Frequency of False Heartwood of Stems of Poplar Growing on Farmland in Sweden
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
Location | Age, | DBH, mm | Height, | No. of | Basal area | Soil type | Variety 1 |
---|---|---|---|---|---|---|---|
no. | years | Mean ± SE | m | stems ha−1 | m2 ha−1 | ||
1 | 18 | 248 ± 3 | 24.0 | 875 | 42.3 | Light clay | 2 |
2 | 21 | 330 ± 5 | 29.2 | 361 | 30.9 | Light clay | |
3 | 20 | 277 ± 4 | 24.5 | 549 | 33.1 | Light clay | 4 |
4 | 41 | 279 ± 11 | 22.0 | 1281 | 78.3 | Light clay | 2 |
5 | 23 | 196 ± 7 | 22.8 | 632 | 19.1 | Light clay | 1 |
6 | 34 | 306 ± 8 | 25.7 | 840 | 61.8 | Light clay | 1 |
7 | 23 | 186 ± 5 | 21.2 | 966 | 26.2 | Light clay | 2 |
8 | 16 | 128 ± 8 | 20.2 | 3279 | 42.2 | Light clay | 2 |
9 | 19 | 246 ± 4 | 28.5 | 1250 | 59.4 | Medium clay | 2 |
10 | 34 | 291 ± 8 | 27.2 | 398 | 26.5 | Medium clay | 1 |
11 | 24 | 293 ± 3 | 25.9 | 457 | 30.8 | Light clay | 3 |
12 | 19 | 193 ± 7 | 14.5 | 1111 | 32.5 | Medium clay | 3 |
13 | 20 | 182 ± 7 | 14.6 | 1111 | 28.9 | Medium clay | 3 |
14 | 20 | 174 ± 10 | 20.1 | 800 | 19.0 | Medium clay | 3 |
15 | 23 | 256 ± 9 | 22.0 | 1005 | 51.7 | Medium clay | 4 |
16 | 20 | 236 ± 7 | 22.5 | 1015 | 44.4 | Medium clay | 1 |
17 | 21 | 186 ± 7 | 24.6 | 1200 | 32.6 | Light clay | 3 |
18 | 14 | 121 ± 5 | 17.8 | 3493 | 40.2 | Light clay | 2 |
19 | 19 | 283 ± 9 | 29.1 | 506 | 31.8 | Light clay tills | 2 |
20 | 19 | 280 ± 4 | 27.6 | 440 | 27.1 | Light clay tills | 2 |
21 | 32 | 447 ± 11 | 22.1 | 155 | 24.3 | Light clay | 2 |
22 | 20 | 267 ± 6 | 24.5 | 520 | 29.1 | Silty tills | 2 |
Mean ± SD | 23 ± 7 | 246 ± 73 | 23.2 ± 4.1 | 1011 ± 834 | 36.9 ± 14.8 | ||
Range | 14–41 | 121–447 | 14.5–29.2 | 155–3493 | 19.0–78.3 |
2.2. Methods
Stand no. | Tree no. | Age, years | DBH, mm | Height, m | Crown level, m | Soil type | Variety 1 |
---|---|---|---|---|---|---|---|
1 | 1 | 18 | 288 | 25.0 | 10.7 | Light clay | 2 |
2 | 1 | 21 | 512 | 23.0 | 7.2 | Light clay | |
3 | 1 | 20 | 251 | 20.5 | 3.8 | Light clay | 4 |
4 | 1 | 41 | 442 | 21.3 | 5.6 | Light clay | 2 |
4 | 2 | 41 | 292 | 22.8 | 6.5 | Light clay | 2 |
5 | 1 | 23 | 175 | 21.0 | 4.6 | Light clay | 1 |
5 | 2 | 23 | 266 | 21.3 | 4.9 | Light clay | 1 |
6 | 1 | 34 | 403 | 25.7 | 9.6 | Light clay | 1 |
6 | 2 | 34 | 243 | 23.2 | 10.9 | Light clay | 1 |
7 | 1 | 23 | 245 | 21.6 | 5.9 | Light clay | 2 |
7 | 2 | 23 | 172 | 21.2 | 5.0 | Light clay | 2 |
7 | 3 | 23 | 218 | 19.4 | 5.4 | Light clay | 2 |
8 | 1 | 16 | 145 | 20.2 | 3.9 | Light clay | 2 |
8 | 2 | 16 | 140 | 18.1 | 5.0 | Light clay | 2 |
8 | 3 | 16 | 124 | 18.2 | 5.4 | Light clay | 2 |
8 | 4 | 16 | 170 | 21.1 | 4.0 | Light clay | 2 |
9 | 1 | 19 | 431 | 26.8 | 7.3 | Medium clay | 2 |
10 | 1 | 34 | 456 | 32.1 | 14.3 | Medium clay | 1 |
11 | 1 | 24 | 338 | 24.3 | 7.6 | Light clay | 3 |
11 | 2 | 24 | 270 | 27.5 | 8.9 | Light clay | 3 |
12 | 1 | 19 | 227 | 21.4 | 5.0 | Medium clay | 3 |
12 | 2 | 19 | 195 | 21.0 | 8.6 | Medium clay | 3 |
13 | 1 | 20 | 237 | 22.4 | 5.1 | Medium clay | 3 |
13 | 2 | 20 | 185 | 20.4 | 6.1 | Medium clay | 3 |
14 | 1 | 20 | 234 | 21.8 | 6.8 | Medium clay | 3 |
14 | 2 | 20 | 189 | 19.9 | 5.5 | Medium clay | 3 |
15 | 1 | 23 | 269 | 22.7 | 6.6 | Medium clay | 4 |
15 | 2 | 23 | 203 | 22.3 | 9.8 | Medium clay | 4 |
16 | 1 | 20 | 235 | 21.5 | 3.7 | Medium clay | 1 |
