Evaluating Crown Defoliation Thresholds for the Identification of Trees Targeted for Sanitary Felling
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eichhorn, J.; Roskams, P.; Potočić, N.; Timmermann, V.; Ferretti, M.; Mues, V.; Szepesi, A.; Durrant, D.; Seletković, I.; Schroeck, H.-W.; et al. Part IV: Visual Assessment of Crown Condition and Damaging Agents. Version 2020-3. In Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests; UNECE ICP Forests Programme Coordinating Centre, Ed.; Thünen Institute of Forest Ecosystems: Eberswalde, Germany, 2020; p. 49. ISBN 978-3-86576-162-0. [Google Scholar]
- Ognjenović, M.; Seletković, I.; Potočić, N.; Marušić, M.; Tadić, M.P.; Jonard, M.; Rautio, P.; Timmermann, V.; Lovreškov, L.; Ugarković, D. Defoliation Change of European Beech (Fagus sylvatica L.) Depends on Previous Year Drought. Plants 2022, 11, 730. [Google Scholar] [CrossRef]
- Dobbertin, M.; Brang, P. Crown Defoliation Improves Tree Mortality Models. For. Ecol. Manag. 2001, 141, 271–284. [Google Scholar] [CrossRef]
- Ognjenović, M.; Levanič, T.; Potočić, N.; Ugarković, D.; Indir, K.; Seletković, I. Interrelations of Various Tree Vitality Indicators and Their Reaction to Climatic Conditions on a European Beech (Fagus sylvatica L.) Plot. Šumar. List 2020, 144, 351–365. [Google Scholar] [CrossRef]
- Ferretti, M.; Waldner, P.; Verstraeten, A.; Schmitz, A.; Michel, A.; Žlindra, D.; Marchetto, A.; Hansen, K.; Pitar, D.; Gottardini, E.; et al. Criterion 2: Maintenance of Forest Ecosystem Health and Vitality. In FOREST EUROPE, 2020: State of Europe’s Forests 2020; Ministerial Conference on the Protection of Forests in Europe—Liaison Unit Bratislava: Zvolen, Slovak Republic, 2020. [Google Scholar]
- Ugarković, D.; Tikvić, I.; Seletković, Z. Odnos stanišnih i strukturnih čimbenika prema odumiranju i ishrani stabala obične jele (Abies alba Mill.) u Gorskom kotaru. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2011, 32, 57–69. [Google Scholar]
- Waring, R.H. Characteristics of Trees Predisposed to Die. Bioscience 1987, 37, 569–574. [Google Scholar] [CrossRef]
- Wolf-Crowther, M.; Mozes, C.; Laczko, R. Forestry in the EU and the World: A Statistical Portrait; Office for Official Publications of the European Communities: Luxembourg, 2011; ISBN 92-79-19988-9. [Google Scholar]
- Gregory, S.V. Riparian Management in the 21st Century. In Creating a Forestry for the 21st Century; Island Press: Washington, DC, USA, 1997; pp. 69–85. [Google Scholar]
- McIver, J.D.; Starr, L. Environmental Effects of Postfire Logging: Literature Review and Annotated Bibliography; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2000.
