Screening and a Comprehensive Evaluation of Pinus elliottii with a High Efficiency of Phosphorus Utilization
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Treatment
2.2. Measurement of Indicators
2.2.1. Indicators of Plant Morphology
2.2.2. Indicators of Root Morphology
2.2.3. Determination of Orthophosphate Concentration and Calculation of Phosphorus Utilization Efficiency
2.2.4. Comprehensive Evaluation of Low-Phosphorus Tolerance
2.2.5. Quantitative Real-Time RT-PCR (qRT-PCR) Analysis
2.3. Statistical Analysis
2.3.1. One-Way ANOVA
2.3.2. Principal Component Analysis
2.3.3. Correlation Analysis
2.3.4. Cluster Analysis
3. Results
3.1. Response of Slash Pine Phenotypic Traits to Varying Levels of Orthophosphate Supply
3.2. Root Morphological Indicators of Slash Pine in Response to Varying Levels of Orthophosphate Supply
3.3. Slash Pine Phosphorus Utilization Efficiency
3.4. Principal Component Analysis of Low-Phosphorus Tolerance Factors for Various Indicators of Slash Pine Family Lines
3.5. Comprehensive Evaluation of Low-Phosphorus Tolerance in Slash Pine Family Lines
3.6. Expression of Phosphorus Utilization-Related Genes
4. Discussion
4.1. Differences in Slash Pine-Related Traits Under Low Orthophosphate Stress
4.2. Screening for Indicators of Low-Phosphorus Tolerance in Slash Pines
4.3. Comprehensive Evaluation of Phosphorus Efficiency in Slash Pine
4.4. Potential Mechanisms for the Adaptation of Slash Pine Family Line 27 to Low-Phosphorus Environments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lambers, H. Phosphorus acquisition and utilization in plants. Annu. Rev. Plant Biol. 2022, 73, 17–42. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; Lin, W.Y.; Hsiao, Y.M.; Chiou, T.J. Milestones in understanding transport, sensing, and signaling of the plant nutrient phosphorus. Plant Cell 2024, 36, 1504–1523. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.D.; Zhang, J.Y.; Yang, Y.M.; Yu, D.Y.; Zhang, H.Y.; Zhang, D. Molecular mechanisms underlying plant responses to low phosphate stress and potential applications in crop improvement. New Crops 2025, 2, 100064. [Google Scholar] [CrossRef]
- Preuss, C.P.; Huang, C.Y.; Tyerman, S.D. Proton-coupled high-affinity phosphate transport revealed from heterologous characterization in Xenopus of barley-root plasma membrane transporter, HvPHT1;1. Plant Cell Environ. 2011, 34, 681–689. [Google Scholar] [CrossRef]
- Sentenac, H.; Grignon, C. Effect of pH on orthophosphate uptake by corn roots. Plant Physiol. 1985, 77, 136–141. [Google Scholar] [CrossRef]
- Ibrahim, M.; Iqbal, M.; Tang, Y.T.; Khan, S.; Guan, D.X.; Li, G. Phosphorus mobilization in plant–soil environments and inspired strategies for managing phosphorus: A review. Agronomy 2022, 12, 2539. [Google Scholar] [CrossRef]
- Ham, B.-K.; Chen, J.Y.; Yan, Y.; Lucas, W.J. Insights into plant phosphate sensing and signaling. Curr. Opin. Biotechnol. 2018, 49, 1–9. [Google Scholar] [CrossRef]
- Zhang, H.W.; Huang, Y.; Ye, X.S.; Shi, L.; Xu, F.S. Genotypic differences in phosphorus acquisition and the rhizosphere properties of Brassica napus in response to low phosphorus stress. Plant Soil 2009, 320, 91–102. [Google Scholar] [CrossRef]
- Balemi, T.; Schenk, M.K. Genotypic difference of potato in carbon budgeting as a mechanism of phosphorus utilization efficiency. Plant Soil 2009, 322, 91–99. [Google Scholar] [CrossRef]
- De Oliveira, A.K.S.; Soares, E.B.; dos Santos, M.G.; Lins, H.A.; de Freitas Souza, M.; dos Santos Coêlho, E.; Silveira, L.M.; Mendonça, V.; Barros Júnior, A.P.; de Araújo Rangel Lopes, W. Efficiency of phosphorus use in sunflower. Agronomy 2022, 12, 1558. [Google Scholar] [CrossRef]
