Butterfly Community Responses to Urbanization and Climate Change: Thermal Adaptation and Wing Morphology Effects in a Conserved Forest, South Korea
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Meteorological Data
2.3. Biological Traits
2.4. Data Analysis
3. Results
4. Discussion
4.1. Butterfly Decline Driven by Surrounding Habitat Loss
4.2. Wingspan and Surrounding Area
4.3. Thermal Adaptation
4.4. Food Niche and Population Change
4.5. Biological Traits and Population Change
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Parmesan, C.; Phyholm, N.; Tefanescus, C.; Hill, J.K.; Thomas, C.D.; Descimon, H.; Huntley, B.; Kalla, L.; Kullberg, J.; Tammaru, T.; et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 1999, 399, 579–583. [Google Scholar] [CrossRef]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef]
- Roth, T.; Plattner, M.; Amrhein, V. Plants, birds and butterflies: Short-term responses of species communities to climate warming vary by taxon and with altitude. PLoS ONE 2014, 9, e82490. [Google Scholar] [CrossRef]
- Kwon, T.-S.; Kim, S.-S.; Lee, C.M. Local change of butterfly species in response to global warming and reforestation in Korea. Zool. Stud. 2013, 52, 47. [Google Scholar] [CrossRef]
- Kwon, T.-S.; Lee, C.M.; Kim, E.-S.; Won, M.; Kim, S.-S.; Park, Y.-S. Habitat change has greater effects than climate change on butterfly occurrence in South Korea. Glob. Ecol. Conserv. 2021, 26, e01464. [Google Scholar] [CrossRef]
- Lindsey, R.; Dahlman, L. Climate Change: Global Temperature. (Online Resource). 2024. Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature (accessed on 17 July 2024).
- NOAA National Centers for Environmental Information. Monthly Global Climate Report for Annual 2023, Published online January 2024. Available online: https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202313 (accessed on 17 July 2024).
- Kwon, W.T. Current status and perspectives of climate change sciences. Korean J. Amos. Sci. 2005, 41, 325–336. [Google Scholar]
- Oh, J.-H.; Kim, Y.-K.; Kwon, J. An analysis of landcover change and temporal landscape structure in the main ridge area of the Baekdu Daegan mountain system. J. Korean Assoc. Geogr. Inf. Stud. 2007, 10, 49–57. [Google Scholar]
- Habel, J.C.; Teucher, M.; Gros, P.; Schmitt, T.; Ulrich, W. Land use and climate change affects butterfly diversity across northern Austria. Landsc. Ecol. 2021, 36, 1741–1754. [Google Scholar] [CrossRef]
- Liivamägi, A.; Kuusemets, V.; Kaart, T.; Luig, J.; Diaz-Forero, I. Influence of habitat and landscape on butterfly diversity of semi-natural meadows within forest-dominated landscapes. J. Insect Conserv. 2014, 18, 1137–1145. [Google Scholar] [CrossRef]
- Pendl, M.; Hussain, R.I.; Moser, D.; Frank, T.; Drapela, T. Influences of landscape structure on butterfly diversity in urban private gardens using a citizen science approach. Urban Ecosyst. 2022, 25, 477–486. [Google Scholar] [CrossRef]
- Wood, B.C.; Pullin, A.S. Persistence of species in a fragmented urban landscape: The importance of dispersal ability and habitat availability for grassland butterflies. Biodivers. Conserv. 2002, 11, 1451–1468. [Google Scholar] [CrossRef]
- Ponce-Reyes, R.; Nicholson, E.; Baxter, P.W.J.; Fuller, R.A.; Possingham, H. Extinction risk in cloud forest fragments under climate change and habitat loss. Divers. Distrib. 2013, 19, 518–529. [Google Scholar] [CrossRef]
- Kwon, T.S.; Kim, S.S.; Chun, J.H.; Byun, B.K.; Lim, J.H.; Shin, J.H. Changes in butterfly abundance in response to global warming and reforestation. Environ. Entomol. 2010, 39, 337–345. [Google Scholar] [CrossRef]
