Comparison of Two Site Preparation Treatments for the Growth of Direct-Seeded Fraxinus chinensis subsp. rhynchophylla Seedlings and Their Effects on Soil Temperature and Understory Vegetation
Abstract
1. Introduction
2. Materials and Methods
2.1. Seed Collection and Preparation
2.2. Site Preparation Treatments and Direct Seeding in the Field
2.3. Seedling Establishment, Survival and Growth at Two Site Preparation Treatment Sites
2.4. Understory Vegetation Survey at Two Site Preparation Treatment Sites
2.5. Soil Survey and Analysis at Two Site Preparation Treatment Sites
2.6. Seed Germination and Early Seedling Growth at Growth Chamber Experiment
2.6.1. Growth Chamber Experiment Design
2.6.2. Growth Measurements and Indicators
2.7. Data Analysis
3. Results
3.1. Soil Characteristics at the Scarification and Mixing Treatment Sites
3.2. Understory Plants at the Scarification and Mixing Treatment Sites
3.3. Seedling Emergence, Survival, and Height Growth Between the Scarification and Mixing Treatments
3.4. Seed Germination and Seedling Growth on Scarified and Mixed Substrates in a Growth Chamber
4. Discussion
4.1. Effects of Site Preparation Treatments on Seed Germination and Seedling Emergence
4.2. Seedling Mortality and Soil Condition Between the Scarification and Mixing Treatments
4.3. Seedling Growth and Understory Vegetation Between the Scarification and Mixing Treatments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nunes, S.; Gastauer, M.; Cavalcante, R.B.L.; Ramos, S.J.; Caldeira, C.F., Jr.; Silva, D.; Rodrigues, R.R.; Salomão, R.; Oliveira, M.; Souza-Filhoa, P.W.M.; et al. Challenges and opportunities for large-scale reforestation in the Eastern Amazon using native species. For. Ecol. Manag. 2020, 466, 118120. [Google Scholar] [CrossRef]
- Bullard, S.; Hodges, J.D.; Johnson, R.L.; Straka, T.J. Economics of direct seeding and planting for establishing oak stands on old-field sites in the South. South. J. Appl. For. 1992, 16, 34–40. [Google Scholar] [CrossRef]
- Raupp, P.P.; Ferreira, M.C.; Alves, M.; Campos-Filho, E.M.; Sartorelli, P.A.R.; Consolaro, H.N.; Vieira, D.L.M. Direct seeding reduces the costs of tree planting for forest and savanna restoration. Ecol. Eng. 2020, 148, 105788. [Google Scholar] [CrossRef]
- Palma, A.C.; Laurance, S.G.W. A review of the use of direct seeding and seedling plantings in restoration: What do we know and where should we go? Appl. Veg. Sci. 2015, 18, 561–568. [Google Scholar] [CrossRef]
- Pérez, D.R.; González, F.; Ceballos, C.; Oneto, M.E.; Aronson, J. Direct seeding and outplantings in drylands of Argentinean Patagonia: Estimated costs, and prospects for large-scale restoration and rehabilitation. Restor. Ecol. 2019, 27, 1105–1116. [Google Scholar] [CrossRef]
- Grossnickle, S.C.; Ivetić, V. Direct seeding in reforestation—A field performance review. Reforesta 2017, 4, 94–142. [Google Scholar] [CrossRef]
- Engel, V.L.; Parrotta, J.A. An evaluation of direct seeding for reforestation of degraded lands in central Sao Paulo state, Brazil. For. Ecol. Manag. 2001, 152, 169–181. [Google Scholar] [CrossRef]
- Atondo-Bueno, E.J.; Bonilla-Moheno, M.; López-Barrera, F. Cost-efficiency analysis of seedling introduction vs. direct seeding of Oreomunnea mexicana for secondary forest enrichment. For. Ecol. Manag. 2018, 409, 399–406. [Google Scholar] [CrossRef]
- Birkedal, M.; Löf, M.; Olsson, G.E.; Bergsten, U. Effects of granivorous rodents on direct seeding of oak and beech in relation to site preparation and sowing date. For. Ecol. Manag. 2010, 259, 2382–2389. [Google Scholar] [CrossRef]
- Shackelford, N.; Paterno, G.B.; Winkler, D.E.; Erickson, T.E.; Leger, E.A.; Svejcar, L.N.; Breed, M.F.; Faist, A.M.; Harrison, P.A.; Curran, M.F.; et al. Drivers of seedling establishment success in dryland restoration efforts. Nat. Ecol. Evol. 2021, 5, 1283–1290. [Google Scholar] [CrossRef]
- Ceccon, E.; González, E.J.; Martorell, C. Is direct seeding a biologically viable strategy for restoring forest ecosystems? evidences from a meta-analysis. Land Degrad. Develop. 2016, 27, 511–520. [Google Scholar] [CrossRef]
- Kim, J.H.; Hong, S.K.; Yoon, J.K.; Kim, J.R. Studies on Extensive Use of Burned Wood Land and Forest Road Slope by Application of Direct Seeding Techniques with Pelletized Seeds of Silvicultural Woody Plants and Edible Wild Plants, Final Reports GOVP 1200212859; Ministry of Agriculture and Forestry: Gwacheon, Republic of Korea, 2001.
