Differences in Soil CO2 Emissions Between Managed and Unmanaged Stands of Quercus robur L. in the Republic of Serbia
Abstract
1. Introduction
2. Materials and Methods
2.1. The Study Design
2.1.1. Characteristics of the Examined Forest Stands
2.1.2. The Soil Properties in Habitat Type of Carpino-Fraxino-Quercetum roboris Miš. et Broz 1962. Subass. inundatum
2.2. Data Collection and Analysis
2.3. Statistical Analyses
3. Results
3.1. Dynamics of SCDE
3.2. Seasonal Variations in SCDE Between Examined Stands
3.3. The Effects of Stand Developmental Stage on SCDE
3.4. Seasonal Influences of ST and SM on SCDE
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Stand/Season | Model | Regression Equations | Coefficients | N | R2 | R2adj | p-Value | |||
---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | |||||||
S1/Summer 2021 | 1. | SCDE = a + bST + cSM | −29.000 ** | 1.900 *** | 0.214 | 35 | 0.52 | 0.49 | <0.001 | |
2. | SCDE = a + bST + cSM + dST × SM | −42.770 | 2.591 | 0.629 | −0.021 | 35 | 0.52 | 0.47 | <0.001 | |
S2/Summer 2021 | 1. | SCDE = a + bST + cSM | −24.788 *** | 1.595 * | 0.269 ’ | 35 | 0.47 | 0.43 | <0.001 | |
2. | SCDE = a + bST + cSM + dST × SM | −96.702 ’ | 5.213 * | 2.431 | −0.110 | 35 | 0.51 | 0.46 | <0.001 | |
S3/Summer 2021 | 1. | SCDE = a + bST + cSM | −36.082 *** | 1.589 *** | 0.558 ** | 35 | 0.44 | 0.40 | <0.001 | |
2. | SCDE = a + bST + cSM + dST × SM | −92.921 | 4.449 | 2.266 ’ | −0.087 | 35 | 0.46 | 0.41 | <0.001 | |
S1/Spring 2022 | 1. | SCDE = a + bST + cSM | −385.711 *** | 9.216 *** | 8.408 *** | 25 | 0.95 | 0.95 | <0.001 | |
2. | SCDE = a + bST + cSM + dST × SM | −363.709 *** | 7.570 *** | 7.787 *** | 0.048 ’ | 25 | 0.96 | 0.96 | <0.001 | |
S2/Spring 2022 | 1. | SCDE = a + bST + cSM | −337.025 *** | 7.694 *** | 7.458 *** | 25 | 0.63 | 0.60 | <0.001 | |
2. | SCDE = a + bST + cSM + dST × SM | −371.467 *** | 10.271 ** | 8.430 *** | −0.075 | 25 | 0.65 | 0.60 | <0.001 | |
S3/Spring 2022 | 1. | SCDE = a + bST + cSM | −63.316 ’ | 0.911 | 1.742 * | 25 | 0.66 | 0.63 | <0.001 | |
2. | SCDE = a + bST + cSM + dST × SM | 32.530 * | −6.257 *** | −0.961 ** | 0.209 *** | 25 | 0.97 | 0.97 | <0.001 | |
S1/Summer 2022 | 1. | SCDE = a + bST + cSM | 24.387 *** | −1.440 *** | 0.525 *** | 30 | 0.89 | 0.88 | <0.001 | |
2. | SCDE = a + bST + cSM + dST × SM | −41.034 * | 1.960 ’ | 3.469 *** | −0.154 ** | 30 | 0.93 | 0.92 | <0.001 | |
S2/Summer 2022 | 1. | SCDE = a + bST + cSM | −9.317 | 1.265 *** | −0.300 ** | 30 | 0.80 | 0.78 | <0.001 | |
2. | SCDE = a + bST + cSM+ dST × SM | −11.447 | 1.376 | −0.204 | −0.005 | 30 | 0.80 | 0.78 | <0.001 | |
S3/Summer 2022 | 1. | SCDE = a + bST + cSM | 60.547 *** | −1.476 *** | −1.053 *** | 30 | 0.85 | 0.84 | <0.001 | |
2. | SCDE = a + bST + cSM + dST × SM | 134.874 *** | −5.339 *** | −4.397 *** | 0.175 *** | 30 | 0.90 | 0.89 | <0.001 |
Appendix B
References
- Dignac, M.F.; Derrien, D.; Barré, P.; Barot, S.; Cécillon, L.; Chenu, C.; Chevallier, T.; Freschet, G.T.; Garnier, P.; Guenet, B.; et al. Increasing soil carbon storage: Mechanisms, effects of agricultural practices and proxies. A review. Agron. Sustain. Dev. 2017, 37, 14. [Google Scholar] [CrossRef]
- Oertel, C.; Matschullat, J.; Zurba, K.; Zimmermann, F.; Erasmi, S. Greenhouse gas emissions from soils—A review. Geochemistry 2016, 76, 327–352. [Google Scholar] [CrossRef]