- Dar, A.; Jamal, K. The decline of moths globally: A review of possible causes. Munis Entomol. Zool. J. 2021, 16, 310–319. [Google Scholar]
- Sánchez-Bayo, F.; Wyckhuys, K.A.G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 2019, 232, 8–27. [Google Scholar] [CrossRef]
- Wagner, D.L. Moth decline in the Northeastern United States. News Lepid. Soc. 2012, 54, 52–56. [Google Scholar]
- Fox, R. The decline of moths in Great Britain: A review of possible causes. Insect Conserv. Divers. 2013, 6, 5–19. [Google Scholar] [CrossRef]
- Wölfling, M.; Uhl, B.; Fiedler, K. Ecological drift and directional community change in an isolated Mediterranean forest reserve-Larger moth species under higher threat. J. Insect Sci. 2020, 20, 7. [Google Scholar] [CrossRef]
- Kwon, T.-S.; Kim, S.-S.; Lee, D.-S.; Park, G.E.; Park, Y.-S. Large moths facing steeper decline than small moths in South Korea: Implications for ecosystem dynamics and conservation. Glob. Ecol. Conserv. 2024, 55, e03234. [Google Scholar] [CrossRef]
- Wagner, D.L.; Fox, R.; Salcido, D.M.; Dyer, L.A. A window to the world of global insect declines: Moth biodiversity trends are complex and heterogeneous. Proc. Natl. Acad. Sci. USA 2021, 118, e2002549117. [Google Scholar] [CrossRef]
- Byun, B.-K.; Lee, Y.J.; Weon, G.-J.; Sohn, J.-D. Butterfly Fauna of the Gwangneung Forest, Korea. J. Asia-Pac. Entomol. 2005, 8, 199–210. [Google Scholar] [CrossRef]
- Kwon, T.-S.; Byun, B.-K.; Lee, B.-W.; Lee, C.-Y.; Shon, J.-D.; Kang, S.-H.; Kim, S.-S.; Kim, Y.-K. Estimation of species richness of butterfly community in the Gwangneung forest, Korea. Korean J. Appl. Entonol. 2009, 48, 439–445. [Google Scholar] [CrossRef]
- Kim, S.-S.; Seo, Y.-H. Life Histories of Korean Butterflies; Sakyejul: Paju, Republic of Korea, 2012. [Google Scholar]
- Koh, L.P.; Soghi, N.S.; Brook, B.W. Ecological correlates of extinction proneness in tropical butterflies. Conserv. Biol. 2004, 18, 1571–1578. [Google Scholar] [CrossRef]
- Palash, A.; Paul, S.; Resha, S.K.; Khan, M.K. Body size and diet breadth drive local extinction risk in butterflies. Heliyon 2022, 8, e10290. [Google Scholar] [CrossRef]
- Korea Forest Research Institute. Experimental Forest of Gangneung; Udgomunhwa Publishing: Seoul, Republic of Korea, 1994. [Google Scholar]
- KNA. Korea National Arboretum. 2023. Available online: http://www.kna.go.kr/ (accessed on 11 October 2023).
- Cho, Y.-C.; Cho, H.-J.; Kim, J.-S.; Cho, J.-H.; Jung, S.-H.; Kim, H.-G.; Sim, H.-S.; Lee, D.; Kim, H.-C. Forest of Korea (V) Gwangreung Forest Biosphere Reserve; Korea National Arboretum: Pocheon, Republic of Korea, 2020. [Google Scholar]
- Korea Meteorological Administration (KMA); National Institute of Meteorological Sciences (NIMS). Analysis of Climate Change in South Korea Over 109 Years (1912–2020); Korea Meteorological Administration, and National Institute of Meteorological Sciences: Seoul, Republic of Korea, 2021. [Google Scholar]
- Pollard, E. A method for assessing changes in the abundance of butterflies. Biol. Conserv. 1977, 12, 115–134. [Google Scholar] [CrossRef]
- Kim, S.-S.; Lee, C.M.; Kwon, T.-S.; Joo, H.Z.; Sung, J.H. Korean Butterfly Atlas 1996-2011; Korea Forest Research Institute: Seoul, Republic of Korea, 2012. [Google Scholar]
- Joo, H.Z.; Kim, S.-S.; Kim, H.C.; Sohn, J.D.; Lee, Y.J.; Ju, J.S. The Butterflies of Korea; Geobook Pub. Co.: Seoul, Republic of Korea, 2021. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 23 May 2023).