- Nisar, A.; Khan, S.U.; Shah, A.H. Screening and evaluation of wheat germplasm for phosphorus use efficiency. Iran. J. Sci. Technol. A Sci. 2016, 40, 201–207. [Google Scholar] [CrossRef]
- Wang, H.; Yang, A.H.; Yang, G.; Zhao, H.Y.; Xie, F.T.; Zhang, H.J.; Wang, H.Y.; Ao, X. Screening and identification of soybean varieties with high phosphorus efficiency at seedling stage. Oil Crop Sci. 2021, 6, 41–49. [Google Scholar] [CrossRef]
- Aluwihare, Y.C.; Ishan, M.; Chamikara, M.D.M.; Weebadde, C.K.; Sirisena, D.N.; Samarasinghe, W.L.G.; Sooriyapathirana, S.D.S.S. Characterization and selection of phosphorus deficiency tolerant rice genotypes in Sri Lanka. Rice Sci. 2016, 23, 184–195. [Google Scholar] [CrossRef]
- Kumar, S.; Pallavi; Chugh, C.; Seem, K.; Kumar, S.; Vinod, K.K.; Mohapatra, T. Characterization of contrasting rice (Oryza sativa L.) genotypes reveals the Pi-efficient schema for phosphate starvation tolerance. BMC Plant Biol. 2021, 21, 282. [Google Scholar] [CrossRef]
- Marques, D.J.; da Silva, E.C.; Siqueira, J.A.C.; Abedi, E.; Veloso, F.R.; Maciel, G.M.; Maluf, W.R. Variation in the dynamic of absorption and efficiency of phosphorus use in tomato. Sci. Rep. 2022, 12, 4379. [Google Scholar] [CrossRef]
- Yang, F.; Xia, X.R.; Ke, X.; Ye, J.R.; Zhu, L.H. Somatic embryogenesis in slash pine (Pinus elliottii Engelm): Improving initiation of embryogenic tissues and maturation of somatic embryos. Plant Cell Tissue Organ Cult. 2020, 143, 159–171. [Google Scholar] [CrossRef]
- Fink, J.; Borga, G.; Frosi, G.; Junior, C.P.; Pitta, C.S.R.; Sánchez-Rodríguez, A.R. Enhancing wheat and soybean yields in a subtropical oxisol through effective P fertilization strategies. J. Soil Sci. Plant Nutr. 2020, 20, 1605–1613. [Google Scholar] [CrossRef]
- Pfahler, V.; Bielnicka, A.; Smith, A.C.; Granger, S.J.; Blackwell, M.S.A.; Turner, B.L. A rapid ammonium fluoride method to determine the oxygen isotope ratio of available phosphorus in tropical soils. Rapid Commun. Mass Spectrom. 2020, 34, e8647. [Google Scholar] [CrossRef]
- Jia, H.F.; Ren, H.Y.; Gu, M.; Zhao, J.N.; Sun, S.B.; Zhang, X.; Chen, J.Y.; Wu, P.; Xu, G.H. The Phosphate Transporter Gene OsPht1;8 Is Involved in Phosphate Homeostasis in Rice. Plant Physiol. 2011, 156, 1164–1175. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.Y.; Wang, X.R.; Zhao, Y.; Zou, R.; Xiao, F. Screening and identification of evaluation indicators of low phosphorus tolerant germplasm in Gleditsia sinensis Lam. Sci. Rep. 2024, 14, 31716. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Yu, J.B.; Zhang, H.L.; Li, J.; Guan, H.; Zhou, Q.P.; Chen, S.Y. A multi-trait evaluation of phosphorus efficiency of 38 forage oat cultivars at the seedling stage. Acta Pratacult. Sin. 2024, 33, 161–171. [Google Scholar] [CrossRef]
- Shen, J.B.; Yuan, L.X.; Zhang, J.L.; Li, H.G.; Bai, Z.H.; Chen, X.P.; Zhang, W.F.; Zhang, F.S. Phosphorus dynamics: From soil to plant. Plant Physiol. 2011, 156, 997–1005. [Google Scholar] [CrossRef]
- Du, E.Z.; Terrer, C.; Pellegrini, A.F.A.; Ahlström, A.; van Lissa, C.J.; Zhao, X.; Xia, N.; Wu, X.H.; Jackson, R.B. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 2020, 13, 221–226. [Google Scholar] [CrossRef]
- Huang, Z.J.; Selvalakshmi, S.; Vasu, D.; Liu, Q.Q.; Cheng, H.; Guo, F.T.; Ma, X.Q. Identification of indicators for evaluating and monitoring the effects of Chinese fir monoculture plantations on soil quality. Ecol. Indic. 2018, 93, 547–554. [Google Scholar] [CrossRef]
- Wu, H.L.; Xiang, W.H.; Ouyang, S.; Xiao, W.F.; Li, S.G.; Chen, L.; Lei, P.F.; Deng, X.W.; Zeng, Y.L.; Zeng, L.X.; et al. Tree growth rate and soil nutrient status determine the shift in nutrient-use strategy of Chinese fir plantations along a chronosequence. For. Ecol. Manag. 2020, 460, 117896. [Google Scholar] [CrossRef]
