. Sylwan 2018, 162, 248–257. [Google Scholar]
- Solid Biofuels—Determination of Bulk Density; PN-EN ISO 17828:2015; Polish Committee for Standardization: Warsaw, Poland, 2015.
- Anovitz, L.M.; Cole, D.R. Characterization and analysis of porosity and pore structures. Rev. Mineral. Geochem. 2015, 80, 61–164. [Google Scholar] [CrossRef]
- Igathinathane, C.; Tumuluru, J.S.; Sokhansanj, S.; Bi, X.; Lim, C.J.; Melin, S.; Mohammad, E. Simple and inexpensive method of wood pellets macro-porosity measurement. Bioresour. Technol. 2010, 101, 6528–6537. [Google Scholar] [CrossRef] [PubMed]
- Dell Inc. Dell Statistica, version 13; Data Analysis Software System; Dell Inc.: Landolock, TX, USA, 2016. [Google Scholar]
- Aniszewska, M. Dynamika Procesu Pozyskania Nasion w Jedno- i Dwuetapowych Procesach Łuszczenia Szyszek Sosny Zwyczajnej Pinus sylvestris L.; Rozprawy Naukowe i Monografie; Wydawnictwo SGGW: Warszawa, Poland, 2012. [Google Scholar]
- Białobok, S.; Boratyński, A.; Bugała, W. Biologia Sosny Zwyczajnej; Polska Akademia Nauk Instytut Dendrologii: Poznań-Kórnik, Poland, 1993; ISBN 978-83-85599-21-0. [Google Scholar]
- Chmielewski, W. Study on cone variation in spruce in Poland. In Population Studies of Norway Spruce in Poland; Tyszkiewicz, S., Ed.; Forest Reaserch Institute: Warsaw, Poland, 1968. [Google Scholar]
- Białobok, S. Świerk Pospolity—Picea abies (L.) Karst. Nasze Drzewa Leśne; Polska Akademia Nauk Instytut Dendrologii: Warszawa, Poland, 1999. [Google Scholar]
- Vîlcan, A.; Holonec, L.; Tăut, I.; Sestras, R.E. Variability of the traits of cones and seeds in different larch clones I. The influence of the provenance. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Hortic. 2011, 68, 474–480. [Google Scholar]
- Aniszewska, M.; Gendek, A. Comparison of heat of combustion and calorific value of the cones and wood of selected forest trees species. For. Res. Pap. 2014, 75, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Gilbe, C.; Öhman, M.; Lindström, E.; Boström, D.; Backman, R.; Samuelsson, R.; Burvall, J. Slagging Characteristics during Residential Combustion of Biomass Pellets. Energy Fuels 2008, 22, 3536–3543. [Google Scholar] [CrossRef]
- Vega-Nieva, D.J.; Ortiz Torres, L.; Míguez Tabares, J.L.; Morán, J. Measuring and Predicting the Slagging of Woody and Herbaceous Mediterranean Biomass Fuels on a Domestic Pellet Boiler. Energy Fuels 2016, 30, 1085–1095. [Google Scholar] [CrossRef]
- Filbakk, T.; Jirjis, R.; Nurmi, J.; Høibø, O. The effect of bark content on quality parameters of Scots pine (Pinus sylvestris L.) pellets. Biomass Bioenergy 2011, 35, 3342–3349. [Google Scholar] [CrossRef]
- Munalula, F.; Meincken, M. An evaluation of South African fuelwood with regards to calorific value and environmental impact. Biomass Bioenergy 2009, 33, 415–420. [Google Scholar] [CrossRef]
- Friedl, A.; Padouvas, E.; Rotter, H.; Varmuza, K. Prediction of heating values of biomass fuel from elemental composition. Anal. Chim. Acta 2005, 544, 191–198. [Google Scholar] [CrossRef]
- Ragland, K.W.; Aerts, D.J.; Baker, A.J. Properties of wood for combustion analysis. Bioresour. Technol. 1991, 37, 161–168. [Google Scholar] [CrossRef]
- Kofman, P.D. Quality Wood Chip Fuel. 2006. Available online: http://biomasseastportmaine.com/Quality_wood_chip_fuel.pdf (accessed on 5 July 2018).