- Nappi, A.; Drapeau, P.; Savard, J.-P.L. Salvage Logging after Wildfire in the Boreal Forest: Is It Becoming a Hot Issue for Wildlife? For. Chron. 2004, 80, 67–74. [Google Scholar] [CrossRef]
- Stuart, J.D.; Grifantini, M.C.; Fox III, L. Early Successional Pathways Following Wildfire and Subsequent Silvicultural Treatment in Douglas-Fir/Hardwood Forests, NW California. For. Sci. 1993, 39, 561–572. [Google Scholar] [CrossRef]
- Brooks, R.T. Effects of the Removal of Overstory Hemlock from Hemlock-Dominated Forests on Eastern Redback Salamanders. For. Ecol. Manag. 2001, 149, 197–204. [Google Scholar] [CrossRef]
- Shore, T.L.; Brooks, J.E.; Stone, J.E. Mountain Pine Beetle Symposium: Challenges and Solutions; Information report [BC-X-series]; Natural Resources: Victoria, BC, Canada, 2004; p. 287. [Google Scholar]
- Radeloff, V.C.; Mladenoff, D.J.; Boyce, M.S. Effects of Interacting Disturbances on Landscape Patterns: Budworm Defoliation and Salvage Logging. Ecol. Appl. 2000, 10, 233–247. [Google Scholar] [CrossRef]
- Elliott, K.J.; Hitchcock, S.L.; Krueger, L. Vegetation Response to Large Scale Disturbance in a Southern Appalachian Forest: Hurricane Opal and Salvage Logging. J. Torrey Bot. Soc. 2002, 129, 48. [Google Scholar] [CrossRef]
- Foster, D.R.; Aber, J.D.; Melillo, J.M.; Bowden, R.D.; Bazzaz, F.A. Forest Response to Disturbance and Anthropogenic Stress. BioScience 1997, 47, 437–445. [Google Scholar] [CrossRef]
- Greenberg, C.H. Response of White-Footed Mice (Peromyscus Leucopus) to Coarse Woody Debris and Microsite Use in Southern Appalachian Treefall Gaps. For. Ecol. Manag. 2002, 164, 57–66. [Google Scholar] [CrossRef]
- Morissette, J.L.; Cobb, T.P.; Brigham, R.M.; James, P.C. The Response of Boreal Forest Songbird Communities to Fire and Post-Fire Harvesting. Can. J. For. Res. 2002, 32, 2169–2183. [Google Scholar] [CrossRef]
- Lindenmayer, D.; Noss, R. Salvage Logging, Ecosystem Processes, and Biodiversity Conservation. Conserv. Biol. 2006, 20, 949–958. [Google Scholar] [CrossRef]
- Tikvić, I.; Zečić, Ž.; Ugarković, D.; Posarić, D. Oštećenost Stabala i Kakvoća Drvnih Sortimenata Hrasta Lužnjaka Na Spačvanskom Području. Šumarski List 2009, 133, 237–248. [Google Scholar]
- Ursić, B.; Zečić, Ž.; Vusić, D. Quantity and Quality of Narrow-Leaved Ash (Fraxinus angustifolia Vahl) Wood Forest Products in Relation to Tree Crown Defoliation. Forests 2025, 16, 147. [Google Scholar] [CrossRef]
- Pravilnik o Doznaci Stabala, Obilježbi Šumskih Proizvoda, Teretnom Listu I Šumskom Redu (NN 71/2019). 2019. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2019_07_71_1506.html (accessed on 20 June 2025).
- Hilmers, T.; Leroy, B.M.L.; Bae, S.; Hahn, W.A.; Hochrein, S.; Jacobs, M.; Lemme, H.; Müller, J.; Schmied, G.; Weisser, W.W.; et al. Growth Response of Oaks to Insect Defoliation: Immediate and Intermediate Perspectives. For. Ecol. Manag. 2023, 549, 121465. [Google Scholar] [CrossRef]
- Anon Pravilnik o Doznaci Stabala, Obilježavanju Drvnih Sortimenata, Popratnici i Šumskom Redu. Narodne Novine 116/06. 2006. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2006_10_116_2588.html (accessed on 20 June 2025).
- Thomas, F.M.; Blank, R.; Hartmann, G. Abiotic and Biotic Factors and Their Interactions as Causes of Oak Decline in Central Europe. For. Pathol. 2002, 32, 277–307. [Google Scholar] [CrossRef]
- Manion, P.; Lachance, D. Forest Decline Concepts: An Overview. Forest Decline Concepts; American Phytopathological Society: St. Paul, MN, USA, 1992; pp. 181–190. [Google Scholar]
- Cailleret, M.; Nourtier, M.; Amm, A.; Durand-Gillmann, M.; Davi, H. Drought-Induced Decline and Mortality of Silver Fir Differ among Three Sites in Southern France. Ann. For. Sci. 2014, 71, 643–657. [Google Scholar] [CrossRef]
