Soil Carbon Sequestration by Biological Crusts in Photovoltaic Power Stations: Southern Tengger Desert and Artemisia ordosica Shrubland Restoration
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area Overview
2.2. Sample Collection
2.3. Estimation of Physicochemical Properties
2.4. Estimation of Soil and Crust Carbon Stocks
2.5. Data Processing
3. Results
3.1. Soil and Crust Physicochemical Properties
3.2. pH Changes
3.3. EC Changes
3.4. Water Content Changes
3.5. Organic Matter Content
3.6. Carbonate Content
3.7. Correlation Between Soil Physicochemical Properties and Carbon Composition
3.8. Carbon Density of Biological Crusts and Soil
4. Discussion
4.1. Impact of PV Station Construction on Soil Water Content
4.2. Impact of PV Station Construction on Soil pH and EC
4.3. Impact of PV Station Construction on Soil Organic Matter
4.4. Impact of PV Station Construction on Soil Carbonate
4.5. Relationship Between Soil Physicochemical Properties and Carbon Composition
4.6. Restoration Effect of PV Station Construction and Ecological Restoration Measures
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PV | Photovoltaic |
BSCs | Biological soil crusts |
PD | Pristine desert |
HSA | Horizontal single-axis |
TSA | Tilted single-axis |
FA | Fixed-axis |
EC | Electrical conductivity |
SOC | Soil organic carbon |
WC | Water content |
SWC | Saturated water content |
SOM | Soil organic matter |
References
- Wu, Z.; Njoke, M.L.; Tian, G.; Feng, J. Challenges of Investment and Financing for Developing Photovoltaic Power Generation in Cameroon and the Countermeasures. J. Clean. Prod. 2021, 299, 126910. [Google Scholar] [CrossRef]
- Diwania, S.; Agrawal, S.; Siddiqui, A.S.; Singh, S. Photovoltaic–Thermal (PV/T) Technology: A Comprehensive Review on Applications and Its Advancement. Int. J. Energy Environ. Eng. 2019, 11, 33–54. [Google Scholar] [CrossRef]
- Adenle, A.A. Assessment of Solar Energy Technologies in Africa—Opportunities and Challenges in Meeting the 2030 Agenda and Sustainable Development Goals. Energy Policy 2020, 137, 111180. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Yu, Z.G.; Zhu, C.C.; Yang, R.; Yan, B.; Jiang, G. Green or Not? Environmental Challenges from Photovoltaic Technology. Environ. Pollut. 2023, 320, 121066. [Google Scholar] [CrossRef]
- Wilberforce, T.; Baroutaji, A.; Hassan, Z.E.; Thompson, J.; Soudan, B.; Olabi, A. Prospects and Challenges of Concentrated Solar Photovoltaics and Enhanced Geothermal Energy Technologies. Sci. Total Environ. 2018, 659, 851–861. [Google Scholar] [CrossRef]
- Ebhota, W.S.; Jen, T.C. Fossil Fuels Environmental Challenges and the Role of Solar Photovoltaic Technology Advances in Fast-Tracking Hybrid Renewable Energy System. Int. J. Precis. Eng. Manuf.-Green Technol. 2020, 7, 97–117. [Google Scholar] [CrossRef]
- Tian, Z.Q.; Zhang, Y.; Liu, X.; Chen, S.-Y.; Liu, B.-L.; Wu, J.-H. Impacts of Photovoltaic Power Station Construction on Terrestrial Ecological Environment: Research Progress and Prospects. Environ. Sci. 2024, 45, 239–247. (In Chinese) [Google Scholar] [CrossRef]
- Li, J.; Okin, G.S.; Alvarez, L.; Epstein, H. Quantitative Effects of Vegetation Cover on Wind Erosion and Soil Nutrient Loss in a Desert Grassland of Southern New Mexico, USA. Biogeochemistry 2007, 85, 317–332. [Google Scholar] [CrossRef]