- Liang, L.Z.; Zhao, X.Q.; Yi, X.Y.; Chen, Z.C.; Dong, X.Y.; Chen, R.F.; Shen, R.F. Excessive application of nitrogen and phosphorus fertilizers induces soil acidification and phosphorus enrichment during vegetable production in Yangtze River Delta, China. Soil Use Manag. 2013, 29, 161–168. [Google Scholar] [CrossRef]
- Chen, X.H.; Yan, X.J.; Wang, M.K.; Cai, Y.Y.; Weng, X.F.; Su, D.; Guo, J.X.; Wang, W.Q.; Hou, Y.; Ye, D.L.; et al. Long-term excessive phosphorus fertilization alters soil phosphorus fractions in the acidic soil of pomelo orchards. Soil Tillage Res. 2022, 215, 105214. [Google Scholar] [CrossRef]
- Han, Y.; White, P.J.; Cheng, L.Y. Mechanisms for improving phosphorus utilization efficiency in plants. Ann. Bot. 2021, 129, 247–258. [Google Scholar] [CrossRef]
- Yu, X.; Keitel, C.; Dijkstra, F.A. Global analysis of phosphorus fertilizer use efficiency in cereal crops. Glob. Food Secur. 2021, 29, 100545. [Google Scholar] [CrossRef]
- Nawaz, M.; Sun, J.; Shabbir, S.; Khattak, W.A.; Ren, G.; Nie, X.; Bo, Y.; Javed, Q.; Du, D.; Sonne, C. A review of plants strategies to resist biotic and abiotic environmental stressors. Sci. Total Environ. 2023, 900, 165832. [Google Scholar] [CrossRef]
- Bayuelo-Jiménez, J.S.; Gallardo-Valdéz, M.; Pérez-Decelis, V.A.; Magdaleno-Armas, L.; Ochoa, I.; Lynch, J.P. Genotypic variation for root traits of maize (Zea mays L.) from the Purhepecha Plateau under contrasting phosphorus availability. Field Crops Res. 2011, 121, 350–362. [Google Scholar] [CrossRef]
- Liang, L.Y.; An, T.T.; Liu, S.; Gao, Y.M.; Yu, M.; Xu, B.C.; Zhang, S.Q.; Deng, X.P.; Bolan, N.; Siddique, K.H.M.; et al. Assessing phosphorus efficiency and tolerance in maize genotypes with contrasting root systems at the early growth stage using the semi-hydroponic phenotyping system. J. Plant Nutr. Soil Sci. 2023, 186, 286–297. [Google Scholar] [CrossRef]
- Li, J.Z.; Xie, Y.; Dai, A.Y.; Liu, L.F.; Li, Z.C. Root and shoot traits responses to phosphorus deficiency and QTL analysis at seedling stage using introgression lines of rice. J. Genet. Genom. 2009, 36, 173–183. [Google Scholar] [CrossRef]
- Liu, H.J.; Wang, J.C.; Zhang, B.B.; Yang, X.Y.; Hammond, J.P.; Ding, G.D.; Wang, S.L.; Cai, H.M.; Wang, C.; Xu, F.S.; et al. Genome-wide association study dissects the genetic control of plant height and branch number in response to low-phosphorus stress in Brassica napus. Ann. Bot. 2021, 128, 919–930. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.L.; Chen, X.Y.; Gao, Y.J.; Hong, L.J.; Chen, Y.L. Alteration in root morphological and physiological traits of two maize cultivars in response to phosphorus deficiency. Rhizosphere 2020, 14, 100201. [Google Scholar] [CrossRef]
- Deng, Y.P.; Men, C.B.; Qiao, S.F.; Wang, W.J.; Gu, J.F.; Liu, L.J.; Zhang, Z.J.; Zhang, H.; Wang, Z.Q.; Yang, J.C. Tolerance to low phosphorus in rice varieties is conferred by regulation of root growth. Crop J. 2020, 8, 534–547. [Google Scholar] [CrossRef]
- Tantriani; Cheng, W.G.; Tawaraya, K. Screening for low phosphorus-tolerant soybean cultivars from the Japanese core collection. Euphytica 2022, 219, 13. [Google Scholar] [CrossRef]
- Péret, B.; Clément, M.; Nussaume, L.; Desnos, T. Root developmental adaptation to phosphate starvation: Better safe than sorry. Trends Plant Sci. 2011, 16, 442–450. [Google Scholar] [CrossRef]
- Plaxton, W.C.; Tran, H.T. Metabolic adaptations of phosphate-starved plants. Plant Physiol. 2011, 156, 1006–1015. [Google Scholar] [CrossRef]