- Doust, S.J.; Erskine, P.D.; Lamb, D. Direct seeding to restore rainforest species: Microsite effects on the early establishment and growth of rainforest tree seedlings on degraded land in the wet tropics of Australia. For. Ecol. Manag. 2006, 234, 333–343. [Google Scholar] [CrossRef]
- de Souza, D.C.; Engel, V.L. Seed functional traits as predictors of seedling establishment success in Brazilian tropical forest restoration. Biotropica 2024, 56, e13355. [Google Scholar] [CrossRef]
- Willoughby, I.; Jinks, R.L. The effect of duration of vegetation management on broadleaved woodland creation by direct seeding. Forestry 2009, 82, 343–359. [Google Scholar] [CrossRef]
- Asplund, J.; Hustoft, E.; Nybakken, L.; Ohlson, M.; Lie, M.H. Litter impair spruce seedling emergence in beech forests: A litter manipulation experiment. Scand. J. For. Res. 2018, 33, 332–337. [Google Scholar] [CrossRef]
- Passaretti, R.A.; Pilon, N.A.L.; Durigan, G. Weed control, large seeds and deep roots: Drivers of success in direct seeding for savanna restoration. Appl. Veg. Sci. 2020, 23, 406–416. [Google Scholar] [CrossRef]
- Kume, A.; Satomura, T.; Tsuboi, N.; Chiwa, M.; Hanba, Y.T.; Nakane, K.; Horikoshi, T.; Sakugawa, H. Effects of understory vegetation on the ecophysiological characteristics of an overstory pine, Pinus densiflora. For. Ecol. Manag. 2003, 176, 195–203. [Google Scholar] [CrossRef]
- Löf, M.; Welander, N. Influence of herbaceous competitors on early growth in direct seeded Fagus sylvatica L. and Quercus robur L. Ann. For. Sci. 2004, 61, 781–788. [Google Scholar] [CrossRef]
- Springett, J.A. The effect of prescribed burning on the soil fauna and on litter decomposition in Western Australian forests. Aust. J. Ecol. 1976, 1, 77–82. [Google Scholar] [CrossRef]
- Tatum, V.L. Toxicity, transport, and fate of forest herbicides. Wildl. Soc. Bull. 2004, 32, 1042–1048. [Google Scholar] [CrossRef]
- Löf, M.; Dey, D.C.; Navarro, R.M.; Jacobs, D.F. Mechanical site preparation for forest restoration. New For. 2012, 43, 825–848. [Google Scholar] [CrossRef]
- Nyland, R.D.; Kenefic, L.S.; Bohn, K.K.; Stout, S.L. Silviculture: Concepts and Applications, 3rd ed.; Waveland Press Inc.: Long Grove, IL, USA, 2016. [Google Scholar]
- von der Gönna, M. Fundamentals of Mechanical Site Preparation; British Columbia Ministry of Forests: Victoria, BC, Canada, 1992.