- Li, F.; Yang, Y.; Zhao, J.; Chen, Z.; Gao, X.; Shen, Y. Review on Energy Impact of Photovoltaic Power Station Construction and Operation on Climate and Environment. Adv. Meteorol. Sci. Technol. 2019, 9, 71–77. (In Chinese) [Google Scholar]
- Zhao, C.L.; Ma, W.Y.; Zhang, Y.J.; Cheng, E.; Cao, F.; Sun, H.; Yan, Y.; Guo, J. Ecological Effects of Photovoltaic Power Stations at Different Scales. Acta Ecol. Sin. 2024, 44, 10964–10973. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Z.Y.; Wang, J.; Gao, Y.; Dang, X.; Meng, Z. Impacts of Photovoltaic Power Station Construction on Ecological Environment in Sandy Areas. Bull. Soil Water Conserv. 2019, 39, 191–196. (In Chinese) [Google Scholar] [CrossRef]
- West, N.E. Structure and Function of Microphytic Soil Crusts in Wildland Ecosystems of Arid to Semi-Arid Regions. Adv. Ecol. Res. 1990, 20, 179–223. [Google Scholar]
- Du, J.; Li, Y.X.; Yang, X.X.; Li, Y.Y.; Ma, X.J. Effects of Biological Soil Crusts on Soil Physicochemical Properties in the Southeastern Edge of Tengger Desert. J. Desert Res. 2018, 38, 111–116. (In Chinese) [Google Scholar]
- Li, S.Z.; Xiao, H.L.; Song, Y.X.; Li, J.; Liu, L. Interception of Precipitation by Biological Soil Crusts in Artificially Stabilized Dune Vegetation Area of Tengger Desert. J. Desert Res. 2002, 22, 90–94. (In Chinese) [Google Scholar]
- Li, C.; Liu, J.X.; Bao, J.B.; Wu, T.; Chai, B. Effect of Light Heterogeneity Caused by Photovoltaic Panels on the Plant-Soil-Microbial System in Solar Park. Land 2023, 12, 367. [Google Scholar] [CrossRef]
- Han, B.H.; Niu, D.C.; He, L.; Ren, Y.; Wu, R.; Fu, H. Research Progress on Development of Biological Soil Crusts and Influencing Factors. Pratacult. Sci. 2017, 34, 1793–1801. (In Chinese) [Google Scholar]
- Orlovsky, L.; Dourikov, M.; Babaev, A. Temporal Dynamics and Productivity of Biogenic Soil Crusts in the Central Karakum Desert, Turkmenistan. J. Arid Environ. 2004, 56, 579–601. [Google Scholar] [CrossRef]
- GB/T 37526-2019; Specification for Assessment of Desert Ecosystem Services. China Standards Press: Beijing, China, 2019.
- 19. NY/T 1121.19-2006; Soil Testing—Part 19: Method for Determination of Soil Water Stable Aggregate Structure. Standards Press of China: Beijing, China, 2006.
- Hao, J. Determination of Field Water Capacity and Drought Analysis. Hebei Water Resour. 2021, 11, 42–46. (In Chinese) [Google Scholar]
- GB/T 17296-2009; Classification and Codes for Chinese Soil. Standards Press of China: Beijing, China, 2009.
- He, H.Y.; Liu, W.; Chang, Z.Q.; Hou, C.; Sun, L.; Chi, X. Effects of Biological Soil Crust Succession on Surface Soil Nutrients and Microbial Community Composition in Sandy Areas. Arid Land Geogr. 2024, 47, 1724–1734. [Google Scholar] [CrossRef]
- Wang, W.F.; Liu, R.T.; Guo, Z.X.; Feng, Y.; Jiang, J. Soil Physicochemical Properties and Fractal Dimension of Sand-Fixing Shrub Forests in the Southeastern Margin of the Tengger Desert. J. Desert Res. 2021, 41, 209–218. (In Chinese) [Google Scholar]