- Ogle, D.H.; Doll, J.C.; Wheeler, A.P.; Dinno, A. FSA: Simple Fisheries Stock Assessment Methods. R Package Version 0.9.5. 2023. Available online: https://CRAN.R-project.org/package=FSA (accessed on 23 May 2024).
- Harrell, F., Jr. Hmisc: Harrell Miscellaneous_. R Package Version 5.1-3. 2024. Available online: https://CRAN.R-project.org/package=Hmisc (accessed on 22 November 2024).
- Kwon, T.-S.; Lee, C.M.; Sung, J.H. Diversity decrease of ant (Formicidae, Hymenoptera) after a forest disturbance: Different responses among functional guilds. Zool. Stud. 2014, 53, 37. [Google Scholar] [CrossRef]
- Seibold, S.; Gossner, M.M.; Simons, N.K.; Blüthgen, N.; Müller, J.; Ambarlı, D.; Ammer, C.; Bauhus, J.; Fischer, M.; Habel, J.C.; et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 2019, 574, 671–674. [Google Scholar] [CrossRef] [PubMed]
- van Klink, R.; Bowler, D.E.; Gongalsky, K.B.; Swengel, A.B.; Gentile, A.; Chase, J.M. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 2020, 368, 417–420. [Google Scholar] [CrossRef]
- Bae, J.-S.; Lee, K.-B. Impacts of the substitution of firewood for home use on the forest greening after the 1945 liberation of Korea. J. Korean For. Soc. 2006, 95, 60–72. [Google Scholar]
- Dover, J.; Settele, J. The influences of landscape structure on butterfly distribution and movement: A review. J. Insect Conserv. 2009, 13, 3–27. [Google Scholar] [CrossRef]
- Sekar, S. A meta-analysis of the traits affecting dispersal ability in butterflies: Can wingspan be used as a proxy? J. Anim. Ecol. 2012, 81, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Nieminen, M.; Rita, H.; Uuvana, P. Body size and migration rate in moths. Ecography 1999, 22, 697–707. [Google Scholar] [CrossRef]
- Shirey, V.; Neupane, N.; Guralnick, R.; Ries, L. Rising minimum temperatures contribute to 50 years of occupancy decline among cold-adapted Arctic and boreal butterflies in North America. Glob. Change Biol. 2024, 30, e17205. [Google Scholar] [CrossRef]
- Adams, B.J.; Li, E.; Bahlai, C.A.; Meineke, E.K.; McGlynn, T.P.; Brown, B.V. Local- and landscape-scale variables shape insect diversity in an urban biodiversity hot spot. Ecol. Appl. 2020, 30, e02089. [Google Scholar] [CrossRef]
- Bang, C.; Faeth, S.H. Variation in arthropod communities in response to urbanization: Seven years of arthropod monitoring in a desert city. Landsc. Urban Plan. 2011, 103, 383–399. [Google Scholar] [CrossRef]
- Niemelä, J.; Kotze, D.J.; Venn, S.; Penev, L.; Stoyanov, I.; Spence, J.; Hartley, D.; de Oca, E.M. Carabid beetle assemblages (Coleoptera, Carabidae) across urban-rural gradients: An international comparison. Landsc. Ecol. 2002, 17, 387–401. [Google Scholar] [CrossRef]
- Mutamiswa, R.; Mbande, A.; Nyamukondiwa, C.; Chidawanyika, F. Thermal adaptation in Lepidoptera under shifting environments: Mechanisms, patterns, and consequences. Phytoparasitica 2023, 51, 929–955. [Google Scholar] [CrossRef]
- Tsai, C.-C.; Childers, R.A.; Nan Shi, N.; Ren, C.; Pelaez, J.N.; Bernard, G.D.; Pierce, N.E.; Yu, N. Physical and behavioral adaptations to prevent overheating of the living wings of butterflies. Nat. Commun. 2020, 11, 551. [Google Scholar] [CrossRef]
- Solomon, S. Climate Change 2007-the Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: New York, USA, 2007; Volume 4. [Google Scholar]
- Na, S.; Lee, E.; Kim, H.; Choi, S.; Yi, H. The relationship of mean temperature and 9 collected butterfly species’ wingspan as the response of global warming. J. Ecol. Environ. 2021, 45, 21. [Google Scholar] [CrossRef]