- Cardoso, J.C.; Burton, P.J.; Elkin, C.M. A disturbance ecology perspective on silvicultural site preparation. Forests 2020, 11, 1278. [Google Scholar] [CrossRef]
- Sikström, U.; Hjelm, K.; Holt Hanssen, K.; Saksa, T.; Wallertz, K. Influence of mechanical site preparation on regeneration success of planted conifers in clearcuts in Fennoscandia—A review. Silva Fenn. 2020, 54, 10172. [Google Scholar] [CrossRef]
- Nilson, M.E.; Hjältén, J. Covering pine-seeds immediately after seeding: Effects on seedling emergence and on mortality through seed-predation. For. Ecol. Manag. 2003, 176, 449–457. [Google Scholar] [CrossRef]
- Willoughby, I. Factors affecting the success of direct seeding for lowland afforestation in the UK. Forestry 2004, 77, 467–482. [Google Scholar] [CrossRef]
- MacKenzie, M.D.; Schmidt, M.G.; Bedford, L. Soil microclimate and nitrogen availability 10 years after mechanical site preparation in northern British Columbia. Can. J. For. Res. 2005, 35, 1854–1866. [Google Scholar] [CrossRef]
- Wennström, U.; Bergsten, U.; Nilsson, J.E. Mechanizsed microsite preparation and direct seeding of Pinus sylvestris in boreal forests—A way to create desired spacing at low cost. New For. 1999, 18, 179–198. [Google Scholar] [CrossRef]
- Löf, M.; Birkedal, M. Direct seeding of Quercus robur L. for reforestation: The influence of mechanical site preparation and sowing date on early growth of seedlings. For. Ecol. Manag. 2009, 258, 704–711. [Google Scholar] [CrossRef]
- Karlsson, A. Site preparation of abandoned fields and early establishment of naturally and direct-seeded birch in Sweden. Stud. For. Suec. 1996, 199, 1–25. [Google Scholar]
- de Chantal, M.; Leinonen, K.; Ilvesniemi, H.; Westman, C.J. Combined effects of site preparation, soil properties, and sowing date on the establishment of Pinus sylvestris and Picea abies from seeds. Can. J. For. Res. 2003, 33, 931–945. [Google Scholar] [CrossRef]
- Zaczek, J.J. Composition, diversity, and height of tree regeneration, 3 years after soil scarification in a mixed-oak shelterwood. For. Ecol. Manag. 2002, 163, 205–215. [Google Scholar] [CrossRef]
- Frey, B.R.; Lieffers, V.J.; Munson, A.D.; Blenis, P.V. The influence of partial harvesting and forest floor disturbance on nutrient availability and understory vegetation in boreal mixedwoods. Can. J. For. Res. 2003, 33, 1180–1188. [Google Scholar] [CrossRef]
- Gibson-Roy, P.; Moore, G.; Delpratt, J. Testing methods for reducing weed loads in preparation for reconstructing species-rich native grassland by direct seeding. Ecol. Manag. Restor. 2010, 11, 135–139. [Google Scholar] [CrossRef]
- Cho, H.J.; Lee, C.H.; Shin, J.H.; Bae, K.H.; Cho, Y.C.; Kim, J.S. Diversity, spatial distribution and ecological characteristics of relict forest trees in South Korea. J. Korean For. Soc. 2016, 105, 401–413. [Google Scholar] [CrossRef]
- Yeo, U.S.; Lee, D.L. Early regeneration of Fraxinus rhynchophylla in the understorey of Larix kaempferi stands in response to thinning. Forestry 2006, 79, 167–176. [Google Scholar] [CrossRef]
- Kim, J.H.; Yang, H.M.; Kang, S.K. Natural regeneration of Fraxinus mandshurica and F. rhynchophylla in the natural deciduous forest. For. Sci. Tech. 2010, 6, 1–6. [Google Scholar] [CrossRef]
- Sung, J.H.; Lee, D.K.; Park, P.S. Seed biology, stand characteristics, and regeneration of Fraxinus rhynchophylla Hance. J. Sustain. For. 2011, 30, 392–405. [Google Scholar] [CrossRef]
- Choi, C.H.; Seo, B.S.; Tak, W.S.; Cho, K.J.; Kim, C.S.; Han, S.U. Comparison of seed germination response to temperature by provinces in Fraxinus rhynchophylla. J. Korean For. Soc. 2022, 91, 576–581. [Google Scholar] [CrossRef]
- Jang, Y.L.; Jung, J.B.; Kim, H.J.; Kim, J.; Kang, K.-S.; Nam, K.H.; Park, P.S. Seed rain, seedling emergence and mortality of Fraxinus rhynchophylla in natural broad-leaved forests in the Mt. Gariwang Area, Gangwon-do. J. Korean For. Soc. 2023, 112, 280–289. [Google Scholar] [CrossRef]
- Jinks, R.L.; Parratt, M.; Morgan, G. Preference of granivorous rodents for seeds of 12 temperate tree and shrub species used in direct sowing. For. Ecol. Manag. 2012, 278, 71–79. [Google Scholar] [CrossRef]
- Kim, G.T. Ecological forest management and reforestation problem–comparison of diameter increment of Fraxinus rhynchophylla between artificial, natural and coppice forest. Korean J. Environ. Ecol. 2003, 17, 105–111. [Google Scholar]
- Korea Forest Service. 2020 Statistical Yearbook of Forestry; Korea Forest Service: Daejeon, Republic of Korea, 2020.