- Wang, C.Y.; Li, Y.C.; Guan, X.; Wang, Y.; Han, Y.; Yu, Y.; Yang, B. Composition and Variation Patterns of Soil Carbon Pools in Coastal Areas of Western Liaoning. Geol. Resour. 2021, 30, 173–185+135. (In Chinese) [Google Scholar] [CrossRef]
- Yue, S.J.; Guo, M.J.; Zou, P.H.; Wu, W.; Zhou, X. Effects of Photovoltaic Panels on Soil Temperature and Moisture in Desert Areas. Environ. Sci. Pollut. Res. 2021, 28, 17506–17518. [Google Scholar] [CrossRef]
- Cantón, Y.; Solé-Benet, A.; Domingo, F. Temporal and Spatial Patterns of Soil Moisture in Semiarid Badlands of SE Spain. J. Hydrol. 2004, 285, 199–214. [Google Scholar] [CrossRef]
- Barron-Gafford, G.A.; Minor, R.L.; Allen, N.A.; Cronin, A.D.; Brooks, A.E.; Pavao-Zuckerman, M.A. The Photovoltaic Heat Island Effect: Larger Solar Power Plants Increase Local Temperatures. Sci. Rep. 2016, 6, 35070. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.Y.; Hou, A.P.; Chang, C.; Huang, X.; Shi, D.; Wang, Z. Environmental Impacts of Large-Scale CSP Plants in Northwestern China. Environ. Sci. Process. Impacts. 2014, 16, 2432–2441. [Google Scholar] [CrossRef] [PubMed]
- Tanner, K.E.; Moore-O’ Leary, K.A.; Parker, I.M.; Pavlik, B.M.; Hernandez, R.R. Simulated Solar Panels Create Altered Microhabitats in Desert Landforms. Ecosphere 2020, 11, e03089. [Google Scholar] [CrossRef]
- Luo, L.H.; Zhuang, Y.L.; Liu, H.; Zhao, W.; Chen, J.; Du, W.; Gao, X. Environmental Impacts of Photovoltaic Power Plants in Northwest China. Sustain. Energy Technol. Assess. 2023, 56, 103120. [Google Scholar] [CrossRef]
- Li, X.R.; Tan, H.J.; Hui, R.; Zhao, Y.; Huang, L.; Jia, R.; Song, G. Research on Biological Soil Crusts in Deserts and Sandy Lands of China. Chin. Sci. Bull. 2018, 63, 2320–2334. (In Chinese) [Google Scholar] [CrossRef]
- Li, X.R.; Zhou, H.Y.; Wang, X.P.; Liu, L.; Zhang, J.; Chen, G.; Zhang, Z.; Liu, Y.; Tan, H.; Gao, Y. Ecological Reconstruction and Restoration in Arid Sandy Areas of China: A Review of 60-Year Research Progress at Shapotou Station. J. Desert Res. 2016, 36, 247–264. (In Chinese) [Google Scholar]
- Zhou, M.R.; Wang, X.J. Impacts of Photovoltaic Power Station Projects on Soil and Vegetation: A Case Study in Desert and Gobi Areas of Hexi Corridor, Gansu. Sci. Soil Water Conserv. 2019, 17, 132–138. (In Chinese) [Google Scholar] [CrossRef]
- Gao, L.Q. Effects of Biological Crusts on Soil Erodibility and Their Mechanisms. Ph.D. Thesis, University of Chinese Academy of Sciences (Research Center for Soil and Water Conservation and Ecological Environment, Ministry of Education), Beijing, China, 2012. (In Chinese). [Google Scholar]
- Wang, T.; Wang, D.X.; Guo, T.D.; Zhang, G.; Zhao, S.; Niu, H.; Lu, S.; Lin, H. Impacts of Photovoltaic Power Station Construction on Soil and Vegetation. Res. Soil Water Conserv. 2016, 23, 90–94. (In Chinese) [Google Scholar] [CrossRef]
- Huo, H.X.; Zhang, J.G.; Ma, A.S.; Huo, J.W. Research Progress and Prospects of Soil Carbon Cycling in Arid Desert Regions. J. Northwest For. Univ. 2018, 33, 98–104. (In Chinese) [Google Scholar]
- Li, Q.L. Effects of Desertification on Soil Organic and Inorganic Carbon in Desert Steppe. Master’s Thesis, Ningxia University, Yinchuan, China, 2019. (In Chinese). [Google Scholar] [CrossRef]
- Hu, Y.; Hou, Y.L.; Li, Y. Effects of Red Soil Biological Crusts on Soil Erosion and Nutrients. Guizhou Agric. Sci. 2015, 43, 114–119. (In Chinese) [Google Scholar]