- Lubbers, I.M.; Van Groenigen, K.J.; Fonte, S.J.; Six, J.; Brussaard, L.; Van Groenigen, J.W. Greenhouse-gas emissions from soils increased by earthworms. Nat. Clim. Chang. 2013, 3, 187–194. [Google Scholar] [CrossRef]
- Kuzyakov, Y. Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol. Biochem. 2006, 38, 425–448. [Google Scholar] [CrossRef]
- Kumari, T.; Singh, R.; Verma, P.; Raghubanshi, A.S. Monsoon-phase regulates the decoupling of auto-and heterotrophic respiration by mediating soil nutrient availability and root biomass in tropical grassland. CATENA 2022, 209, 105808. [Google Scholar] [CrossRef]
- Zhao, Z.M.; Shi, F.X. Contribution of root respiration to spatial-temporal variation of soil respiration in a Haloxylon ammodendrons ecosystem in Gurbantunggut Basin. Acta Ecol. Sin. 2017, 37, 392–398. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Xie, J.B.; Wang, Y.G.; Li, Y. Biotic and abiotic contribution to diurnal soil CO2 fluxes from saline/alkaline soils. Sci. Rep. 2020, 10, 5396. [Google Scholar] [CrossRef]
- Samardžić, M.; Galić, Z.; Orlović, S.; Kovač, M.; Andreeva, I.; Vasenev, I. Environmental assessment of greenhouse gases’ emission in poplar plantation under extreme climate conditions of winter 2019/2020. Topola 2021, 208, 15–19. [Google Scholar] [CrossRef]
- Raich, J.W.; Schlesinger, W.H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 1992, 44, 81–99. [Google Scholar] [CrossRef]
- Knohl, A.; Søe, A.R.; Kutsch, W.L.; Göckede, M.; Buchmann, N. Representative estimates of soil and ecosystem respiration in an old beech forest. Plant Soil 2008, 302, 189–202. [Google Scholar] [CrossRef]
- Janssens, I.A.; Lankreijer, H.; Matteucci, G.; Kowalski, A.S.; Buchmann, N.; Epron, D.; Pilegaard, K.; Kutsch, W.; Longdoz, B.; Grünwald, T.; et al. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Glob. Change Biol. 2001, 7, 269–278. [Google Scholar] [CrossRef]
- Ontl, T.A.; Schulte, L.A. Soil carbon storage. Nat. Educ. Knowl. 2012, 3, 35. [Google Scholar]
- Jobbágy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Köster, K.; Püttsepp, Ü.; Pumpanen, J. Comparison of soil CO2 flux between uncleared and cleared windthrow areas in Estonia and Latvia. For. Ecol. Manag. 2011, 262, 65–70. [Google Scholar] [CrossRef]
- Li, H.J.; Yan, J.X.; Yue, X.F.; Wang, M.B. Significance of soil temperature and moisture for soil respiration in a Chinese mountain area. Agric. For. Meteorol. 2008, 148, 490–503. [Google Scholar] [CrossRef]
- Teramoto, M.; Liang, N.; Zeng, J.; Saigusa, N.; Takahashi, Y. Long-term chamber measurements reveal strong impacts of soil temperature on seasonal and inter-annual variation in understory CO2 fluxes in a Japanese larch (Larix kaempferi Sarg.) forest. Agric. For. Meteorol. 2017, 247, 194–206. [Google Scholar] [CrossRef]
- Ma, S.; Concilio, A.; Oakley, B.; North, M.; Chen, J. Spatial variability in microclimate in a mixed-conifer forest before and after thinning and burning treatments. For. Ecol. Manag. 2010, 259, 904–915. [Google Scholar] [CrossRef]
- Klašnja, B.; Orlović, S.; Galić, Z.; Drekić, M.; Vasić, V. Poplar biomass of high density short rotation plantations as raw material for energy production. Wood Res. 2008, 53, 27–38. [Google Scholar]
- Klašnja, B.; Orlović, S.; Galić, Z. Energy potential of poplar plantations in two spacing and two rotations. Šumarski List 2012, 3–4, 161–167. [Google Scholar]