- Park, H.I.; Shim, H.S.; Choi, L.N.; Gil, J.H.; Ho, H.S.; Lee, J.G.; Yu, C.Y.; Lim, J.D. Effect of priming and seed pellet technique for improved germination and growth in Fraxinus rhynchophylla and Alnus sibirica. Korean J. Med. Crop Sci. 2013, 21, 7–19. [Google Scholar] [CrossRef]
- Korea Forest Research Institute. Nursing Technique for Major Plantation Species; Korea Forest Research Institute: Seoul, Republic of Korea, 2009.
- Cram, M.M.; Fraedrich, S.W. Seed diseases and seed borne pathogens of North America. Tree Plant. Notes 2009, 53, 35–44. [Google Scholar]
- Kim, C.; Kim, D.K.; Sun, H.; Kim, J.H. Phylogenetic relationship, biogeography, and conservation genetics of endangered Fraxinus chiisanensis (Oleaceae), endemic to South Korea. Plant Divers. 2021, 44, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Han, S.H.; Kim, C.-S.; Jang, S.-S.; Lee, H.-J.; Tak, W.-S. Changes in the seed characters and germination properties of three tree species at different storage time. Korean J. Agric. For. Meteorol. 2004, 6, 183–189. [Google Scholar]
- Korea Meteorological Administration. Climatological Normals of Korea; Korea Meteorological Administration: Seoul, Republic of Korea, 2022.
- Korean Soil Information System. Available online: https://soil.rda.go.kr/soilseriesKor/S/SONGSANe.htm (accessed on 17 July 2022).
- Kim, D.Y.; Ahn, B.K.; Kim, M.P.; Im, S.J. Morphological characteristics analysis of root plate in wind-uprooted trees. J. Korean For. Soc. 2014, 103, 248–257. [Google Scholar] [CrossRef]
- Woods, K.; Elliott, S. Direct seeding for forest restoration on abandoned agricultural land in northern Thailand. J. Trop. For. Sci. 2004, 16, 248–259. [Google Scholar]
- Becerra, P.I.; Aqueveque, N.; Velasco, N. Burying, not broadcasting seeds improves the seedling establishment of most woody species under different ecological conditions in a semiarid ecosystem of central Chile. Restor. Ecol. 2022, 30, e13551. [Google Scholar] [CrossRef]
- de Chantal, M.; Hanssen, K.H.; Granhus, A.; Bergsten, U.; Löfvenius, M.O.; Grip, H. Frost-heaving damage to one-year-old Picea abies seedlings increases with soil horizon depth and canopy gap size. Can. J. For. Res. 2007, 37, 1236–1243. [Google Scholar] [CrossRef]
- Blakemore, L.C.; Searle, P.L.; Daly, B.K. Methods for Chemical Analysis of Soils; NZ Soil Bureau Scientific Report 80; Department of Scientific and Industrial Research: Lower Hutt, New Zealand, 1987.
- An, K.; Yang, M.; Baskin, C.C.; Li, M.; Zhu, M.; Jiao, C.; Wu, H.; Zhang, P. Type 2 Nondeep Physiological Dormancy in Seeds of Fraxinus chinensis subsp. rhynchophylla (Hance) A.E.Murray. Forests 2022, 13, 1951. [Google Scholar] [CrossRef]
- Czabator, F.J. Germination value: An index combining speed and completeness of pine seed germination. For. Sci. 1962, 8, 386–396. [Google Scholar]
- Farooq, M.; Basra, S.M.A.; Ahmad, N.; Hafeez, K. Thermal hardening: A new seed vigor enhancement tool in rice. J. Integr. Plant Biol. 2005, 47, 187–193. [Google Scholar] [CrossRef]
- Ranal, M.A.; de Santana, D.G. How and why to measure the germination process? Braz. J. Bot. 2006, 29, 1–11. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inference in general parametric models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef]
- R Core Team. R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Vázquez-Yanes, C.; Orozco-Segovia, A. Effects of litter from a tropical rainforest on tree seed germination and establishment under controlled conditions. Tree Physiol. 1992, 11, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, D.; Liu, Q.; Xing, X.; Liu, B.; Jin, S.; Tigabu, M. Meta-analysis of effects of forest litter on seedling establishment. Forests 2022, 13, 644. [Google Scholar] [CrossRef]
- Kim, G.T. Effects of pretreatment on the field germination rate of some tree seed. J. Korean For. Soc. 1989, 78, 26–29. [Google Scholar]
- Korea Forest Research Institute. Research on Korea’s Modern Forestry (Nursery and Planting); Korea Forest Research Institute: Seoul, Republic of Korea, 2013.