- Jia, Z.Y.; Wu, B.; Lu, Q. Research Progress on Photosynthetic Carbon Sequestration of Biological Soil Crusts in Arid and Semi-Arid Regions. J. Anhui Agric. Sci. 2011, 39, 12768–12770. (In Chinese) [Google Scholar] [CrossRef]
- Su, P.X.; Wang, X.J.; Xie, T.T.; Wang, X.F. Inorganic Carbon Sequestration Capacity and Soil Carbon Assimilation Pathways in Arid Deserts. Chin. Sci. Bull. 2018, 63, 755–765. (In Chinese) [Google Scholar] [CrossRef]
- Meng, R.; Meng, Z.; Jia, R.; Li, H.; Cai, J.; Gao, Y. Positive Soil Responses to Different Vegetation Restoration Measures in Desert Photovoltaic Power Stations. Front. Plant Sci. 2025, 16, 1607404. [Google Scholar] [CrossRef]
- Cai, J.; Meng, Z.; Meng, R.; Li, H.; Chen, X.; Ren, X.; Guo, L.; Hao, M. Exploring a Path of Vegetation Restoration Best Suited for a Photovoltaic Plant in the Hobq Desert. Front. Environ. Sci. 2024, 12, 1380421. [Google Scholar] [CrossRef]
- Dai, W.H.; Huang, Y.; Wu, L.; Yu, J. Relationship between Organic Matter Content and pH in Zonal Soils of China. Acta Pedol. Sin. 2009, 46, 851–860. (In Chinese) [Google Scholar]
- Yu, X.L. Effects of Soil pH on Soil Organic Carbon Content in Inland Saline-Alkali Wetlands. J. Chin. Agric. Mech. 2019, 40, 203–208. (In Chinese) [Google Scholar] [CrossRef]
- Li, S.; Liu, H.L.; Sun, S.B.; Liu, Y.; Cheng, X.; Zhang, Y. Changes and Influencing Factors of Topsoil Organic Carbon Pool in a Typical Area of the Haihe Plain: A Case Study of Jinnan District, Tianjin. J. Agric. Resour. Environ. 2024, 41, 816–825. (In Chinese) [Google Scholar] [CrossRef]
- Tang, M. Research Progress on Spatial-Temporal Distribution of Soil Organic Carbon and Influencing Factors in China. J. Henan Inst. Eng. (Nat. Sci. Ed.) 2019, 31, 42–49, 82. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, T.; Wang, L.; Wang, X.; Wei, T.; Wang, P. Effects of Long-Term Vegetation Restoration on Soil Physicochemical Properties Mainly Achieved by the Coupling Contributions of Biological Synusiae to the Loess Plateau. Ecol. Indic. 2023, 152, 110353. [Google Scholar] [CrossRef]
- Peng, X.; Liu, J.; Duan, X.; Yang, H.; Huang, Y. Key Soil Physicochemical Properties Regulating Microbial Community Structure under Vegetation Restoration in a Karst Region of China. Ecosyst. Health Sustain. 2023, 9, 31. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, R.-Q.; Ma, X.-R.; Wu, G.-L. Combined Ecological and Economic Benefits of the Solar Photovoltaic Industry in Arid Sandy Ecosystems. J. Clean. Prod. 2020, 262, 121376. [Google Scholar] [CrossRef]
- Wen, Y.; Li, M.; Gao, P.; Zhou, J.; Ai, X.; Zhang, Y.; Mu, X. Soil Physicochemical Properties and Roots Promoted Preferential Flow Development after Vegetation Restoration. J. Hydrol. 2025, 659, 133349. [Google Scholar] [CrossRef]
Installation Types | Sample Types | pH | EC (μS/cm) | WC | SWC |
---|---|---|---|---|---|
FA | 1 | 9.10 ± 0.02 a | 60.70 ± 5.47 a | 0.49% ± 0.15% a | 25.54% ± 0.25% a |
2 | 8.39 ± 0.06 b | 84.40 ± 5.63 b | 0.62% ± 0.08% ab | 49.42% ± 0.72% b | |
3 | 9.07 ± 0.03 a | 55.73 ± 0.67 a | 2.44% ± 0.45% b | 25.17% ± 3.91% a | |
HSA | 1 | 9.13 ± 0.06 a | 58.05 ± 2.19 a | 0.64% ± 0.12% a | 18.68% ± 2.55% a |