- Peng, Y.; Thomas, S.C.; Tian, D. Forest management and soil respiration: Implications for carbon sequestration. Environ. Rev. 2008, 16, 93–111. [Google Scholar] [CrossRef]
- Matović, B.; Pekeč, S.; Vidović, D.; Drekić, M.; Višacki, V.; Kesić, L.; Perendija, N.; Vaštag, E.; Orlović, S.; Stojnić, S. Management practice effects on biomass and soil carbon stock in European beech (Fagus sylvatica L.) forests on Fruška Gora Mountain, Serbia. Topola/Poplar 2024, 214, 17–34. [Google Scholar] [CrossRef]
- Guo, J.; Yang, Y.; Chen, G.; Xie, J.; Gao, R.; Qian, W. Effects of clear-cutting and slash burning on soil respiration in Chinese fir and evergreen broadleaved forests in mid-subtropical China. Plant Soil 2010, 333, 249–261. [Google Scholar] [CrossRef]
- Tang, J.; Qi, Y.; Xu, M.; Misson, L.; Goldstein, A.H. Forest thinning and soil respiration in a ponderosa pine plantation in the Sierra Nevada. Tree Physiol. 2005, 25, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Staněk, L.; Neruda, J.; Ulrich, R. Changes in the concentration of CO2 in forest soils resulting from the traffic of logging machines. J. For. Sci. 2025, 71, 250–267. [Google Scholar] [CrossRef]
- Noormets, A.; Epron, D.; Domec, J.C.; McNulty, S.G.; Fox, T.; Sun, G.; King, J.S. Effects of forest management on productivity and carbon sequestration: A review and hypothesis. For. Ecol. Manag. 2015, 355, 124–140. [Google Scholar] [CrossRef]
- Tang, X.; Fan, S.; Qi, L.; Guan, F.; Du, M.; Zhang, H. Soil respiration and net ecosystem production in relation to intensive management in Moso bamboo forests. CATENA 2016, 137, 219–228. [Google Scholar] [CrossRef]
- Upadhyay, S.; Singh, R.; Verma, P.; Raghubanshi, A.S. Spatio-temporal variability in soil CO2 efflux and regulatory physicochemical parameters from the tropical urban natural and anthropogenic land use classes. J. Environ. Manag. 2021, 295, 113141. [Google Scholar] [CrossRef] [PubMed]
- Republic Hydrometeorological Service of Serbia. Available online: https://www.hidmet.gov.rs/ (accessed on 25 December 2023).
- Jović, D.; Jović, N.; Jovanović, B.; Tomić, Z.; Banković, S.; Medarević, M.; Knežević, M.; Grbić, P.; Živanov, N.; Ivanišević, P. Forest Types of Ravni Srem—Atlas; University of Belgrade—Faculty of Forestry: Belgrade, Serbia, 1994. [Google Scholar]
- Pejaković, Đ. Protected areas in the forest estate Sremska Mitrovica. In 250 Years of Ravni Srem forestry; Tomović, Z., Ed.; Public Enterprise “Vojvodinašume”: Novi Sad, Serbia, 2008; pp. 29–38. [Google Scholar]
- Karaklić, V.; Samardžić, M.; Orlović, S.; Zorić, M.; Kesić, L.; Perendija, N.; Galić, Z. Effect of stand age on soil CO2 emissions in pedunculate oak (Quercus robur L.) forests. Forests 2024, 15, 1574. [Google Scholar] [CrossRef]
- Pavlović, P.; Kostić, N.; Karadžić, B.; Mitrović, M. The Soils of Serbia; Springer: Amsterdam, The Netherlands, 2017; pp. 1–225. [Google Scholar] [CrossRef]
- FAO. World Reference Base for Soil Resources 2014, Update 2015; World Soil Resources Reports 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Avilov, K.V.; Barkov, A.V.; Vasenev, I.I.; Vasenev, I.V.; Vizirskaja, M.M.; Paskarev, A.A.; Terekhov, V.A.; Kurbatova, A.J.; Samardzhich, M. Device for Measuring Emission of Greenhouse Gas from Soil and Plants; Russian Federation’s Federal Service for Intellectual property: Moscow, Russia, 2014; No. RU 2 518 979 C1.
