Ecosystem Carbon Storage Distribution Among Different Coniferous and Broadleaved Plantations in North China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Experimental Design, Sample Collection and Analysis
2.3. Data Analysis
3. Results
3.1. Carbon Contents in Plant and Soil Layers
3.2. Carbon Storage and Distribution
4. Discussion
4.1. Carbon Content of Ecosystem Components
4.2. Ecosystem Carbon Storage
4.3. Implications for C Sequestration in North China
4.4. Uncertainties in Estimation of Carbon Storage
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bai, Y.; Ding, G. Estimation of changes in carbon sequestration and its economic value with various stand density and rotation age of Pinus massoniana plantations in China. Sci. Rep. 2024, 14, 16852. [Google Scholar] [CrossRef]
- Stenzel, F.; Greve, P.; Lucht, W.; Tramberend, S.; Wada, Y.; Gerten, D. Irrigation of biomass plantations may globally increase water stress more than climate change. Nat. Commun. 2021, 12, 1512. [Google Scholar] [CrossRef]
- Chen, X.L.; Reich, P.B.; Taylor, A.R.; An, Z.F.; Chang, S.X. Resource availability enhances positive tree functional diversity effects on carbon and nitrogen accrual in natural forests. Nat. Commun. 2024, 15, 8615. [Google Scholar] [CrossRef]
- Norby, R.J.; Loader, N.J.; Mayoral, C.; Ullah, S.; Curioni, G.; Smith, A.R.; Reay, M.K.; van Wijngaarden, K.; Amjad, M.S.; Brettle, D.; et al. Enhanced woody biomass production in a mature temperate forest under elevated CO2. Nat. Clim. Change 2024, 14, 983–988. [Google Scholar] [CrossRef]
- Bukoski, J.J.; Cook-Patton, S.C.; Melikov, C.; Ban, H.Y.; Chen, J.; Goldman, E.D.; Harris, N.L.; Potts, M.D. Rates and drivers of aboveground carbon accumulation in global monoculture plantation forests. Nat. Commun. 2022, 13, 4206. [Google Scholar] [CrossRef]
- Mayer, M.; Prescott, C.E.; Abaker, W.E.; Augusto, L.; Cécillon, L.; Ferreira, G.W.D.; James, J.; Jandl, R.; Katzensteiner, K.; Laclau, J.; et al. Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. For. Ecol. Manag. 2020, 466, 118127. [Google Scholar] [CrossRef]
- Cheng, K.; Yang, H.; Tao, S.L.; Su, Y.J.; Guan, H.C.; Ren, Y.; Hu, T.Y.; Li, W.K.; Xu, G.C.; Chen, M.X.; et al. Carbon storage through China’s planted forest expansion. Nat. Commun. 2024, 15, 4106. [Google Scholar] [CrossRef]
- Ma, J.; Bu, R.C.; Liu, M.; Chang, Y.; Qin, Q.; Hu, Y.M. Ecosystem carbon storage distribution between plant and soil in different forest types in Northeastern China. Ecol. Eng. 2015, 81, 353–362. [Google Scholar] [CrossRef]
- Jagodziński, A.M.; Dyderski, M.K.; Horodecki, P. Differences in biomass production and carbon sequestration between highland and lowland stands of Picea abies (L.) H. Karst. and Fagus sylvatica L. For. Ecol. Manag. 2020, 474, 118329. [Google Scholar] [CrossRef]
- Mäkipää, R.; Abramoff, R.; Adamczyk, B.; Baldy, V.; Biryol, C.; Bosela, M.; Casals, P.; Yuste, J.C.; Dondini, M.; Filipek, S.; et al. How does management affect soil C sequestration and greenhouse gas fluxes in boreal and temperate forests?—A review. For. Ecol. Manag. 2023, 529, 120637. [Google Scholar] [CrossRef]
