Genetic Parameters and Family Selection of Pinus pseudostrobus var. apulcensis Through Growth and Stem Quality in Mixteca Oaxaqueña Region, Mexico
Abstract
1. Introduction
2. Materials and Methods
2.1. Tree Selection and Establishment of the Progeny Test
2.2. Traits Evaluated
2.3. Statistical Analysis
3. Results
3.1. Differences Between Families and Variance Components
3.2. Genetic Variation and Heritability
3.3. Genetic and Phenotypic Correlations
3.4. Selection and Genetic Gain
3.4.1. Selection by Principal Component Method
3.4.2. Selection by Multi-Trait Comprehensive Evaluation Method
3.4.3. Genetic Gain with Three Selection Intensities
4. Discussion
4.1. Differences Between Families
4.2. Genetic Control
4.3. Correlations Between Traits
4.4. Selection and Genetic Gain
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richardson, M.D.; Rundel, W.P. Ecology and Biogeography of Pinus: An Introduction. In Ecology and Biogeography of Pinus, 1st ed.; Richardson, M.D., Ed.; Cambridge University Press: Cambridge, UK, 1998; pp. 3–46. [Google Scholar]
- Sánchez-González, A. Diversity and Distribution of Mexican Pines, an Overview. Madera Bosques 2008, 14, 107–120. [Google Scholar] [CrossRef]
- Moctezuma López, G.; Flores, A. Economic Importance of Pine (Pinus spp.) As a Natural Resource in Mexico. Rev. Mex. Cien. For. 2020, 11, 161–185. [Google Scholar] [CrossRef]
- Gernandt, D.S.; Pérez-de la Rosa, J.A. Biodiversity of Pinophyta (Conifers) in Mexico. Rev. Mex. Biodiv. 2014, 85, 126–133. [Google Scholar] [CrossRef]
- Álvarez-López, P.S.; Perales Salvador, A.; Trujillo Ubaldo, E. The Mexican Forestry Subsector and Its Opening to Trade. Rev. Mex. Cien. For. 2015, 6, 8–23. Available online: https://www.scielo.org.mx/scielo.php?pid=S2007-11322015000300002&script=sci_arttext (accessed on 25 April 2025).
- Zobel, B.J.; Talbert, J.T. Applied Forest Tree Improvement; John Wiley & Sons, Inc.: New York, NY, USA, 1984; 505p. [Google Scholar]
- White, T.L.; Adams, W.T.; Neale, D.B. Forest Genetics; CABI Publishing: Cambridge, MA, USA, 2007; 682p, Available online: https://www.cabidigitallibrary.org/doi/book/10.1079/9781845932855.0000 (accessed on 15 November 2024).
- Burney, O.; Aldrete, A.; Alvarez Reyes, R.; Prieto Ruíz, J.A.; Sánchez Velazquez, J.R.; Mexal, J.G. México—Addressing Challenges to Reforestation. J. For. 2015, 113, 404–413. [Google Scholar] [CrossRef]
- Machuca-Velasco, R.; Borja-de La Rosa, A.; Morales-Villalba, E.; Flores-Velásquez, R. Workability Of Pinus oaxacana Mirov. Wood from a Plantation in the State of Mexico. Rev. Chapingo Ser. Cien. For. Amb. 2012, 18, 193–205. [Google Scholar] [CrossRef]
- Farjon, A.; Styles, B.T. Pinus (Pinaceae). Flora Neotropical Monograph 75; The New York Botanical Gardens: New York, NY, USA, 1997. [Google Scholar]
- Villalobos-Arámbula, A.R.; de la Rosa, J.P.; Arias, A.; Rajora, O.P. Cross–Species Transferability of Eastern White Pine (Pinus strobus) Nuclear Microsatellite Markers to Five Mexican White Pines. Genet. Mol. Res. 2014, 13, 7571–7576. [Google Scholar] [CrossRef]
- Vallejo-Reyna, M.Á.; Velasco-García, M.V.; Aguilera-Martínez, V.; Méndez-Sánchez, H.; Muñoz-Gutiérrez, L.; Gómez-Cárdenas, M.; Hernández-Hernández, A. Genetic Diversity and Structure of Higher–Resin Trees of Pinus oocarpa Schiede in Mexico: Implications for Genetic Improvement. Forests 2024, 15, 2250. [Google Scholar] [CrossRef]
- Fabián-Plesníková, I.; Sáenz-Romero, C.; Cruz-de León, J.C.; Martínez-Trujillo, M.; Sánchez-Vargas, N. Growth Trait Genetic Parameters in a Progeny Trial of Pinus oocarpa. Madera Bosques 2020, 26, 1–14. [Google Scholar] [CrossRef]
- Reyes-Esteves, G.I.; López-Upton, J.; Velasco-García, M.V.; Jiménez-Casas, M. Genetic Parameters of a Progeny Trial of Pinus greggii Engelmann ex Parlatore var. australis Donahue & López in the Mixteca Alta of Oaxaca, Mexico. Rev. Chapingo Ser. Cien. For. Amb. 2022, 28, 75–88. [Google Scholar] [CrossRef]
- Ramírez-Galicia, K.; Ramírez-Herrera, C.; Gómez-Martínez, P.; López-Upton, J.; Mohedano-Caballero, L.; Rodríguez-Trejo, D.A. Variation and Heritability in Height, Diameter and Volume of Pinus patula in An Asexual Seed Orchard in Huayacocotla, Veracruz México. Bosque 2024, 45, 187–194. [Google Scholar] [CrossRef]
- Vázquez-García, I.; Cetina-Alcalá, V.M.; Campos-Bolaños, R.; Casal-Ángeles, L.F. Assessment of Forest Plantations in Three Communities of the Mixteca Alta Oaxaqueña Region. Agroprod 2016, 9, 12–19. Available online: https://revista-agroproductividad.org/index.php/agroproductividad/article/view/716/585 (accessed on 23 April 2025).