- Buchmann, N. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biol. Biochem. 2000, 32, 1625–1635. [Google Scholar] [CrossRef]
- Karaklić, V.; Galić, Z.; Samardžić, M.; Kesić, L.; Orlović, S.; Zorić, M. Carbon dioxide (CO2) emissions from soils during the regeneration of pedunculate oak (Quercus robur L.) stand in the summer period. Šumarski List 2023, 147, 227–237. [Google Scholar] [CrossRef]
- Ming, A.; Yang, Y.; Liu, S.; Wang, H.; Li, Y.; Li, H.; Nong, Y.; Cai, D.; Jia, H.; Tao, Y.; et al. Effects of near natural forest management on soil greenhouse gas flux in Pinus massoniana (Lamb.) and Cunninghamia lanceolata (Lamb.) Hook. plantations. Forests 2018, 9, 229. [Google Scholar] [CrossRef]
- Iqbal, J.; Ronggui, H.; Lijun, D.; Lan, L.; Shan, L.; Tao, C.; Leilei, R. Differences in soil CO2 flux between different land use types in mid-subtropical China. Soil Biol. Biochem. 2008, 40, 2324–2333. [Google Scholar] [CrossRef]
- Jacinthe, P.A.; Lal, R.; Kimble, J.M. Carbon budget and seasonal carbon dioxide emission from a central Ohio Luvisol as influenced by wheat residue amendment. Soil Tillage Res. 2002, 67, 147–157. [Google Scholar] [CrossRef]
- Sarzhanov, A.D.; Vasenev, I.V.; Vasenev, I.I.; Sotnikova, L.Y.; Ryzhkov, V.O.; Morin, T. Carbon stocks and CO2 emissions of urban and natural soils in Central Chernozemic region of Russia. CATENA 2017, 158, 131–140. [Google Scholar] [CrossRef]
- Jia, B.; Zhou, G.; Wang, Y.; Wang, F.; Wang, X. Effects of temperature and soil water-content on soil respiration of grazed and ungrazed Leymus chinensis steppes, Inner Mongolia. J. Arid. Environ. 2006, 67, 60–76. [Google Scholar] [CrossRef]
- Cui, Y.B.; Feng, J.G.; Liao, L.G.; Yu, R.; Zhang, X.; Liu, Y.H.; Yang, L.-Y.; Zhao, J.-F.; Tan, Z.-H. Controls of temporal variations on soil respiration in a tropical lowland rainforest in Hainan Island, China. Trop. Conserv. Sci. 2020, 13, 1940082920914902. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Ligges, U.; Mächler, M. Scatterplot3d—An R package for visualizing multivariate data. J. Stat. Softw. 2003, 8, 1–20. [Google Scholar] [CrossRef]
- Jandl, R.; Lindner, M.; Vesterdal, L.; Bauwens, B.; Baritz, R.; Hagedorn, F.; Jonson, D.W.; Minkkinen, K.; Byrne, K.A. 2007: How strongly can forest management influence soil carbon sequestration? Geoderma 2007, 137, 253–268. [Google Scholar] [CrossRef]
- Cheng, X.; Kang, F.; Han, H.; Liu, H.; Zhang, Y. Effect of thinning on partitioned soil respiration in a young Pinus tabulaeformis plantation during growing season. Agric. For. Meteorol. 2015, 214, 473–482. [Google Scholar] [CrossRef]
- Søe, A.R.; Buchmann, N. Spatial and temporal variations in soil respiration in relation to stand structure and soil parameters in an unmanaged beech forest. Tree Physiol. 2005, 25, 1427–1436. [Google Scholar] [CrossRef] [PubMed]
- Saiz, G.; Byrne, K.A.; Butterbach-Bahl, K.; Kiese, R.; Blujdea, V.; Farrell, E.P. Stand age-related effects on soil respiration in a first rotation Sitka spruce chronosequence in central Ireland. Glob. Change Biol. 2006, 12, 1007–1020. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, Y.; Song, Q.; Lin, Y.; Zhou, R.; Dong, Y.; Zhou, L.; Li, J.; Jin, Y.; Zhou, W.; et al. Stand age-related effects on soil respiration in rubber plantations (Hevea brasiliensis) in southwest China. Eur. J. Soil Sci. 2019, 70, 1221–1233. [Google Scholar] [CrossRef]