- Steinbauer, G.P. Dormancy and germination of Fraxinus seeds. Plant Physiol. 1937, 12, 813–824. [Google Scholar] [CrossRef]
- Korea Forest Research Institute. Gene Bank Composition Test for Native Species; Korea Forest Research Institute: Seoul, Republic of Korea, 2010.
- Bloor, J.M.G.; Leadley, P.W.; Barthes, L. Responses of Fraxinus excelsior seedlings to grass-induced above- and below-ground competition. Plant Ecol. 2008, 194, 293–304. [Google Scholar] [CrossRef]
- Goulet, F. Frost heaving of forest tree seedlings: A review. New For. 1995, 9, 67–94. [Google Scholar] [CrossRef]
- Simcock, R.C.; Parfitt, R.L.; Skinner, M.F.; Dando, J.; Graham, J.D. The effects of soil compaction and fertilizer application on the establishment and growth of Pinus radiata. Can. J. For. Res. 2006, 36, 1077–1086. [Google Scholar] [CrossRef]
- Alameda, D.; Villar, R. Linking root traits to plant physiology and growth in Fraxinus angustifolia Vahl. seedlings under soil compaction conditions. Environ. Exp. Bot. 2012, 79, 49–57. [Google Scholar] [CrossRef]
- Han, S.S.; Sim, J.S. Characteristics of photosynthesis and respiration in Fraxinus rhynchophylla Hance and Fraxinus mandshurica Rupr. Leaves. J. Korean For. Soc. 1989, 78, 280–286. [Google Scholar]
- Sahlén, K.; Goulet, F. Reduction of frost heaving of Norway spruce and Scots pine seedlings by planting in mounds or in humus. New For. 2002, 24, 175–182. [Google Scholar] [CrossRef]
- Han, S.D.; Hong, S.H.; Min, Y.T.; Kim, Y.M.; Kim, H.E. The production of adventitious sprouts by water-soak and vegetation propagation of plus tree of ash species through cuttings of their sprouts. J. Korean For. Soc. 1994, 83, 148–154. [Google Scholar]
- Bebre, I.; Riebl, H.; Annighöfer, P. Seedling growth and biomass production under different light availability levels and competition types. Forests 2021, 12, 1376. [Google Scholar] [CrossRef]
- Royo, A.A.; Carson, W.P. Direct and indirect effects of a dense understory on tree seedling recruitment in temperate forests: Habitat-mediated predation versus competition. Can. J. For. Res. 2008, 38, 1634–1645. [Google Scholar] [CrossRef]
- Xu, C.; Frenne, P.D.; Blondeel, H.; Pauw, K.D.; Landuyt, D.; Lorer, E.; Sanczuk, P.; Verheyen, K.; Lombaerde, E.D. Light more than warming impacts understory tree seedling growth in a temperate deciduous forest. For. Ecol. Manag. 2023, 549, 121498. [Google Scholar] [CrossRef]
- Park, B.B.; Seo, J.M.; Han, S.H.; Youn, W.B.; Jung, Y.K.; Namgung, B.S.; Lee, S.J. Analysis of the current status of weeding operation and crop tree growth across planting periods. J. Korean For. Sci. 2020, 109, 179–188. [Google Scholar] [CrossRef]
- Pereira, S.R.; Laura, V.A.; Souza, A.L.T. Establishment of Fabaceae tree species in a tropical pasture: Influence of seed size and weeding methods. Restor. Ecol. 2013, 21, 67–74. [Google Scholar] [CrossRef]
- Messier, C.; Keenan, R.; Kimmins, J.P. The effects of soil mixing on soil nutrient status, recovery of competing vegetation and conifer growth on cedar-hemlock cutovers in coastal British Columbia. New For. 1995, 9, 163–179. [Google Scholar] [CrossRef]