2 | 8.69 ± 0.01 b | 94.55 ± 0.21 b | 0.36% ± 0.01% a | 38.00% ± 0.64% b | |
3 | 9.03 ± 0.05 a | 56.03 ± 1.32 a | 1.43% ± 0.31% b | 15.81% ± 6.11% a | |
TSA | 1 | 9.08 ± 0.02 a | 62.70 ± 7.88 a | 0.87% ± 0.01% a | 25.10% ± 3.50% a |
2 | 8.44 ± 0.05 b | 89.97 ± 10.89 b | 0.37% ± 0.10% b | 47.29% ± 2.35% c | |
3 | 9.08 ± 0.03 a | 57.02 ± 4.38 a | 0.84% ± 0.01% a | 33.17% ± 3.07% b | |
PD | 1 | 9.11 ± 0.05 a | 56.53 ± 2.12 a | 1.08% ± 0.46% a | 27.23% ± 3.54% a |
2 | 8.48 ± 0.08 b | 105.30 ± 8.13 b | 0.28% ± 0.14% b | 50.07% ± 0.56% b | |
3 | 9.13 ± 0.01 a | 56.20 ± 2.27 a | 0.72% ± 0.13% ab | 30.39% ± 1.73% a |
Installation Types | Sample Types | SOC | SOM (g/kg) | CO32− |
---|---|---|---|---|
FA | 1 | 0.43% ± 0.01% a | 7.36 ± 0.17 a | 10.05% ± 0.50% a |
2 | 1.07% ± 0.14% b | 18.52 ± 2.36 b | 10.40% ± 1.32% a | |
3 | 0.25% ± 0.09% a | 4.27 ± 1.57 a | 10.95% ± 0.70% a | |
HSA | 1 | 0.22% ± 0.19% a | 3.72 ± 3.22 a | 14.55% ± 2.99% a |
2 | 0.49% ± 0.18% b | 8.45 ± 3.08 b | 13.20% ± 1.10% a | |
3 | 0.21% ± 0.10% a | 3.68 ± 1.73 a | 11.11% ± 1.03% b | |
TSA | 1 | 0.30% ± 0.09% a | 5.18 ± 1.50 a | 12.23% ± 0.92% a |
2 | 0.57% ± 0.05% b | 9.81 ± 0.94 b | 12.05% ± 0.84% a | |
3 | 0.31% ± 0.15% a | 5.36 ± 2.52 a | 13.80% ± 2.22% a | |
PD | 1 | 0.30% ± 0.16% a | 5.18 ± 2.83 a | 9.41% ± 1.93% a |
2 | 1.21% ± 0.20% b | 20.80 ± 3.46 b | 12.74% ± 0.60% ab | |
3 | 0.52% ± 0.36% a | 8.99 ± 6.13 a | 15.10% ± 2.71% b |
Installation Types | Sample Types | SOCS (kg C/m2) | SICS (kg C/m2) | SCS (kg C/m2) |
---|---|---|---|---|
FA | 1 | 0.34 | 8.04 | 8.38 |
2 | 0.03 | 0.30 | 0.33 | |
3 | 0.18 | 7.94 | 8.12 | |
HSA | 1 | 0.18 | 11.64 | 11.82 |
2 | 0.01 | 0.38 | 0.40 | |
3 | 0.15 | 8.05 | 8.21 | |
TSA | 1 | 0.24 | 9.78 | 10.02 |
2 | 0.02 | 0.35 | 0.37 | |
3 | 0.22 | 10.01 | 10.23 | |
PD | 1 | 0.24 | 7.53 | 7.77 |
2 | 0.04 | 0.37 | 0.41 | |
3 | 0.38 | 10.95 | 11.32 |
Installation Types | Non-Crusted Soil (kg C/m2) | BSCs (kg C/m2) | Sub-Crust Soil (kg C/m2) | Average Carbon Densities (kg C/m2) |
---|---|---|---|---|
FA | 8.38 | 0.33 | 8.12 | 8.40 |
HSA | 11.82 | 0.40 | 8.21 | 11.01 |
TSA | 10.02 | 0.37 | 10.23 | 10.17 |
PD | 7.77 | 0.41 | 11.32 | 8.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, C.; Wu, J.; Wang, S. Soil Carbon Sequestration by Biological Crusts in Photovoltaic Power Stations: Southern Tengger Desert and Artemisia ordosica Shrubland Restoration. Forests 2025, 16, 1396. https://doi.org/10.3390/f16091396
Su C, Wu J, Wang S. Soil Carbon Sequestration by Biological Crusts in Photovoltaic Power Stations: Southern Tengger Desert and Artemisia ordosica Shrubland Restoration. Forests. 2025; 16(9):1396. https://doi.org/10.3390/f16091396
Chicago/Turabian StyleSu, Chunli, Jingjing Wu, and Shengli Wang. 2025. "Soil Carbon Sequestration by Biological Crusts in Photovoltaic Power Stations: Southern Tengger Desert and Artemisia ordosica Shrubland Restoration" Forests 16, no. 9: 1396. https://doi.org/10.3390/f16091396
APA StyleSu, C., Wu, J., & Wang, S. (2025). Soil Carbon Sequestration by Biological Crusts in Photovoltaic Power Stations: Southern Tengger Desert and Artemisia ordosica Shrubland Restoration. Forests, 16(9), 1396. https://doi.org/10.3390/f16091396