- Villalba, R.; Veblen, T.T. Influences of Large-Scale Climatic Variability on Episodic Tree Mortality in Northern Patagonia. Ecology 1998, 79, 2624–2640. [Google Scholar] [CrossRef]
- Linares, J.C.; Tíscar, P.A. Climate Change Impacts and Vulnerability of the Southern Populations of Pinus Nigra Subsp. Salzmannii. Tree Physiol. 2010, 30, 795–806. [Google Scholar] [CrossRef] [PubMed]
- Franklin, J.F.; Shugart, H.H.; Harmon, M.E. Tree Death as an Ecological Process. BioScience 1987, 37, 550–556. [Google Scholar] [CrossRef]
- Dobbertin, M. Tree Growth as Indicator of Tree Vitality and of Tree Reaction to Environmental Stress: A Review. Eur. J. For. Res. 2005, 124, 319–333. [Google Scholar] [CrossRef]
- van Mantgem, P.J.; Stephenson, N.L.; Byrne, J.C.; Daniels, L.D.; Franklin, J.F.; Fulé, P.Z.; Harmon, M.E.; Larson, A.J.; Smith, J.M.; Taylor, A.H.; et al. Widespread Increase of Tree Mortality Rates in the Western United States. Science 2009, 323, 521–524. [Google Scholar] [CrossRef] [PubMed]
- De Vries, W.; Klap, J.M.; Erisman, J.W. Effects of Environmental Stress on Forest Crown Condition in Europe. Part I: Hypotheses and Approach to the Study. Water Air Soil Pollut. 2000, 119, 317–333. [Google Scholar] [CrossRef]
- Dubravac, T.; Dekanić, S.; Roth, V. Dinamika štećenosti i Struktura Krošanja Stabala Hrasta Lužnjaka u Šumskim Zajednicama Na Gredi i u Nizi–Rezultati Motrenja Na Trajnim Pokusnim Plohama. Šumarski List 2011, 135, 74–89. [Google Scholar]
- Štraus, H.; Bončina, A. The Vulnerability of Four Main Tree Species in European Forests to Seven Natural Disturbance Agents: Lessons from Slovenia. Eur. J. Forest Res. 2025, 144, 267–282. [Google Scholar] [CrossRef]
- Reiter, E.J.; Weigel, R.; Leuschner, C. Losing Half the Crown Hardly Affects the Stem Growth of a Xeric Southern Beech Population. Sci. Rep. 2025, 15, 5721. [Google Scholar] [CrossRef]
- Rohner, B.; Kumar, S.; Liechti, K.; Gessler, A.; Ferretti, M. Tree Vitality Indicators Revealed a Rapid Response of Beech Forests to the 2018 Drought. Ecol. Indic. 2021, 120, 106903. [Google Scholar] [CrossRef]
- Seletković, Z.; Tikvić, I.; Prpić, B. Ecological Constitution of Common Beech. In Common Beech (Fagus sylvatica L.) in Croatia; Matić, S., Ed.; Academy of Forestry Sciences: Zagreb, Croatia, 2003. [Google Scholar]
- Prpić, B.; Seletković, Z. Jele. In Obična jela u Hrvatskoj; Prpić, B., Ed.; Akademija Šumarskih Znanosti: Zagreb, Croatia, 2001; pp. 255–276. ISBN 953-98571-0-4. [Google Scholar]
- Quer, E.; Baldy, V.; DesRochers, A. Ecological Drivers of Root Grafting in Balsam Fir Natural Stands. For. Ecol. Manag. 2020, 475, 118388. [Google Scholar] [CrossRef]
- Gradečki-Poštenjak, M.; Ćelepirović, N. The Influence of Crown Defoliation on the Variability of Some Physiological and Morphological Properties of Silver Fir (Abies alba) Seeds in the Seed Zone of Dinaric Beech-Fir Forests in Croatia. Period. Biol. 2015, 117, 479–492. [Google Scholar] [CrossRef]
- Bussotti, F.; Papitto, G.; Di Martino, D.; Cocciufa, C.; Cindolo, C.; Cenni, E.; Bettini, D.; Iacopetti, G.; Pollastrini, M. Defoliation, Recovery and Increasing Mortality in Italian Forests: Levels, Patterns and Possible Consequences for Forest Multifunctionality. Forests 2021, 12, 1476. [Google Scholar] [CrossRef]
- Ducousso, A.; Bordacs, S. EUFORGEN Technical Guidelines for Genetic Conservation and Use for Pedunculate and Sessile Oaks (Quercus Robur) and (Quercus Petraea); Bioversity International: Rome, Italy, 2003; ISBN 92-9043-660-3. [Google Scholar]
- Eaton, E.; Caudullo, G.; Oliveira, S.; De Rigo, D. Quercus Robur and Quercus Petraea in Europe: Distribution, Habitat, Usage and Threats. Eur. Atlas For. Tree Species 2016, 14, 160–163. [Google Scholar]
- CABI Compendium Forestry. Available online: https://www.cabidigitallibrary.org/product/qf (accessed on 8 July 2025).