- Lee, S.; Jeon, H.; Kim, M. Spatial distribution of butterflies in accordance with climate change in the Korean Peninsula. Sustainability 2020, 12, 1995. [Google Scholar] [CrossRef]
- Adhikari, P.; Jeon, J.-Y.; Kim, H.W.; Oh, H.-S.; Adhikari, P.; Seo, C. Northward range expansion of southern butterflies according to climate change in South Korea. J. Clim. Change Res. 2020, 11, 643–656. [Google Scholar] [CrossRef]
- Kitahara, M. Poleward range shift of butterflies under global warming. Nat. Insects 2008, 43, 19–23. [Google Scholar]
- Inoue, T. Spread of the distributional range of Narathura bazalus (Hewitson)(Lepidoptera, Lycaenidae) in Ibaraki prefecture, central Japan. Trans. Lepid. Soc. Jpn. 2005, 56, 287–296. [Google Scholar]
- Ogawa-Onishi, Y.; Berry, P.M. Ecological impacts of climate change in Japan: The importance of integrating local and international publications. Biol. Conserv. 2013, 157, 361–371. [Google Scholar] [CrossRef]
- Colles, A.; Liow, L.H.; Prinzing, A. Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecol. Lett. 2009, 12, 849–863. [Google Scholar] [CrossRef] [PubMed]
- Kwon, T.-S.; Lee, C.-M.; Kim, E.-S.; Won, M.S.; Kim, S.-S. Analysis of Distribution Changes in Korean Butterfly; National Institute of Forest Science: Seoul, Republic of Korea, 2017. [Google Scholar]
Family | Abundance (%) | Number of species | |
Hesperiidae | 729 (6.1) | 13 | |
Lycaenidae | 684 (5.8) | 25 | |
Nymphalidae | 7373 (62.1) | 48 | |
Papilionidae | 663 (5.6) | 8 | |
Pieridae | 2418 (20.4) | 6 | |
Overall | 11,867 (100.0) | 100 | |
Family | Dominant species | Abundance (%) | Number of years observed |
Hesperiidae | Erynnis montanus | 377 (3.2) | 18 |
Nymphalidae | Libythea lepita | 3540 (29.8) | 18 |
Argynnis paphia | 598 (5.1) | 17 | |
Neptis philyroides | 401 (3.4) | 17 | |
Sasakia charonda | 270 (2.3) | 16 | |
Neptis philyra | 260 (2.2) | 16 | |
Pieridae | Pieris melete | 1989 (16.8) | 18 |
Pieris canidia | 332 (2.8) | 16 |
Variables | Model Performance | |||||||
---|---|---|---|---|---|---|---|---|
Model | Abundance | Diet Breadth | Habitat Type | Thermal Adaptation | Wingspan | Adj. R2 | p | AIC |
Initial | ns | ns | ns | ** (+) | * (+) | 0.072 | 0.13 | −434.2 |
Final | ** (+) | ** (+) | 0.120 | 0.01 | −441.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, T.-S.; Kim, S.-S.; Yang, I.; Kim, A.R.; Park, Y.-S. Butterfly Community Responses to Urbanization and Climate Change: Thermal Adaptation and Wing Morphology Effects in a Conserved Forest, South Korea. Forests 2025, 16, 1386. https://doi.org/10.3390/f16091386
Kwon T-S, Kim S-S, Yang I, Kim AR, Park Y-S. Butterfly Community Responses to Urbanization and Climate Change: Thermal Adaptation and Wing Morphology Effects in a Conserved Forest, South Korea. Forests. 2025; 16(9):1386. https://doi.org/10.3390/f16091386
Chicago/Turabian StyleKwon, Tae-Sung, Sung-Soo Kim, Ilju Yang, A Reum Kim, and Young-Seuk Park. 2025. "Butterfly Community Responses to Urbanization and Climate Change: Thermal Adaptation and Wing Morphology Effects in a Conserved Forest, South Korea" Forests 16, no. 9: 1386. https://doi.org/10.3390/f16091386
APA StyleKwon, T.-S., Kim, S.-S., Yang, I., Kim, A. R., & Park, Y.-S. (2025). Butterfly Community Responses to Urbanization and Climate Change: Thermal Adaptation and Wing Morphology Effects in a Conserved Forest, South Korea. Forests, 16(9), 1386. https://doi.org/10.3390/f16091386