- He, Y.J.; Qin, L.; Li, Z.Y.; Liang, X.Y.; Shao, M.X.; Tan, L. Carbon storage capacity of monoculture and mixed-species plantations in subtropical China. For. Ecol. Manag. 2013, 295, 193–198. [Google Scholar] [CrossRef]
- Gao, Y.; Cheng, J.M.; Ma, Z.R.; Zhao, Y.; Su, J.S. Carbon storage in biomass, litter, and soil of different plantations in a semiarid temperate region of northwest China. Ann. For. Sci. 2014, 71, 427–435. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Yu, S.Q.; Liu, S.P.; Wang, X.L.; Zhang, Y.; Liu, T.; Zhou, L.X.; Zhang, W.X.; Fu, S.L. Reforestation makes a minor contribution to soil carbon accumulation in the short term: Evidence from four subtropical plantations. For. Ecol. Manag. 2017, 384, 400–405. [Google Scholar] [CrossRef]
- Chiti, T.; Díaz-Pinés, E.; Rubio, A. Soil organic carbon stocks of conifers, broadleaf and evergreen broadleaf forests of Spain. Biol. Fertil. Soils 2012, 48, 817–826. [Google Scholar] [CrossRef]
- Peng, Y.; Schmidt, I.K.; Zheng, H.F.; Petr Heděnec, P.; Bachega, L.R.; Yue, K.; Wu, F.Z.; Vesterdal, L. Tree species effects on topsoil carbon stock and concentration are mediated by tree species type, mycorrhizal association, and N-fixing ability at the global scale. For. Ecol. Manag. 2020, 478, 118510. [Google Scholar] [CrossRef]
- Hou, G.L.; Delang, C.O.; Lu, X.X.; Gao, L. A meta-analysis of changes in soil organic carbon stocks after afforestation with deciduous broadleaved, sempervirent broadleaved, and conifer tree species. Ann. For. Sci. 2020, 77, 92. [Google Scholar] [CrossRef]
- Hüblová, L.; Frouz, J. Contrasting effect of coniferous and broadleaf trees on soil carbon storage during reforestation of forest soils and afforestation of agricultural and post-mining soils. J. Environ. Manag. 2021, 290, 112567. [Google Scholar] [CrossRef]
- Springer, K.; Manning, P.; Boesing, A.L.; Ammer, C.; Fiore-Donno, A.M.; Fischer, M.; Goldmann, K.; Le Provost, G.; Overmann, J.; Ruess, L.; et al. Identifying the stand properties that support both high biodiversity and carbon storage in German forests. For. Ecol. Manag. 2024, 572, 122328. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, H.X.; Kang, L.; Li, M.; Zhang, G.Q.; Cao, Y. Beyond monocultures: Optimizing soil carbon sequestration with diverse planting strategies on the Loess Plateau. Catena 2024, 246, 108447. [Google Scholar] [CrossRef]
- Pan, Y.D.; Birdsey, R.A.; Phillips, O.L.; Houghton, R.A.; Fang, J.Y.; Kauppi, P.E.; Keith, H.; Kurz, W.A.; Ito, A.; Lewis, S.L.; et al. The enduring world forest carbon sink. Nature 2024, 631, 563–569. [Google Scholar] [CrossRef]
- Yao, L.; Liu, T.; Qin, J.; Jiang, H.; Yang, L.; Smith, P.; Chen, X.; Zhou, C.H.; Piao, S.L. Carbon sequestration potential of tree planting in China. Nat. Commun. 2024, 15, 8398. [Google Scholar] [CrossRef] [PubMed]
- Diao, J.J.; Liu, J.X.; Zhu, Z.L.; Wei, X.Y.; Li, M.S. Active forest management accelerates carbon storage in plantation forests in Lishui, southern China. For. Ecosyst. 2022, 9, 100004. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, Y.M. Ecosystem C:N:P stoichiometry and carbon storage in plantations and a secondary forest on the Loess Plateau, China. Ecol. Eng. 2017, 105, 125–132. [Google Scholar] [CrossRef]