- Bussotti, F.; Potočić, N.; Timmermann, V.; Lehmann, M.M.; Pollastrini, M. Tree Crown Defoliation in Forest Monitoring: Concepts, Findings, and New Perspectives for a Physiological Approach in the Face of Climate Change. For. Int. J. For. Res. 2024, 97, 194–212. [Google Scholar] [CrossRef]
- Đuka, A.; Franjević, M.; Tomljanović, K.; Popović, M.; Ugarković, D.; Teslak, K.; Barčić, D.; Žagar, K.; Palatinuš, K.; Papa, I. A Decade of Sanitary Fellings Followed by Climate Extremes in Croatian Managed Forests. Land 2025, 14, 766. [Google Scholar] [CrossRef]
- Sperlich, D.; Hanewinkel, M.; Yousefpour, R. Aiming at a Moving Target: Economic Evaluation of Adaptation Strategies under the Uncertainty of Climate Change and CO2 Fertilization of European Beech (Fagus sylvatica L.) and Silver Fir (Abies alba Mill.). Ann. For. Sci. 2024, 81, 4. [Google Scholar] [CrossRef]
- Beljan, K.; Posavec, S.; Čavlović, J.; Teslak, K.; Knoke, T. Economic Consequences of Different Management Approaches to Even-Aged Silver Fir Forests. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2018, 39, 299–312. [Google Scholar]
- Klein, J.; Moeschberger, M. Survival Analysis: Techniques for Censored and Truncated Data. In Statistics for Biology and Health, 2nd ed.; Springer: New York, NY, USA, 2003; ISBN 978-0-387-95399-1. [Google Scholar]
- SAS Institute Inc. SAS/STAT® 15.3 User’s Guide 2023; SAS Institute Inc.: Cary, NC, USA, 2023. [Google Scholar]
- Business Report 2023; Hrvatske Šume, d.o.o.: Zagreb, Croatia, 2024.
- Redfern, D.B.; Boswell, R.C. Assessment of Crown Condition in Forest Trees: Comparison of Methods, Sources of Variation and Observer Bias. For. Ecol. Manag. 2004, 188, 149–160. [Google Scholar] [CrossRef]
- Petráš, R. Reduction of Timber Value from Damaged Spruce Stands after Their Dieback. J. For. Sci. 2002, 48, 80–87. [Google Scholar] [CrossRef]
- Ursić, B.; Vusić, D. Pedunculate Oak (Quercus robur L.) Crown Defoliation as an Indicator of Timber Value. Forests 2025, 16, 1111. [Google Scholar] [CrossRef]
- Lowell, E.C. Deterioration of Fire-Killed and Fire-Damaged Timber in the Western United States; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1992; Volume 292.
- Prestemon, J.P.; Wear, D.N.; Stewart, F.J.; Holmes, T.P. Wildfire, Timber Salvage, and the Economics of Expediency. For. Policy Econ. 2006, 8, 312–322. [Google Scholar] [CrossRef]
- Home | Forest Stewardship Council. Available online: https://fsc.org/en (accessed on 7 July 2025).
- Forest Information System of Europe. Available online: https://forest.eea.europa.eu (accessed on 7 July 2025).
- Sessions, J.; Bettinger, P.; Buckman, R.; Newton, M.; Hamann, J. Hastening the Return of Complex Forests Following Fire: The Consequences of Delay. J. For. 2004, 102, 38–45. [Google Scholar] [CrossRef]
- Brown, J.K. Coarse Woody Debris: Managing Benefits and Fire Hazard in the Recovering Forest; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2003.