- Sánchez-Calderón, L.; López-Bucio, J.; Chacón-López, A.; Cruz-Ramírez, A.; Nieto-Jacobo, F.; Dubrovsky, J.G.; Herrera-Estrella, L. Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant Cell Physiol. 2005, 46, 174–184. [Google Scholar] [CrossRef]
- Xiao, X.L.; Zhang, J.Q.; Satheesh, V.; Meng, F.X.; Gao, W.L.; Dong, J.S.; Zheng, Z.; An, G.Y.; Nussaume, L.; Liu, D.; et al. SHORT-ROOT stabilizes PHOSPHATE1 to regulate phosphate allocation in Arabidopsis. Nat. Plants 2022, 8, 1074–1081. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.Y.; Zhu, X.Q.; Zhan, Y.J.; Liu, B.W.; Zhou, X.X.; Zhang, Q.; Xu, W.F. The white lupin trehalase gene LaTRE1 regulates cluster root formation and function under phosphorus deficiency. Plant Physiol. 2024, 196, 2184–2198. [Google Scholar] [CrossRef] [PubMed]
- Hammond, J.P.; White, P.J. Sugar signaling in root responses to low phosphorus availability. Plant Physiol. 2011, 156, 1033–1040. [Google Scholar] [CrossRef]
- Yang, H.K.; Chen, R.H.; Chen, Y.F.; Li, H.; Wei, T.; Xie, W.; Fan, G.Q. Agronomic and physiological traits associated with genetic improvement of phosphorus use efficiency of wheat grown in a purple lithomorphic soil. Crop J. 2022, 10, 1151–1164. [Google Scholar] [CrossRef]
- Teng, W.; Zhao, Y.Y.; Zhao, X.Q.; He, X.; Ma, W.Y.; Deng, Y.; Chen, X.P.; Tong, Y.P. Genome-wide identification, characterization, and expression analysis of PHT1 phosphate transporters in wheat. Front. Plant Sci. 2017, 8, 543. [Google Scholar] [CrossRef]
- Wang, P.; Snijders, R.; Kohlen, W.; Liu, J.; Bisseling, T.; Limpens, E. Medicago SPX1 and SPX3 regulate phosphate homeostasis, mycorrhizal colonization, and arbuscule degradation. Plant Cell 2021, 33, 3470–3486. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Zhu, S.N.; Lai, T.; Tian, C.; Hu, M.L.; Lu, X.; Xue, Y.B.; Liang, C.Y.; Tian, J. A Phosphate-Starvation Enhanced Purple Acid Phosphatase, GmPAP23 Mediates Intracellular Phosphorus Recycling and Yield in Soybean. Plant Cell Environ. 2025, early view. [Google Scholar] [CrossRef]
- Li, M.X.; Zhou, J.; Liu, Q.; Mao, L.L.; Li, H.R.; Li, S.Y.; Guo, R. Dynamic variation of nutrient absorption, metabolomic and transcriptomic indexes of soybean (Glycine max) seedlings under phosphorus deficiency. AoBP 2023, 15, plad014. [Google Scholar] [CrossRef]
- Yang, B.; Peng, Y.; Zhang, G.; Liu, R.; Hao, S.; Ren, Y.; Lu, S.; Wang, X.; Guo, L. Regulation of glucosylceramide synthase and sphingolipid remodeling in the plant response to phosphate deficiency. Plant Cell 2025, 37, koaf138. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; He, Z.; Yang, Y.; Zhao, Y.; Chen, H.; Chen, S.; Wu, S.; Luan, Q.; Zhuo, R.; Han, X. Screening and a Comprehensive Evaluation of Pinus elliottii with a High Efficiency of Phosphorus Utilization. Forests 2025, 16, 1291. https://doi.org/10.3390/f16081291
Liu H, He Z, Yang Y, Zhao Y, Chen H, Chen S, Wu S, Luan Q, Zhuo R, Han X. Screening and a Comprehensive Evaluation of Pinus elliottii with a High Efficiency of Phosphorus Utilization. Forests. 2025; 16(8):1291. https://doi.org/10.3390/f16081291
Chicago/Turabian StyleLiu, Huan, Zhengquan He, Yuying Yang, Yazhi Zhao, Huiling Chen, Shuxin Chen, Shaoze Wu, Qifu Luan, Renying Zhuo, and Xiaojiao Han. 2025. "Screening and a Comprehensive Evaluation of Pinus elliottii with a High Efficiency of Phosphorus Utilization" Forests 16, no. 8: 1291. https://doi.org/10.3390/f16081291
APA StyleLiu, H., He, Z., Yang, Y., Zhao, Y., Chen, H., Chen, S., Wu, S., Luan, Q., Zhuo, R., & Han, X. (2025). Screening and a Comprehensive Evaluation of Pinus elliottii with a High Efficiency of Phosphorus Utilization. Forests, 16(8), 1291. https://doi.org/10.3390/f16081291