- Dang, X.H.; Liu, G.B.; Zhao, L.; Zhao, G.C. The response of carbon storage to the age of three forest plantations in the Loess Hilly Regions of China. Catena 2017, 159, 106–114. [Google Scholar] [CrossRef]
- Wang, X.W.; Weng, Y.H.; Liu, G.F.; Krasowski, M.J.; Yang, C.P. Variations in carbon concentration, sequestration and partitioning among Betula platyphylla provenances. For. Ecol. Manag. 2015, 358, 344–352. [Google Scholar] [CrossRef]
- Cheng, J.Z.; Lee, X.Q.; Theng, B.K.G.; Zhang, L.K.; Fang, B.; Li, F.S. Biomass accumulation and carbon sequestration in an age-sequence of Zanthoxylum bungeanum plantations under the Grain for Green Program in karst regions, Guizhou Province. Agric. For. Meteorol. 2015, 203, 88–95. [Google Scholar] [CrossRef]
- Wang, G.; Yu, C.X.; Singh, M.; Guang, D.S.; Xiong, Y.M.; Zheng, R.B.; Xiao, R.B. Community structure and ecosystem carbon stock dynamics along a chronosequence of mangrove plantations in China. Plant Soil 2021, 464, 605–620. [Google Scholar] [CrossRef]
- Wu, H.L.; Xiang, W.H.; Ouyang, S.; Xiao, W.F.; Li, S.G.; Chen, L.; Lei, P.F.; Deng, X.W.; Zeng, Y.L.; Zeng, L.X.; et al. Tree growth rate and soil nutrient status determine the shift in nutrient-use strategy of Chinese fir plantations along a chronosequence. For. Ecol. Manag. 2020, 460, 117896. [Google Scholar] [CrossRef]
- Xiang, W.H.; Li, L.H.; Ouyang, S.; Xiao, W.F.; Zeng, L.X.; Chen, L.; Lei, P.F.; Deng, X.W.; Zeng, Y.L.; Fang, J.P.; et al. Effects of stand age on tree biomass partitioning and allometric equations in Chinese fir (Cunninghamia lanceolata) plantations. Eur. J. For. Res. 2020, 140, 317–332. [Google Scholar] [CrossRef]
- Yu, Z.J.; Wang, K.B.; Li, J.W.; Shangguan, Z.P.; Deng, L. Mixed plantations have more soil carbon sequestration benefits than pure plantations in China. For. Ecol. Manag. 2023, 529, 120654. [Google Scholar] [CrossRef]
- Jia, Y.L.; Xu, Z.Q.; Ji, X.L.; Xu, X.H.; Huang, X.R. Biological carbon storage of plantation and natural secondary forest in North region of Yanshan Mountain. J. Nat. Resour. 2012, 7, 1241–1251. [Google Scholar]
- Xu, Y.T.; Zhou, G.S.; Zhou, L.; He, X.H.; Tian, Z.H. How does the Three-North Shelterbelt Engineering of China improve its habitat quality? A study of 40 years of change tracking and driving factors. Land Degrad. Dev. 2025, 36, 408–423. [Google Scholar] [CrossRef]
- Chu, X.; Zhan, J.; Li, Z.; Zhang, F.; Qi, W. Assessment on forest carbon sequestration in the Three-North Shelterbelt Program region, China. J. Clean. Prod. 2019, 215, 382–389. [Google Scholar] [CrossRef]
- Sumida, A.; Miyaura, T.; Torii, H. Relationships of tree height and diameter at breast height revisited: Analyses of stem growth using 20-year data of an even-aged Chamaecyparis obtusa stand. Tree Physiol. 2013, 33, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.Y.; Liu, G.H.; Zhu, B.; Wang, X.K.; Liu, S.H. Carbon budgets of three temperate forest ecosystems in Dongling Mt., Beijing, China. Sci. China Ser. D 2007, 50, 92–101. [Google Scholar] [CrossRef]