16 | 2 | 20 | 258 | 23.4 | 4.8 | Medium clay | 1 |
17 | 1 | 21 | 439 | 24.0 | 9.7 | Light clay | 3 |
17 | 2 | 21 | 337 | 25.1 | 13.2 | Light clay | 3 |
18 | 1 | 14 | 160 | 17.8 | 9.3 | Light clay | 2 |
18 | 2 | 14 | 147 | 16.7 | 7.9 | Light clay | 2 |
19 | 1 | 19 | 488 | 28.8 | 6.1 | Light clay tills | 2 |
19 | 2 | 19 | 411 | 30.0 | 12.3 | Light clay tills | 2 |
19 | 3 | 19 | 183 | 22.7 | 10.5 | Light clay tills | 2 |
20 | 1 | 19 | 231 | 25.2 | 9.2 | Light clay tills | 2 |
20 | 2 | 19 | 351 | 27.6 | 8.5 | Light clay tills | 2 |
21 | 1 | 32 | 487 | 21.2 | 5.3 | Light clay | 2 |
22 | 1 | 20 | 325 | 23.8 | 8.3 | Silty tills | 2 |
22 | 2 | 20 | 261 | 23.0 | 9.3 | Silty tills | 2 |
Mean ± SD | 22 ± 6 | 227 ± 108 | 22.8 ± 3.3 | 7.3 ± 2.7 | |||
Range | 14–41 | 124–512 | 16.7–30.0 | 3.7–14.3 |
2.3. Soil Analysis
2.4. Data Analyses
3. Results and Discussion
3.1. Characteristics of the Distribution of False Heartwood in Stems
1% | 10% | 30% | 50% | 70% | 90% |
---|---|---|---|---|---|
100 | 100 | 100 | 95 | 81 | 33 |
Components | Parameter | Parameter estimates | Standard errors of parameters | R2 | RMSE | Pr > F |
---|---|---|---|---|---|---|
Function 1 | ||||||
1% | β0 | −3.3056 | 2.1435 | 0.79 | 31.2586 | <0.0001 |
β1 | 0.5954 | 0.0074 | ||||
10% | β0 | 30.2223 | 2.3097 | 0.59 | 33.6823 | <0.0001 |
β1 | 0.3922 | 0.0515 | ||||
30% | β0 | 0.6907 | 1.3919 | 0.75 | 20.2978 | <0.0001 |
β1 | 0.3425 | 0.0311 | ||||
50% | β0 | −3.8786 | 1.0905 | 0.70 | 15.9028 | <0.0001 |
β1 | 0.2371 | 0.0037 | ||||
70% | β0 | −8.6974 | 0.9339 | 0.45 | 13.6198 | <0.0001 |
β1 | 0.1188 | 0.0032 | ||||
90% | β0 | 1.1242 | 0.2780 | 0.02 | 4.0548 | <0.0001 |
β1 | 0.0054 | 0.0010 | ||||
Function 2 | ||||||
1% | β0 | 0.5532 | 0.0422 | 0.97 | 31.2730 | <0.0001 |
β1 | 1.0095 | 0.0131 | ||||
10% | β0 | 1.5461 | 0.1458 | 0.95 | 19.2008 | <0.0001 |
β1 | 0.8012 | 0.0164 | ||||
30% | β0 | 0.3959 | 0.0329 | 0.96 | 20.2731 | <0.0001 |
β1 | 0.9761 | 0.0144 | ||||
50% | β0 | 0.2126 | 0.0215 | 0.94 | 15.9593 | <0.0001 |
β1 | 1.0094 | 0.0175 | ||||
70% | β0 | 0.0117 | 0.0027 | 0.80 | 13.6198 | <0.0001 |
β1 | 1.3520 | 0.0397 | ||||
90% | β0 | 0.1174 | 0.0677 | 0.31 | 4.0431 | <0.0001 |
β1 | 0.5558 | 0.1012 |
Source of variation | Degree of freedom | F | P |
---|---|---|---|
A (Clones) | 3 | 0.37 | 0.7725 |
B (Soil types) | 2 | 0.08 | 0.9224 |
AxB | 3 | 0.37 | 0.7753 |
Error | 40 | ||
Total | |||
DBH | 23 | 1.35 | 0.2614 |
Error | 19 | ||
Total | 42 | ||
Stem number | 23 | 1.15 | 0.3883 |
Error | 19 | ||
Total | 42 |
Diameter at breast height, mm | ||||||||
---|---|---|---|---|---|---|---|---|
150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | |
% FHW by total volume | 12.5 | 14.2 | 15.8 | 17.2 | 18.4 | 19.6 | 20.7 | 21.7 |
5. Conclusions
Acknowledgments
Conflict of Interest
References
- Christersson, L. Future research on hybrid aspen and hybrid poplar cultivation in Sweden. Biomass Bioenergy 1996, 11, 109–113. [Google Scholar] [CrossRef]
- Johansson, T.; Karačić, A. Increment and biomass in hybrid poplar and some practical Implications. Biomass Bioenergy 2011, 35, 1925–1934. [Google Scholar] [CrossRef]
- Klasnja, B.; Kopiovic, S.J.; Orlovic, S. Variability of some wood properties of eastern cottonwood (Populus deltoides Bartr.) clones. Wood Sci. Technol. 2003, 37, 331–337. [Google Scholar]