- Plancarte Barrera, A. Reforestación con Especies Nativas en la Mixteca Oaxaqueña, 1st ed.; Proyecto Mixteca Sustentable A. C.: Oaxaca, Mexico, 2019; p. 80. Available online: https://proyectomixtecasustentableac.org/documentos-descargables/publicaciones/ (accessed on 29 April 2025).
- Ramírez López, A.; Navarro Garza, H.; Pérez Olvera, A.; Cetina Alcalá, V.M. Organization Experience for a Pinus oaxacana Mirov. Reforestation in Degraded Soils of the Oaxacan Mixteca. Rev. Mex. Cien. For. 2011, 2, 57–70. [Google Scholar] [CrossRef]
- Sánchez Rosales, B. Parámetros Genéticos e Interacción Genotipo por Ambiente en Dos Ensayos de Progenies de Pinus Pseudostrobus var. apulcensis en La Mixteca de Oaxaca. Master’s Thesis, Universidad Autónoma Chapingo, Texcoco, México, 2023. [Google Scholar]
- Sánchez Vargas, N.M.; Cambrón Sandoval, V.H.; Sáenz Romero, C.; Vargas Hernández, J.J. Genetic Parameters ok Pinus pseudostrobus Lindl. Half–Sib Families Early Growth in Michoacán, Mexico. Rev. Forest. Venez. 2014, 58, 65–75. Available online: http://www.researchgate.net/publication/323432143_PARAMETROS_GENETICOS_DEL_CRECIMIENTO_TEMPRANO_DE_FAMILIAS_DE_MEDIOS_HERMANOS_DE_PINUS_PSEUDOSTROBUS_LINDL_EN_MICHOACAN_MEXICO#fullTextFileContent (accessed on 29 April 2025).
- Bustillos-Aguirre, C.V.; Vargas-Hernández, J.J.; López-Upton, J.; Ramírez-Valverde, G. Repeatability of Genetic Parameters for Branching Traits in Pinus patula. Madera Bosques 2018, 24, e2411131. [Google Scholar] [CrossRef]
- Lee, K.; Oh, C.; Kim, I.S. Genetic Parameter Changes and Age−Age Correlations in Pinus koraiensis Growth Over 40-Year Progeny Testing. BMC Plant Biol. 2024, 24, 86. [Google Scholar] [CrossRef] [PubMed]
- SAS Institute Inc. Statistical Analysis System; SAS Institute Inc.: Cary, NC, USA, 2012. [Google Scholar]
- Meyer, K. WOMBAT—A Program for Mixed Models Analyses in Quantitative Genetics by REML. J. Zhejiang Univ. Sci. B 2007, 8, 815–821. [Google Scholar] [CrossRef]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics; Addison Wesley Longman Limited: Edinburgh, UK, 1996; p. 464. [Google Scholar]
- Escobar-Sandoval, M.C.; Vargas-Hernández, J.J.; López-Upton, J.; Espinosa-Zaragoza, S.; Borja-de la Rosa, A. Genetic Parameters for Wood Quality, Growth and Branching Traits in Pinus patula. Madera Bosques 2018, 24, e2421595. [Google Scholar] [CrossRef]
- Xu, S. Quantitative Genetics, 1st ed.; Springer Nature: Cham, Switzerland, 2022; 414p. [Google Scholar]
- White, T.L.; Hodge, G.R. Predicting Breeding Values with Applications in Forest Tree Improvement; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Jolliffe, I.T.; Cadima, J. Principal Component Analysis: A Review and Recent Developments. Philos. T. R. Soc. A 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Liu, Z.R.; Gao, C.J.; Li, J.; Miao, Y.C.; Cui, K. Phenotypic Diversity Analysis and Superior Family Selection of Industrial Raw Material Forest Species—Pinus yunnanensis Franch. Forests 2022, 13, 618. [Google Scholar] [CrossRef]