- Huang, X.Q.; Xin, C.L.; Hu, Z.M.; Li, G.T.; Zhang, T.H.; Zhao, W.; Yang, J.; Zhang, L.P.; Guo, Q.; Yue, Y.J.; et al. Carbon storage of the forests and its spatial pattern in Nei Mongol, China. J. Plant Ecol. 2016, 40, 327–340, (In Chinese with English Abstract). [Google Scholar]
- Muukkonen, P. Generalized allometric volume and biomass equations for some tree species in Europe. Eur. J. For. Res. 2007, 126, 157–166. [Google Scholar] [CrossRef]
- Luo, X.Z.; Hou, E.Q.; Chen, J.Q.; Li, J.; Zhang, L.L.; Zang, X.W.; Wen, D.Z. Dynamics of carbon, nitrogen, and phosphorus stocks and stoichiometry resulting from conversion of primary broadleaf forest to plantation and secondary forest in subtropical China. Catena 2020, 193, 104606. [Google Scholar] [CrossRef]
- Tang, X.L.; Zhao, X.; Bai, Y.F.; Tang, Z.Y.; Wang, W.T.; Zhao, Y.C.; Wan, H.W.; Xie, Z.Q.; Shi, X.Z.; Wu, B.F.; et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, Y.M. Biomass, carbon and nutrient storage in a 30-year-old Chinese Cork Oak (Quercus Variabilis) forest on the south slope of the Qinling Mountains, China. Forests 2015, 6, 1239–1255. [Google Scholar] [CrossRef]
- Ren, H.; Chen, H.; Li, Z.A.; Han, W.D. Biomass accumulation and carbon storage of four different aged Sonneratia apetala plantations in Southern China. Plant Soil 2010, 327, 279–291. [Google Scholar] [CrossRef]
- Uri, V.; Varik, M.; Aosaar, J.; Kanal, A.; Kukumägi, M.; Lõhmus, K. Biomass production and carbon sequestration in a fertile silver birch (Betula pendula Roth) forest chronosequence. For. Ecol. Manag. 2012, 267, 117–126. [Google Scholar] [CrossRef]
- Justine, M.F.; Wang, W.Q.; Wu, F.Z.; Khan, M.N. Dynamics of biomass and carbon sequestration across a chronosequence of masson pine plantations. J. Geophys. Res. 2017, 122, 578–591. [Google Scholar] [CrossRef]
- Ma, S.H.; He, F.; Tian, D.; Zou, D.T.; Yan, Z.B.; Yang, Y.L.; Zhou, T.C.; Huang, K.Y.; Shen, H.H.; Fang, J.Y. Variations and determinants of carbon content in plants: A global synthesis. Biogeosciences 2018, 15, 693–702. [Google Scholar] [CrossRef]
- Zhang, H.; Song, T.Q.; Wang, K.L.; Du, H.; Yue, Y.M.; Wang, G.X.; Zeng, F.P. Biomass and carbon storage in an age-sequence of Cyclobalanopsis glauca plantations in southwest China. Ecol. Eng. 2014, 73, 184–191. [Google Scholar] [CrossRef]
- Wang, H.; Liu, S.R.; Wang, J.X.; Shi, Z.M.; Xu, J.; Hong, P.Z.; Ming, A.G.; Yu, H.L.; Chen, L.; Lu, L.H.; et al. Differential effects of conifer and broadleaf litter inputs on soil organic carbon chemical composition through altered soil microbial community composition. Sci. Rep. 2016, 6, 27097. [Google Scholar] [CrossRef]
- Kooch, Y.; Samadzadeh, B.; Hosseini, S.M. The effects of broad-leaved tree species on litter quality and soil properties in a plain forest stand. Catena 2017, 150, 223–229. [Google Scholar] [CrossRef]
- Yang, K.; Zhu, J.J.; Zhang, W.W.; Zhang, Q.; Lu, D.L.; Zhang, Y.K.; Zheng, X.; Xu, S.; Wang, G.G. Litter decomposition and nutrient release from monospecific and mixed litters: Comparisons of litter quality, fauna and decomposition site effects. J. Ecol. 2022, 110, 1673–1686. [Google Scholar] [CrossRef]