- Hofstra, T.S.; Stromberg, J.C.; Stutz, J.C. Factors associated with wetwood intensity of Populus fremonii (Fremont cottonwood) in Arizona. Great Basin Naturalist 1999, 59, 85–91. [Google Scholar]
- Nečesany, V. Classification of beech hearts. Drevo 1956, 11, 93–98. [Google Scholar]
- Pryor, S.N. The Silviculture and Yield of Wild Cherry; Forestry Commission. Bull. No. 75; Forestry Commission: London, UK, 1988; pp. 1–23. [Google Scholar]
- Drouin, M.; Beauregard, R.; Duchesne, I. Variability of wood color in paper birch in Quebec. Wood Fiber Sci. 2009, 41, 333–345. [Google Scholar]
- Luostarinen, K.; Verkasalo, E. Birch as sawn timber and in mechanical further processing in Finland. A literature study. Silva Fenn. Monogr. 2000, 1, 1–40. [Google Scholar]
- Benic, R. Estimation of the proportion of brown heart in the stem of Fraxinus angustifolia. Sum. List. 1954, 78, 365–379. [Google Scholar]
- Jorgensen, E. Observations on the formation of protection wood. For. Chron. 1962, 38, 292–294. [Google Scholar]
- Siegle, H. Microbiological and biochemical aspects of heartwood stain in Betula papyrifera Marsh. Can. J. For. Res. 1967, 7, 219–226. [Google Scholar]
- Shigo, A.L. Successions of organisms in discoloration and decay of wood. In International Review of Forestry Research; Romberger, J.A., Mikola, P., Eds.; Academic Press: New York, NY, USA, 1967; Volume 2, pp. 237–299. [Google Scholar]
- Shigo, A.L.; Larson, E.H. A Photo Guide to the Patterns of Discoloration and Decay in Living Northern Hardwood Trees; United States of Department of Agriculture (USDA), Forest Service, Northeastern Forest Experimental Station: Upper Darby, PA, USA, 1969; pp. 1–100. [Google Scholar]
- Shigo, A.L. A New Tree Biology: Facts, Photos and Philosophies on Trees and Their Problems and Proper Care; Shigo and Trees Associates: Durham, UK, 1986; pp. 1–132. [Google Scholar]
- Shigo, A.L.; Hillis, W.E. Heartwood, discolored wood and microorganisms in living trees. Ann. Rev. Phytopathol. 1973, 11, 197–222. [Google Scholar] [CrossRef]
- Basham, J.T. Stem Decay in Living Trees in Ontario’s Forests: A Users’ Compendium and Guide; Canadian Forest Service Great Lakes Forest Central Information Report 0-X-408; Forestry Canada, Ontario Region: Sault Ste. Marie, Canada, 1991; pp. 1–69. [Google Scholar]
- Kerr, G. A review of black heart of ash (Fraxinus excelsior L.). Forestry 1998, 71, 49–56. [Google Scholar]
- Hörnfeldt, R.; Droin, M.; Woxblom, L. False heartwood in beech Fagus sylvatica, birch Betula pendula, B. papyrifera and ash Fraxinus excelsior—An overview. Ecol. Bull. 2010, 53, 61–75. [Google Scholar]
- Ward, J.C.; Pong, W.Y. Wetwood in Trees: A timber Resource Problem; General Technical Report PNW-112; United State Department of Agriculture (USDA), Forest Service, Pacific Northwest Forest and Range Experimental Station: Portland, OR, USA, 1980; pp. 1–57. [Google Scholar]
- Hartley, C.; Davidson, R.W.; Crandell, B.S. Wetwood, Bacteria and Increased pH in Trees; United State Department of Agriculture (USDA), Forest Service, Forest Products Lab Report 2215: Madison, WI, USA, 1961. [Google Scholar]
- Wallin, W.B. Wetwood in balsam poplar. Minn. Fore. Notes 1954, 28, 1–2. [Google Scholar]
- Tiedemann, G.; Bauch, J.; Bock, E. Occurrence and significance of bacteria in living trees of Populus nigra L. Eur. J. For. Path. 1977, 7, 364–374. [Google Scholar] [CrossRef]