Species | Register Number | BFM Category | RFM Category | Forest District | GPS |
---|---|---|---|---|---|
Scots pine | MP/1/1694/05 | Tree stand | From an identified source | Szczebra | 53°55′ N, 22°57′ E |
MP/1/520/05 | Tree stand | From an identified source | Czarna Białostocka | 53°28′ N, 23°19′ E | |
MP/1/647/05 | Tree stand | From an identified source | Dojlidy | 53°08′ N, 23°21′ E | |
MP/2/31001/05 | Tree stand | Selected | Płaska | 53°57′ N, 23°15′ E | |
Norway spruce | MP/1/1817/05 | Tree stand | From an identified source | Żednia | 53°09′ N, 23°26′ E |
MP/1/46930/06 | Tree stand | From an identified source | Głęboki Bród | 53°58′ N, 23°12′ E | |
MP/3/41002/05 | Seed orchard | Classified | Bielsk(1) | 52°41′ N, 23°06′ E | |
MP/1/46911/06 | Tree stand | From an identified source | Płaska(1) | 53°00′ N, 23°14′ E | |
MP/1/1894/05 | Tree stand | From an identified source | Waliły | 53°09′ N, 23°37′ E | |
European larch | MP/3/41001/05 | Seed orchard | Qualified | Bielsk | 52°41′ N, 23°06′ E |
MP/2/30988/05 | Tree stand | Selected | Maskulińskie | 53°39′ N, 21°32′ E | |
Silver fir | MP/1/8022/05 | Tree stand | From an identified source | Poddębice | 51°41′ N, 18°53′ E |
Species | Forest District | Mean | Standard Deviation | Factor of Variation | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Length | Width | Weight | Length | Width | Weight | Length | Width | Weight | ||
mm | g | mm | g | % | ||||||
Norway spruce | Głęboki Bród | 118.6 | 54.5 | 33.3 | 13.6 | 5.1 | 9.2 | 11.5 | 9.3 | 27.7 |
Bielsk(1) | 145.9 | 62.4 | 52.6 | 19.5 | 6.6 | 14.5 | 13.4 | 10.5 | 27.6 | |
Płaska(1) | 111.1 | 54.4 | 28.9 | 13.3 | 4.4 | 7.3 | 11.9 | 8.1 | 25.5 | |
Waliły | 119.4 | 53.0 | 31.5 | 13.1 | 5.1 | 7.8 | 10.9 | 9.6 | 24.7 | |
Scots pine | Szczebra | 39.0 | 33.4 | 5.1 | 4.5 | 5.1 | 1.3 | 11.6 | 15.2 | 26.9 |
Czarna Białostocka | 41.4 | 36.3 | 6.3 | 5.2 | 5.9 | 1.9 | 12.6 | 16.1 | 30.8 | |
Dojlidy | 37.6 | 31.7 | 4.8 | 5.4 | 5.4 | 1.6 | 14.3 | 17.0 | 34.1 | |
Płaska | 41.8 | 35.6 | 5.9 | 4.2 | 4.4 | 1.5 | 10 | 12.3 | 25.5 | |
European larch | Bielsk | 25.8 | 20.9 | 1.9 | 4.6 | 3.4 | 0.8 | 18.0 | 16.2 | 41.1 |
Maskulińskie | 37.6 | 22.5 | 3.8 | 3.9 | 2.0 | 0.9 | 10.4 | 9.1 | 23.2 |
Species | Gross/Net Calorific Value | Standard Deviation | Factor of Variation | ||
---|---|---|---|---|---|
Mean | Min | Max | |||
Norway spruce | 20.08/18.78 | 18.49/17.19 | 21.05/19.75 | 0.87 | 4.66 |
Scots pine | 19.04/17.74 | 17.74/16.44 | 19.86/18.56 | 0.70 | 3.94 |
European larch | 20.37/19.07 | 19.38/18.08 | 20.96/19.66 | 0.48 | 2.54 |