- Joly, F.X.; Scherer-Lorenzen, M.; Hättenschwiler, S. Resolving the intricate role of climate in litter decomposition. Nat. Ecol. Evol. 2023, 7, 214–223. [Google Scholar] [CrossRef]
- Hoeber, S.; Fransson, P.; Weih, M.; Manzoni, S. Leaf litter quality coupled to Salix variety drives litter decomposition more than stand diversity or climate. Plant Soil 2020, 453, 313–328. [Google Scholar] [CrossRef]
- Prescott, C.E.; Vesterdal, L. Decomposition and transformations along the continuum from litter to soil organic matter in forest soils. For. Ecol. Manag. 2021, 498, 119522. [Google Scholar] [CrossRef]
- Lyu, M.; Homyak, P.M.; Xie, J.S.; Peñuelas, J.; Ryan, M.G.; Xiong, X.L.; Sardans, J.; Lin, W.S.; Wang, M.H.; Chen, G.S.; et al. Litter quality controls tradeoffs in soil carbon decomposition and replenishment in a subtropical forest. J. Ecol. 2023, 111, 2181–2193. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Tang, Z.X.; You, Y.M.; Guo, X.W.; Wu, C.J.; Liu, S.R.; Sun, J.X. Differential effects of forest-floor litter and roots on soil organic carbon formation in a temperate oak forest. Soil Biol. Biochem. 2023, 180, 109017. [Google Scholar] [CrossRef]
- Ramesh, T.; Manjaiah, K.M.; Mohopatra, K.P.; Rajasekar, K.; Ngachan, S.V. Assessment of soil organic carbon stocks and fractions under different agroforestry systems in subtropical hill agroecosystems of north-east India. Agrofor. Syst. 2015, 89, 677–690. [Google Scholar] [CrossRef]
- Liu, C.; Xiang, W.H.; Lei, P.F.; Deng, X.W.; Tian, D.L.; Fang, X.; Peng, C.H. Standing fine root mass and production in four Chinese subtropical forests along a succession and species diversity gradient. Plant Soil 2014, 376, 445–459. [Google Scholar] [CrossRef]
- Zhu, Z.K.; Zeng, G.J.; Ge, T.D.; Hu, Y.J.; Tong, C.L.; Shibistova, O.; He, X.H.; Wang, J.; Guggenberger, G.; Wu, J.S. Fate of rice shoot and root residues, rhizodeposits, and microbe-assimilated carbon in paddy soil—Part 1: Decomposition and priming effect. Biogeosciences 2016, 13, 4481–4489. [Google Scholar] [CrossRef]
- Yu, W.J.; Deng, Q.H.; Kang, H.Z. Long-term continuity of mixed-species broadleaves could reach a synergy between timber production and soil carbon sequestration in subtropical China. For. Ecol. Manag. 2019, 440, 31–39. [Google Scholar] [CrossRef]
- Zhang, Q.Z.; Wang, C.K.; Wang, X.C.; Quan, X.K. Carbon concentration variability of 10 Chinese temperate tree species. For. Ecol. Manag. 2009, 258, 722–727. [Google Scholar] [CrossRef]
- Luo, D.; Cheng, R.M.; Shi, Z.M.; Wang, W.X. Decomposition of leaves and fine roots in three subtropical plantations in China affected by litter substrate quality and soil microbial community. Forests 2017, 8, 412. [Google Scholar] [CrossRef]
- Trum, F.; Titeux, H.; Ranger, J.; Delvaux, B. Influence of tree species on carbon and nitrogen transformation patterns in forest floor profiles. Ann. For. Sci. 2011, 68, 837–847. [Google Scholar] [CrossRef]