- Park, B.B.; Byun, J.K.; Kim, W.S.; Sung, J.H. Growth and tissue nutrient responses of Fraxinus rhynchophylla, Fraxinus mandshurica, Pinus koraiensis, and Abies holophylla seedlings fertilized with nitrogen, phosphorus, and potassium at a nursery culture. J. Korean For. Soc. 2010, 99, 85–95. [Google Scholar]
- Nzeyimana, I.; Hartemink, A.E.; Ritsema, C.; Stroosnijder, L.; Lwanga, E.H.; Geissen, V. Mulching as a strategy to improve soil properties and reduce soil erodibility in coffee farming systems of Rwanda. Catena 2017, 149, 43–51. [Google Scholar] [CrossRef]
- Galea, D.; Major, J.E. First-year mortality of four early-successional species on severely degraded sites in eastern Canada as influenced by a factorial of site preparation treatments. Forests 2024, 15, 143. [Google Scholar] [CrossRef]
Treatment | Soil Bulk Density (g cm−3) | Soil Moisture Content (θm, %) | Soil pH |
---|---|---|---|
Scarification | 0.81 ± 0.12 a | 42.16 ± 8.90 a | 4.67 ± 0.06 a |
Mixing | 0.94 ± 0.02 a | 32.87 ± 4.64 a | 4.71 ± 0.02 a |
Treatment | Germination (%) | MGT (Day) | T50 (Day) | GV |
---|---|---|---|---|
Control | 6.7 ± 6.2 b | 10.0 ± 0.0 a | 4.0 ± 2.8 b | 0.1 ± 0.2 b |
Scarification | 55.0 ± 4.1 a | 12.0 ± 1.8 a | 9.7 ± 0.3 ab | 3.8 ± 1.1 a |
Mixing | 45.0 ± 4.1 a | 13.4 ± 1.7 a | 11.3 ± 1.2 a | 2.2 ± 0.2 ab |
Treatment | Shoot Length (cm) | Root Length (cm) | Leaf Area (cm2) | Shoot Dry Mass (mg) | Root Dry Mass (mg) | Leaf Dry Mass (mg) | R/S Ratio (mg/mg) | LWR (mg/mg) |
---|---|---|---|---|---|---|---|---|
Scarification (n = 20) | 3.6 ± 0.8 a | 10.2 ± 2.6 a | 9.0 ± 2.5 a | 20.0 ± 8.4 a | 43.2 ± 18.1 a | 42.5 ± 13.0 a | 0.67 ± 0.85 a | 0.42 ± 0.07 b |
Mixing (n = 20) | 3.6 ± 0.8 a | 7.1 ± 4.0 b | 6.5 ± 2.8 b | 16.6 ± 9.8 a | 23.8 ± 17.5 b | 32.4 ± 14.2 b | 0.44 ± 0.73 b | 0.48 ± 0.08 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, J.B.; Kim, H.J.; Kim, J.; Jung, J.S.; Park, P.S. Comparison of Two Site Preparation Treatments for the Growth of Direct-Seeded Fraxinus chinensis subsp. rhynchophylla Seedlings and Their Effects on Soil Temperature and Understory Vegetation. Forests 2025, 16, 1401. https://doi.org/10.3390/f16091401
Jung JB, Kim HJ, Kim J, Jung JS, Park PS. Comparison of Two Site Preparation Treatments for the Growth of Direct-Seeded Fraxinus chinensis subsp. rhynchophylla Seedlings and Their Effects on Soil Temperature and Understory Vegetation. Forests. 2025; 16(9):1401. https://doi.org/10.3390/f16091401
Chicago/Turabian StyleJung, Jong Bin, Hyun Jung Kim, Jongwoo Kim, Ji Sun Jung, and Pil Sun Park. 2025. "Comparison of Two Site Preparation Treatments for the Growth of Direct-Seeded Fraxinus chinensis subsp. rhynchophylla Seedlings and Their Effects on Soil Temperature and Understory Vegetation" Forests 16, no. 9: 1401. https://doi.org/10.3390/f16091401
APA StyleJung, J. B., Kim, H. J., Kim, J., Jung, J. S., & Park, P. S. (2025). Comparison of Two Site Preparation Treatments for the Growth of Direct-Seeded Fraxinus chinensis subsp. rhynchophylla Seedlings and Their Effects on Soil Temperature and Understory Vegetation. Forests, 16(9), 1401. https://doi.org/10.3390/f16091401