Silver fir | 20.79/19.49 | 19.81/18.51 | 21.85/20.55 | 0.61 | 3.14 |
Species | Mean | Min | Max | Standard Deviation |
---|---|---|---|---|
Scots pine | 0.33 | 0.29 | 0.38 | 0.03 |
Norway spruce | 1.42 | 1.34 | 1.56 | 0.08 |
European larch | 1.55 | 1.23 | 2.07 | 0.27 |
Silver fir | 2.12 | 1.77 | 2.50 | 0.27 |
Species | Site | Mean | Min | Max | Standard Deviation | Factor of Variation |
---|---|---|---|---|---|---|
Norway spruce | Żednia | 111.40 | 109.28 | 114.98 | 1.93 | 1.73 |
Głęboki Bród | 122.02 | 116.62 | 125.18 | 3.96 | 3.24 | |
Bielsk(1) | 113.72 | 111.31 | 117.02 | 2.32 | 2.04 | |
Płaska(1) | 109.99 | 108.87 | 112.95 | 1.98 | 1.80 | |
Waliły | 118.27 | 113.00 | 125.00 | 3.28 | 2.78 | |
Scots pine | Dojlidy | 214.88 | 204.69 | 224.26 | 7.74 | 3.60 |
Szczebra | 195.96 | 190.01 | 203.47 | 4.95 | 2.53 | |
Czarna Białostocka | 189.76 | 188.38 | 191.23 | 1.10 | 0.58 | |
Płaska | 213.80 | 206.00 | 227.00 | 5.53 | 2.59 | |
European larch | Maskulińskie | 223.87 | 219.00 | 230.00 | 2.97 | 1.33 |
Bielsk | 195.77 | 186.54 | 204.69 | 7.43 | 3.79 | |
Silver fir | Poddębice | 127.8 | 125.00 | 129.00 | 1.79 | 1.40 |
Species | Site | Mean | Standard Deviation | Factor of Variation |
---|---|---|---|---|
Norway spruce | Żednia | 0.20 | 0.01 | 6.99 |
Głęboki Bród | 0.19 | 0.01 | 2.60 | |
Bielsk(1) | 0.18 | <0.01 | <0.01 | |
Płaska(1) | 0.18 | 0.01 | 2.74 | |
Waliły | 0.23 | 0.02 | 10.83 | |
Scots pine | Dojlidy | 0.27 | 0.01 | 3.12 |
Szczebra | 0.24 | 0.01 | 2.24 | |
Czarna Białostocka | 0.24 | <0.01 | 1.85 | |
Płaska | 0.26 | 0.01 | 5.12 | |
European larch | Maskulińskie | 0.55 | 0.01 | 0.94 |
Bielsk | 0.32 | 0.01 | 2.55 | |
Silver fir | Poddębice | 0.22 | 0.02 | 9.60 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aniszewska, M.; Gendek, A.; Zychowicz, W. Analysis of Selected Physical Properties of Conifer Cones with Relevance to Energy Production Efficiency. Forests 2018, 9, 405. https://doi.org/10.3390/f9070405
Aniszewska M, Gendek A, Zychowicz W. Analysis of Selected Physical Properties of Conifer Cones with Relevance to Energy Production Efficiency. Forests. 2018; 9(7):405. https://doi.org/10.3390/f9070405
Chicago/Turabian StyleAniszewska, Monika, Arkadiusz Gendek, and Witold Zychowicz. 2018. "Analysis of Selected Physical Properties of Conifer Cones with Relevance to Energy Production Efficiency" Forests 9, no. 7: 405. https://doi.org/10.3390/f9070405
APA StyleAniszewska, M., Gendek, A., & Zychowicz, W. (2018). Analysis of Selected Physical Properties of Conifer Cones with Relevance to Energy Production Efficiency. Forests, 9(7), 405. https://doi.org/10.3390/f9070405