- Laganière, J.; Angers, D.A.; Paré, D. Carbon accumulation in agricultural soils after afforestation: A meta-analysis. Glob. Chang. Biol. 2010, 16, 439–453. [Google Scholar] [CrossRef]
- Comas, L.H.; Eissenstat, D.M. Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species. Funct. Ecol. 2004, 18, 388–397. [Google Scholar] [CrossRef]
- Wang, W.J.; Zhou, W.; Wang, H.M.; Ji, C.P.; Han, S.J. Organic carbon and nitrogen dynamics in different soil fractions between broad-leaved Korean pine forests and aspen–birch forests in northeastern China. J. Soils Sediment. 2017, 17, 2257–2273. [Google Scholar] [CrossRef]
- Wang, Q.K.; Xiao, F.M.; He, T.X.; Wang, S.L. Responses of labile soil organic carbon and enzyme activity in mineral soils to forest conversion in the subtropics. Ann. For. Sci. 2013, 70, 579–587. [Google Scholar] [CrossRef]
- Conti, G.; Díaz, S. Plant functional diversity and carbon storage—An empirical test in semi-arid forest ecosystems. J. Ecol. 2013, 101, 18–28. [Google Scholar] [CrossRef]
- Feng, J.G.; He, K.Y.; Zhang, Q.F.; Han, M.G.; Zhu, B. Changes in plant inputs alter soil carbon and microbial communities in forest ecosystems. Glob. Chang. Biol. 2022, 28, 3426–3440. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Zhang, G.N.; Wang, L.Z.; Gao, Y.; Wang, X.L.; Liu, B.; Zhao, X.Y.; Mei, H.P. Carbon input manipulations affecting microbial carbon metabolism in temperate forest soils—A comparative study between broadleaf and coniferous plantations. Geoderma 2019, 355, 113914. [Google Scholar] [CrossRef]
- Deng, L.; Han, Q.S.; Zhang, C.; Tang, Z.S.; Shangguan, Z.P. Above-ground and below-round ecosystem biomass accumulation and carbon sequestration with Caragana korshinskii Kom Plantation development. Land Degrad. Dev. 2017, 28, 906–917. [Google Scholar] [CrossRef]
- Carpentier, S.; Filotas, E.; Handa, T.; Messier, C. Trade-offs between timber production, carbon stocking and habitat quality when managing woodlots for multiple ecosystem services. Environ. Conserv. 2017, 44, 14–23. [Google Scholar] [CrossRef]
- Keenan, R.J. Climate change impacts and adaptation in forest management: A review. Ann. For. Sci. 2015, 72, 145–167. [Google Scholar] [CrossRef]
- Ming, A.G.; Jia, H.Y.; Zhao, J.L.; Tao, Y.; Li, Y.F. Above- and Below-Ground Carbon Stocks in an Indigenous Tree (Mytilaria laosensis) Plantation Chronosequence in Subtropical China. PLoS ONE 2014, 9, e109730. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.D.; Gu, F.X.; Liu, S.R.; Liu, Y.C.; Li, C. Variations of carbon stock with forest types in subalpine region of southwestern China. For. Ecol. Mange. 2013, 300, 88–95. [Google Scholar] [CrossRef]
- Zhao, J.L.; Kang, F.F.; Wang, L.X.; Yu, X.W.; Zhao, W.H.; Song, X.S.; Zhang, Y.L.; Chen, F.; Sun, Y.; He, T.F.; et al. Patterns of biomass and carbon distribution across a chronosequence of Chinese Pine (Pinus tabulaeformis) forests. PLoS ONE 2014, 9, e94966. [Google Scholar] [CrossRef]
- Jha, K.K. Biomass production and carbon balance in two hybrid poplar (Populus euramericana) plantations raised with and without agriculture in southern France. J. For. Res. 2018, 29, 1689–1701. [Google Scholar] [CrossRef]