- Scott, E.S. Populations of bacteria in poplar stems. Eur. J. For. Path. 1984, 14, 103–112. [Google Scholar] [CrossRef]
- Bauch, J. Discoloration in the wood of living and cut trees. IAWA. Bull. N.S. 1984, 5, 92–98. [Google Scholar]
- Wang, X.; Jiang, Z.; Ren, H. Distribution of wet heartwood in stems of Populus xiaohei from a spacing trial. Scand. J. For. Res. 2008, 23, 38–45. [Google Scholar] [CrossRef]
- Hiratsuka, Y.; Loman, A.A. Decay of Aspen and Balsam Poplar in Alberta; Northern Forest Research Centre. Canadian Forest Service Environment: Alberta, Canada, 1984. [Google Scholar]
- Sachs, I.B.; Ward, J.C.; Kinney, R.E. Scanning electron microscopy of bacterial wetwood on a normal heartwood in poplar trees. In Proceedings of the 7th Annual Scanning Electron Microscopy Symposium: Part II, Chicago, IL, USA, 10–11 April 1974; pp. 453–460.
- Boone, R.S. Sorting aspen bolts and drying aspen flitches for SDR. Gen. Tech. Rep. NC-140. In Proceedings of Aspen Symposium “89”, Duluth, MN, USA, 25–27 July 1989; Adam, R.D., Ed.; United States Department of Agriculture (USDA), Forest Service North Central Forest Experimental Station: Saint Paul, MN, USA, 1990; pp. 295–299. [Google Scholar]
- Mackay, J.F.G. Properties of Northern aspen discolored wood related to drying problems. Wood Fiber 1975, 6, 319–325. [Google Scholar]
- Johansson, T. Biomass equations for determining fractions of pendula and pubescent birches growing on abandoned farmland and some practical implications. Biomass Bioenerg. 1999, 16, 223–238. [Google Scholar] [CrossRef]
- Payandeh, B. Choosing regression models for biomass prediction models. For. Chron. 1981, 57, 229–232. [Google Scholar]
- SAS, Version 9.1; SAS Institute Inc.: Cary, NC, USA, 2006.
- Zar, J.H. Biostatistical Analysis; Prentice Hall: Englewood Cliffs, NJ, USA, 1999. [Google Scholar]
- Hjelm, B. Taper and Volume Equations for Poplar Trees Growing on Farmland in Sweden; Report 29. Licentiate Thesis, Department of Energy and Technology, Swedish University of Agricultural Sciences, 2011. [Google Scholar]
- Jiang, Z.-H.; Wang, X.Q.; Fei, B.-H.; Ren, H.-Q.; Lin, X.E. Effect of stand tree attributes on growth and wood quality characteristics from a spacing trial with Populus ziaohei. Ann. For. Sci. 2007, 64, 807–814. [Google Scholar] [CrossRef]
- Garret, P.W.; Shigo, A.L.; Carter, J. Variation in diameter of central columns of discoloration in six hybrid poplar clones. Can. J. For. Res. 1976, 6, 475–477. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Johansson, T.; Hjelm, B. Frequency of False Heartwood of Stems of Poplar Growing on Farmland in Sweden. Forests 2013, 4, 28-42. https://doi.org/10.3390/f4010028
Johansson T, Hjelm B. Frequency of False Heartwood of Stems of Poplar Growing on Farmland in Sweden. Forests. 2013; 4(1):28-42. https://doi.org/10.3390/f4010028
Chicago/Turabian StyleJohansson, Tord, and Birger Hjelm. 2013. "Frequency of False Heartwood of Stems of Poplar Growing on Farmland in Sweden" Forests 4, no. 1: 28-42. https://doi.org/10.3390/f4010028
APA StyleJohansson, T., & Hjelm, B. (2013). Frequency of False Heartwood of Stems of Poplar Growing on Farmland in Sweden. Forests, 4(1), 28-42. https://doi.org/10.3390/f4010028