- Pousette, J.; Hawkins, C. An Assessment of Critical Assumptions Supporting the Timber Supply Modelling for Mountain-Pine-Beetle-Induced Allowable Annual Cut Uplift in thePrince George Timber Supply Area. J. Ecosyst. Manag. 2006, 7, 93–104. [Google Scholar] [CrossRef]
- Oszlányi, J. Forest Health and Environmental Pollution in Slovakia. Environ. Pollut. 1997, 98, 389–392. [Google Scholar] [CrossRef]
- Schmid, S.; Palacio, S.; Hoch, G. Growth Reduction after Defoliation Is Independent of CO2 Supply in Deciduous and Evergreen Young Oaks. New Phytol. 2017, 214, 1479–1490. [Google Scholar] [CrossRef] [PubMed]
- Michel, A.; Kirchner, T.; Prescher, A.-K.; Schwärzel, K. (Eds.) Forest Condition in Europe; ICP Forests Technical Report; Johann Heinrich von Thünen Institut: Braunschweig, Germany, 2023; ISBN 978-3-86576-263-4. [Google Scholar]
- Toïgo, M.; Nicolas, M.; Jonard, M.; Croisé, L.; Nageleisen, L.-M.; Jactel, H. Temporal Trends in Tree Defoliation and Response to Multiple Biotic and Abiotic Stresses. For. Ecol. Manag. 2020, 477, 118476. [Google Scholar] [CrossRef]
- Filipiak, M.; Ufnalski, K. Growth Reaction of European Silver Fir [Abies alba Mill.] Associated with Air Quality Improvement in the Sudeten Mountains. Pol. J. Environ. Stud. 2004, 13, 267–273. [Google Scholar]
- Filipiak, M. Life of Abies alba (Pinaceae) under the Conditions of Intense Anthropopressure in the Sudety Mountains. Fragm. Florist. Et Geobot. Pol. 2006, 13, 113–138. [Google Scholar]
- Paixao, C.; Krause, C.; Morin, H.; Achim, A. Wood Quality of Black Spruce and Balsam Fir Trees Defoliated by Spruce Budworm: A Case Study in the Boreal Forest of Quebec, Canada. For. Ecol. Manag. 2019, 437, 201–210. [Google Scholar] [CrossRef]
- Lemay, A.; Barrette, J.; Krause, C. Balsam Fir (Abies balsamea (L.) Mill.) Wood Quality after Defoliation by Spruce Budworm (Choristoneura fumiferana Clem.) in the Boreal Forest of Quebec, Canada. Forests 2022, 13, 1926. [Google Scholar] [CrossRef]
- Van Leeuwen, M.; Hilker, T.; Coops, N.C.; Frazer, G.; Wulder, M.A.; Newnham, G.J.; Culvenor, D.S. Assessment of Standing Wood and Fiber Quality Using Ground and Airborne Laser Scanning: A Review. For. Ecol. Manag. 2011, 261, 1467–1478. [Google Scholar] [CrossRef]
- Lohr, S.M.; Gauthreaux, S.A.; Kilgo, J.C. Importance of Coarse Woody Debris to Avian Communities in Loblolly Pine Forests. Conserv. Biol. 2002, 16, 767–777. [Google Scholar] [CrossRef]
- Kappes, H.; Topp, W.; Zach, P.; Kulfan, J. Coarse Woody Debris, Soil Properties and Snails (Mollusca: Gastropoda) in European Primeval Forests of Different Environmental Conditions. Eur. J. Soil Biol. 2006, 42, 139–146. [Google Scholar] [CrossRef]
- Peterson, D.W.; Dodson, E.K.; Harrod, R.J. Snag Decomposition Following Stand-Replacing Wildfires Alters Wildlife Habitat Use and Surface Woody Fuels through Time. Ecosphere 2023, 14, e4635. [Google Scholar] [CrossRef]
- Tikvić, I.; Seletković, Z. Utjecaj Pošumljavanja Krša Na Hidrološku Funkciju Šuma. Šumarski List 2003, 127, 31–34. [Google Scholar]
- Tikvić, I. (Ed.) Branimir Prpić—Ekologija Šuma i Šumarstvo; Hrvatsko Šumarsko Društvo i Šumarski Fakultet Sveučilišta u Zagrebu: Zagreb, Croatia, 2018. [Google Scholar]
- Bodo, A.V.; Arain, M.A. Effects of Variable Retention Harvesting on Canopy Transpiration in a Red Pine Plantation Forest. Ecol. Process. 2022, 11, 28. [Google Scholar] [CrossRef] [PubMed]
- Beudert, B.; Bässler, C.; Thorn, S.; Noss, R.; Schröder, B.; Dieffenbach-Fries, H.; Foullois, N.; Müller, J. Bark Beetles Increase Biodiversity While Maintaining Drinking Water Quality. Conserv. Lett. 2015, 8, 272–281. [Google Scholar] [CrossRef]