- Qin, J.; Shangguan, Z.P. Effects of forest types on leaf functional traits and their interrelationships of Pinus massoniana coniferous and broad-leaved mixed forests in the subtropical mountain, Southeastern China. Ecol. Evol. 2019, 9, 6922–6932. [Google Scholar] [CrossRef]
- Oliveira, N.; Rodríguez-Soalleiro, R.; Pérez-Cruzadob, C.; Cañellasa, I.; Sixtoa, H.; Ceulemans, R. Above- and below-ground carbon accumulation and biomass allocation in poplar short rotation plantations under Mediterranean conditions. For. Ecol. Manag. 2018, 428, 57–65. [Google Scholar] [CrossRef]
- Cao, J.J.; Zhang, X.F.; Deo, R.; Gong, Y.F.; Feng, Q. Influence of stand type and stand age on soil carbon storage in China’s arid and semi-arid regions. Land Use Pol. 2018, 78, 258–265. [Google Scholar] [CrossRef]
- Meena, A.; Bidalia, A.; Hanief, M.; Dinakaran, J.; Rao, K.S. Assessment of above- and belowground carbon pools in a semi-arid forest ecosystem of Delhi, India. Ecol. Process. 2019, 8, 8. [Google Scholar] [CrossRef]
- Tesfaye, M.A.; Gardi, O.; Anbessa, T.B.; Blaser, J. Aboveground biomass, growth and yield for some selected introduced tree species, namely Cupressus lusitanica, Eucalyptus saligna, and Pinus patula in Central Highlands of Ethiopia. J. Ecol. Environ. 2020, 44, 3. [Google Scholar] [CrossRef]
- Kotowska, M.M.; Leuschner, C.; Triadiati, T.; Meriem, S.; Hertel, D. Quantifying above- and belowground biomass carbon loss with forest conversion in tropical lowlands of Sumatra (Indonesia). Glob. Chang. Biol. 2015, 21, 3620–3634. [Google Scholar] [CrossRef]
- Bartholomée, O.; Grigulis, K.; Colace, M.; Arnoldi, C.; Lavorel, S. Methodological uncertainties in estimating carbon storage in temperate forests and grasslands. Ecol. Indic. 2018, 98, 331–342. [Google Scholar] [CrossRef]
- Conti, G.; Kowaljow, E.; Baptist, F.; Rumpel, C.; Cuchietti, A.; Harguindeguy, N.P.; Díaz, S. Altered soil carbon dynamics under different land-use regimes in subtropical seasonally-dry forests of central Argentina. Plant Soil 2016, 403, 375–387. [Google Scholar] [CrossRef]
- Dymond, J.R.; Ausseil, A.G.E.; Ekanayake, J.C.; Kirschbaum, M.U.F. Tradeoffs between soil, water, and carbon—A national scale analysis from New Zealand. J. Environ. Manag. 2012, 95, 124–131. [Google Scholar] [CrossRef]
- Viera, M.; Rodríguez-Soalleiro, R. A complete assessment of carbon stocks in above and belowground biomass components of a Hybrid Eucalyptus plantation in Southern Brazil. Forests 2019, 10, 536. [Google Scholar] [CrossRef]
- Chen, L.C.; Guan, X.; Li, H.M.; Wang, Q.K.; Zhang, W.D.; Yang, Q.P.; Wang, S.L. Spatiotemporal patterns of carbon storage in forest ecosystems in Hunan Province, China. For. Ecol. Manag. 2019, 432, 656–666. [Google Scholar] [CrossRef]
Plantation Species | PT | LP | BP | PD |
---|---|---|---|---|
Type | Conifer | Conifer | Broadleaf | Broadleaf |
Latitude (N) | 41°42′22″ | 42°8′45″ | 41°37′54″ | 42°6′50″ |
Longitude (E) | 117°10′8″ | 117°24′49″ | 117°2′56″ | 116°57′42″ |
Altitude (m) | 970–1173 | 1121–1342 | 1118–1226 | 1025–1244 |
Orientation | South | South | South | South |