- Nevedrov, N.P.; Sarzhanov, D.A.; Protsenko, E.P.; Vasenev, I.I. Seasonal dynamics of CO2 emission from soils of Kursk. Eurasian Soil Sci. 2021, 54, 80–88. [Google Scholar] [CrossRef]
- Tang, X.L.; Zhou, G.Y.; Liu, S.G.; Zhang, D.Q.; Liu, S.Z.; Li, J.; Zhou, C.Y. Dependence of soil respiration on soil temperature and soil moisture in successional forests in southern China. J. Integr. Plant Biol. 2006, 48, 654–663. [Google Scholar] [CrossRef]
- Brito, L.F.; Azenha, M.V.; Janusckiewicz, E.R.; Cardoso, A.S.; Morgado, E.S.; Malheiros, E.B.; La Scala, N.; Reis, R.A.; Ruggieri, A.C. Seasonal fluctuation of soil carbon dioxide emission in differently managed pastures. Agron. J. 2015, 107, 957–962. [Google Scholar] [CrossRef]
- Wei, S.; Zhang, X.; McLaughlin, N.B.; Liang, A.; Jia, S.; Chen, X.; Chen, X. Effect of soil temperature and soil moisture on CO2 flux from eroded landscape positions on black soil in Northeast China. Soil Tillage Res. 2014, 144, 119–125. [Google Scholar] [CrossRef]
- Almagro, M.; López, J.; Querejeta, J.I.; Martínez-Mena, M. Temperature dependence of soil CO2 efflux is strongly modulated by seasonal patterns of moisture availability in a Mediterranean ecosystem. Soil Biol. Biochem. 2009, 41, 594–605. [Google Scholar] [CrossRef]
- Galić, Z.; Karaklić, V.; Marković, S.B.; Kiš, A.; Samardžić, M. Forest soil CO2 emission in Quercus robur level II monitoring site. Open Geosci. 2024, 16, 20220723. [Google Scholar] [CrossRef]
- Houghton, R.A.; Goodale, C.L. Effects of land-use change on the carbon balance of terrestrial ecosystems. Ecosyst. Land Use Chang. 2004, 153, 85–98. [Google Scholar]
- Cao, S.; He, Y.; Zhang, L.; Sun, Q.; Zhang, Y.; Li, H.; Wei, X.; Liu, Y. Spatiotemporal dynamics of vegetation net ecosystem productivity and its response to drought in Northwest China. GIScience Remote Sens. 2023, 60, 2194597. [Google Scholar] [CrossRef]
- Horwath, W. Carbon cycling and formation of soil organic matter. In Soil Microbiology, Ecology and Biochemistry, 3rd ed.; Paul, E.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 303–339. [Google Scholar]
- Soussana, J.F.; Allard, V.; Pilegaard, K.; Ambus, P.; Amman, C.; Campbell, C.; Ceschia, E.; Clifton-Brown, J.; Czobel, S.; Domingues, R.; et al. Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites. Agric. Ecosyst. Environ. 2007, 121, 121–134. [Google Scholar] [CrossRef]
- Rađević, V.; Pap, P.; Vasić, V. Management of the common oak forests in Ravni Srem: Yesterday, today, tomorrow. Topola 2020, 206, 41–52. Available online: https://www.journalpoplar.ilfe.org/sites/default/files/07Radjevic_et_al.pdf (accessed on 5 September 2024). [CrossRef]
- Development Plan of Srem Forest Area. Available online: https://psp.vojvodina.gov.rs/wp-content/uploads/2021/01/Plan-razvoja-Sremskog-sumskog-podrucja-knjiga-1.pdf (accessed on 5 September 2024).