- Putz, F.E.; Sist, P.; Fredericksen, T.; Dykstra, D. Reduced-Impact Logging: Challenges and Opportunities. For. Ecol. Manag. 2008, 256, 1427–1433. [Google Scholar] [CrossRef]
- Posavec, S.; Pezdevšek Malovrh, Š. Market Value and Timber Assortment Sale Models—Comparative Study. In Management Aspects in Forest Based Industries; WoodEMA: Zagreb, Croatia, 2020; ISBN 978-953-57822-7-8. [Google Scholar]
- Leban, V.; Teder, M.; Posavec, S.; Krč, J. Business Models in Transition Countries. In Services in Family Forestry; Springer: Berlin/Heidelberg, Germany, 2019; pp. 167–183. [Google Scholar]
Trees | Number of Alive Trees in Regeneration | Test of Proportions | ||||
---|---|---|---|---|---|---|
Tree Species | Total Number of Trees | Dead Trees | Alive Trees | 3a (%) | 3b (%) | p |
Abies alba | 1182 | 83 (7.2%) | 1099 | 187 (17%) | 124 (11.3%) | <0.001 |
Fagus sylvatica | 4221 | 91 (2.16%) | 4130 | 179 (4.3%) | 127 (3.1%) | 0.004 |
Quercus robur | 2572 | 247 (9.6%) | 2325 | 291(12.5%) | 69 (3%) | <0.001 |
TOTAL | 7975 | 421 (5.28%) | 7554 | 657 (8.7%) | 320 (4.2%) | <0.001 |
Duration of Regeneration 3a (Years) | Duration of Regeneration 3b (Years) | |||||||
---|---|---|---|---|---|---|---|---|
Mean ± SD | Q1 | Median | Q3 | Mean ± SD | Q1 | Median | Q3 | |
Abies alba | 8.85 ± 0.39 | 6 | 7 | 13 | 6.97 ± 0.43 | 4 | 6 | 10 |
Fagus sylvatica | 7.93 ± 0.40 | 3 | 7 | 11 | 6.15 ± 0.38 | 3 | 6 | 8 |
Quercus robur | 6.94 ± 0.32 | 3 | 5 | 10 | 7.13 ± 0.27 | 2 | 5 | 13 |
Log-Rank test Tukey–Kramer * | Chi2 = 11.65; df = 2; p = 0.003 A-F p = 0.326; A-Q p = 0.002; F-Q p = 0.076 | Chi2 = 3.36; df = 2; p = 0.186 | ||||||
Total | 7.81 ± 0.21 | 3 | 6 | 12 | 6.68 ± 0.27 | 3 | 6 | 9 |
Abies alba | Fagus sylvatica | Quercus robur | Total | ||||
---|---|---|---|---|---|---|---|
Defoliation class | 3b | 3a | 3b | 3a | 3b | 3a | |
Trees in regeneration | 11.30% | 17% | 3.10% | 4.30% | 3% | 12.50% | |
Average price (EUR/m3) | 35 | 41 | 50 | 51 | 93 | 141 | |
Total net to annual cut volume (m3) | 5,638,687 | 7,859,315 | 1,445,449 | 2,050,654 | 2,056,044 | 2,791,851 | 21,841,999 |
Estimation of the volume that could be regenerated (m3) | 637,172 | 1,336,084 | 44,809 | 88,178 | 61,681 | 348,981 | 2,516,905 |
Estimation of reduced percentage and price for regenerated tree (EUR/m3) | −30% 24.5 | −10% 36.9 | −30% 35 | −10% 45.9 | −30% 65.1 | −10% 126.9 | |
Regenerated volume × reduced price (EUR) | 15,610,705 | 49,301,483 | 1,568,312 | 4,047,375 | 4,015,454 | 44,285,736 | |
Total (EUR) | 64,912,188 | 5,615,687 | 48,301,190 | 118,829,065 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ugarković, D.; Jazbec, A.; Seletković, I.; Potočić, N.; Ognjenović, M.; Bogdanić, R.; Posavec, S. Evaluating Crown Defoliation Thresholds for the Identification of Trees Targeted for Sanitary Felling. Forests 2025, 16, 1479. https://doi.org/10.3390/f16091479
Ugarković D, Jazbec A, Seletković I, Potočić N, Ognjenović M, Bogdanić R, Posavec S. Evaluating Crown Defoliation Thresholds for the Identification of Trees Targeted for Sanitary Felling. Forests. 2025; 16(9):1479. https://doi.org/10.3390/f16091479
Chicago/Turabian StyleUgarković, Damir, Anamarija Jazbec, Ivan Seletković, Nenad Potočić, Mladen Ognjenović, Robert Bogdanić, and Stjepan Posavec. 2025. "Evaluating Crown Defoliation Thresholds for the Identification of Trees Targeted for Sanitary Felling" Forests 16, no. 9: 1479. https://doi.org/10.3390/f16091479
APA StyleUgarković, D., Jazbec, A., Seletković, I., Potočić, N., Ognjenović, M., Bogdanić, R., & Posavec, S. (2025). Evaluating Crown Defoliation Thresholds for the Identification of Trees Targeted for Sanitary Felling. Forests, 16(9), 1479. https://doi.org/10.3390/f16091479