Slope gradient (°) | 18 | 23 | 19 | 25 |
Stand age (a) | 31 | 29 | 31 | 30 |
DBH (cm) | 12.3 ± 0.6 | 11.1 ± 0.3 | 13.2 ± 0.7 | 15.9 ± 0.6 |
H (m) | 10.1 ± 0.8 | 12.4 ± 1.0 | 17.7 ± 1.3 | 16.6 ± 1.1 |
MH (m) | 10.3 ± 0.9 | 12.8 ± 1.3 | 18.2 ± 1.7 | 17.2 ± 1.6 |
Stem density (trees ha−1) | 1108 ± 63 | 1233 ± 88 | 1283 ± 101 | 1075 ± 100 |
Plantation | Organ | Biomass Equation | R2 | References |
---|---|---|---|---|
PT | Stem | WS = 0.0475 (D2H)0.854 | 0.98 | [35] |
Branch | WB = 0.0017 (D2H)1.151 | 0.94 | ||
Leaf | WL = 0.0134 (D2H)0.885 | 0.92 | ||
Root | WR = 0.0027 (D2H)1.091 | 0.95 | ||
LP | Stem | WS = 0.0462 (D2H)0.865 | 0.98 | [36] |
Branch | WB = 0.0386 (D2H)0.749 | 0.91 | ||
Leaf | WL = 0.0441 (D2H)0.584 | 0.86 | ||
Root | WR = 0.0142 (D2H)0.899 | 0.98 | ||
BP | Stem | WS = 0.0415 (D2H)0.923 | 0.99 | [36] |
Branch | WB = 0.0293 (D2H)0.663 | 0.94 | ||
Leaf | WL = 0.0117 (D2H)0.636 | 0.96 | ||
Root | WR = 0.0299 (D2H)0.767 | 0.95 | ||
PD | Stem | WS = 0.0417 (D2H)0.866 | 0.99 | [36] |
Branch | WB = 0.0095 (D2H)0.895 | 0.98 | ||
Leaf | WL = 0.0035 (D2H)0.877 | 0.99 | ||
Root | WR = 0.0289 (D2H)0.786 | 0.89 |
Soil Layer | PT | LP | BP | PD |
---|---|---|---|---|
0–20 cm | 13.44 ± 1.71 b | 14.79 ± 1.10 b | 19.59 ± 1.62 a | 17.92 ± 1.18 a |
20–40 cm | 5.77 ± 0.93 b | 6.87 ± 0.59 b | 9.28 ± 1.06 a | 7.58 ± 1.05 ab |
40–60 cm | 4.84 ± 0.72 b | 5.04 ± 0.53 ab | 6.22 ± 0.62 a | 5.69 ± 0.58 ab |
60–100 cm | 3.82 ± 0.25 a | 4.05 ± 0.44 a | 4.43 ± 0.46 a | 4.16 ± 0.49 a |
Mean | 6.97 ± 0.90 c | 7.69 ± 0.67 c | 9.88 ± 0.94 a | 8.84 ± 0.83 b |
Location | Plantation Type | Age (years) | Ecosystem C Storage | Reference |
---|---|---|---|---|
Guangxi | Castanopsis hystrix | 27 | 314.6 | [11] |
Guangxi | Pinus massoniana | 27 | 293.6 | [11] |
Guangxi | Mytilaria laosensis | 23 | 357.0 | [71] |
Sichuan | P. massoniana | 27 | 397.2 | [43] |
Sichuan | Picea asperata | 25 | 239.4 | [72] |
Ningxia | P. tabuliformis | 32 | 281.0 | [12] |
Hebei | P. tabulaeformis | 31–50 | 236.3 | [73] |
Heilongjiang | Betula dahurica | 60 | 238.27 | [8] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, H.; Qin, Y.; Wu, A.; Zhao, Y.; Zhang, T.; Liu, X.; Zheng, Z.; Sun, L. Ecosystem Carbon Storage Distribution Among Different Coniferous and Broadleaved Plantations in North China. Forests 2025, 16, 987. https://doi.org/10.3390/f16060987
Shen H, Qin Y, Wu A, Zhao Y, Zhang T, Liu X, Zheng Z, Sun L. Ecosystem Carbon Storage Distribution Among Different Coniferous and Broadleaved Plantations in North China. Forests. 2025; 16(6):987. https://doi.org/10.3390/f16060987
Chicago/Turabian StyleShen, Huitao, Yanjie Qin, Aibin Wu, Yanxia Zhao, Tao Zhang, Xin Liu, Zhenhua Zheng, and Leigang Sun. 2025. "Ecosystem Carbon Storage Distribution Among Different Coniferous and Broadleaved Plantations in North China" Forests 16, no. 6: 987. https://doi.org/10.3390/f16060987
APA StyleShen, H., Qin, Y., Wu, A., Zhao, Y., Zhang, T., Liu, X., Zheng, Z., & Sun, L. (2025). Ecosystem Carbon Storage Distribution Among Different Coniferous and Broadleaved Plantations in North China. Forests, 16(6), 987. https://doi.org/10.3390/f16060987