- Zhang, X.; Guan, D.; Li, W.; Sun, D.; Jin, C.; Yuan, F.; Wang, A.; Wu, J. The effects of forest thinning on soil carbon stocks and dynamics: A meta-analysis. For. Ecol. Manag. 2018, 429, 36–43. [Google Scholar] [CrossRef]
- Cheng, X.; Han, H.; Kang, F.; Liu, K.; Song, Y.; Zhou, B.; Li, Y. Short-term effects of thinning on soil respiration in a pine (Pinus tabulaeformis) plantation. Biol. Fertil. Soils 2014, 50, 357–367. [Google Scholar] [CrossRef]
- He, Z.B.; Chen, L.F.; Du, J.; Zhu, X.; Lin, P.F.; Li, J.; Xiang, Y.Z. Responses of soil organic carbon, soil respiration, and associated soil properties to long-term thinning in a semiarid spruce plantation in northwestern China. Land Degrad. Dev. 2018, 29, 4387–4396. [Google Scholar] [CrossRef]
- Mazza, G.; Agnelli, A.E.; Cantiani, P.; Chiavetta, U.; Doukalianou, F.; Kitikidou, K.; Milios, E.; Orfanoudakis, M.; Radoglou, K.; Lagomarsino, A. Short-term effects of thinning on soil CO2, N2O and CH4 fluxes in Mediterranean forest ecosystems. Sci. Total Environ. 2019, 651, 713–724. [Google Scholar] [CrossRef] [PubMed]
- Jónsson, J.Á.; Sigurðsson, B.D. Effects of early thinning and fertilization on soil temperature and soil respiration in a poplar plantation. Icel. Agric. Sci. 2010, 23, 97–109. Available online: https://hdl.handle.net/1946/19929 (accessed on 5 September 2024).
- Masyagina, O.V.; Prokushkin, S.G.; Koike, T. The influence of thinning on the ecological conditions and soil respiration in a larch forest on Hokkaido Island. Eurasian Soil Sci. 2010, 43, 693–700. [Google Scholar] [CrossRef]
Examined Stand | Managed/Unmanaged Stand | Developmental Stage of Stand/Stand Age | Number of Trees per Unit Area | Canopy Cover | Age Structure | Tree Vitality | Regeneration |
---|---|---|---|---|---|---|---|
S1 | Managed stand | Optimal stage (middle-aged stand) | High, stagnating | 0.7 | Big-medium-sized trees | Stagnating- decreasing | Very low |
S2 | Unmanaged stand | Over-mature stage | High, decreasing | 0.6 | Big trees | Low | Low |
S3 | Unmanaged stand | Decay stage | Low, decreasing | 0.1 | Big dying trees | Low, dieback | Starting in huge groups |
Horizon | Soil Depth | Total Sand >0.02 mm | Silt 0.002–0.02 mm | Clay <0.002 mm | Textural Class | C | N | CaCO3 | pH (H2O) |
---|---|---|---|---|---|---|---|---|---|
cm | % | % | % | - | % | % | % | - | |
Aa | 0–8 | 23.2 | 50.5 | 26.3 | silt loam | 2.430 | 0.173 | 1.13 | 7.98 |
C | 8–100 | 19.3 | 43.5 | 37.2 | silty clay loam | 0.261 | - | 0.87 | 8.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karaklić, V.; Samardžić, M.; Orlović, S.; Guzina, I.; Kovač, M.; Novčić, Z.; Galić, Z. Differences in Soil CO2 Emissions Between Managed and Unmanaged Stands of Quercus robur L. in the Republic of Serbia. Forests 2025, 16, 1369. https://doi.org/10.3390/f16091369
Karaklić V, Samardžić M, Orlović S, Guzina I, Kovač M, Novčić Z, Galić Z. Differences in Soil CO2 Emissions Between Managed and Unmanaged Stands of Quercus robur L. in the Republic of Serbia. Forests. 2025; 16(9):1369. https://doi.org/10.3390/f16091369
Chicago/Turabian StyleKaraklić, Velisav, Miljan Samardžić, Saša Orlović, Igor Guzina, Milica Kovač, Zoran Novčić, and Zoran Galić. 2025. "Differences in Soil CO2 Emissions Between Managed and Unmanaged Stands of Quercus robur L. in the Republic of Serbia" Forests 16, no. 9: 1369. https://doi.org/10.3390/f16091369
APA StyleKaraklić, V., Samardžić, M., Orlović, S., Guzina, I., Kovač, M., Novčić, Z., & Galić, Z. (2025). Differences in Soil CO2 Emissions Between Managed and Unmanaged Stands of Quercus robur L. in the Republic of Serbia. Forests, 16(9), 1369. https://doi.org/10.3390/f16091369