- Mu, H.; Liu, Y.; Wang, F.; Zhang, Z.; Wang, J.; Yang, Y. Genetic Parameters and Selection of Clones and Families of Pinus koraiensis Using Principal Components and Multi–Trait Method. Forests 2024, 15, 2259. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Xia, H.; Wang, X.W.; Wang, C.; Liang, D.Y.; Li, K.L.; Liu, G.F. Variance and Stability Analyses of Growth Characters in Half–Sib Betula platyphylla Families at Three Different Sites in China. Euphytica 2016, 208, 173–186. [Google Scholar] [CrossRef]
- Diao, S.; Hou, Y.; Xie, Y.; Sun, X. Age Trends of Genetic Parameters, Early Selection and Family by Site Interactions for Growth Traits in Larix kaempferi Open–Pollinated Families. BMC Genet. 2016, 17, 104. [Google Scholar] [CrossRef]
- Li, Z.M.; Gao, C.J.; Che, F.X.; Li, J.; Wang, L.; Cui, K. Trunk Distortion Weakens the Tree Productivity Revealed by Half–Sib Progeny Determination of Pinus yunnanensis. BMC Plant Biol. 2024, 24, 629. [Google Scholar] [CrossRef] [PubMed]
- Valencia Manzo, S.; Velasco García, M.V.; Gómez Cárdenas, M.; Ruíz Muñoz, M.; Capo Arteaga, M.Á. Provenance Test of Pinus greggii Engelm. at Two Locations in the High Mixteca of Oaxaca, México. Rev. Fitotec. Mex. 2006, 29, 27–32. [Google Scholar] [CrossRef]
- Viveros-Viveros, H.; Sáenz-Romero, C.; Vargas-Hernández, J.J.; López-Upton, J. Pinus pseudostrobus Provenance Variation Tested in Two Sites in Michoacán, Mexico. Rev. Fitotec. Mex. 2006, 29, 121–126. Available online: https://revfitotecnia.mx/index.php/RFM/article/view/1485/1427 (accessed on 26 January 2025).
- Viveros-Viveros, H.; Sáenz-Romero, C.; López-Upton, J.; Vargas-Hernández, J.J. Atitudinal Genetic Variation in Plant Growth of Pinus pseudostrobus Lindl. in Field Testing. Agrociencia 2005, 39, 575–587. Available online: https://agrociencia-colpos.org/index.php/agrociencia/article/view/421/421 (accessed on 4 February 2025).
- Rodríguez Laguna, R.; Valencia Manzo, S.; Mendoza Rangel, J.; Capó Arteaga, M.Á.; Reynoso Pérez, A. Growth and Crown Traits of Provenances of Pinus greggii Engelm. at Galeana, Nuevo León. Rev. Fitot. Mex. 2008, 31, 19–26. [Google Scholar] [CrossRef]
- Villegas-Jiménez, D.E.; Rodríguez-Ortiz, G.; Velasco-Velasco, A.V.; Ruiz-Luna, J.; Carrillo-Rodríguez, J.C.; Ramírez-Sánchez, S.E. Aboveground Biomass Allocation of Pinus greggii Provenances Planted in Southern Mexico. Rev. Fitotec. Mex. 2013, 36, 421–427. [Google Scholar] [CrossRef]
- Ortiz Mendoza, R.; Aguirre Calderón, O.A.; Gómez Cárdenas, M.; Treviño Garza, E.J.; González Tagle, M.A. Growth of Pinus greggii Engelm. ex Parl. provenances on degraded soils of the Mixteca Alta, Oaxaca State. Rev. Mex. Cien. For. 2021, 12, 4–22. [Google Scholar] [CrossRef]
- Courbet, F.; Hervé, J.C.; Klein, E.K.; Colin, F. Diameter and Death of Whorl and Interwhorl Branches in Atlas Cedar (Cedrus atlantica Manetti): A Model Accounting for Acrotony. Ann. For. Sci. 2012, 69, 125–138. [Google Scholar] [CrossRef]
- Ruano, A.; Alberdi, I.; Adame, P.; Moreno-Fernández, D.; Canero Amiano, A.; Fernández-Golfín, J.; Hermoso, E.; Hernández, L.; Merlo, E.; Sandoval, V.; et al. Improving Stem Quality Assessment Based on National Forest Inventory Data: An Approach Applied to Spanish Forests. Ann. For. Sci. 2023, 80, 20. [Google Scholar] [CrossRef]
- Barszcz, A.; Sandalak, A.; Sandalak, J. Knottiness of Spruce Stems from the Dolomites as the Basis for Distinguishing Quality Zones in Round Wood. Folia For. Pol. A. 2010, 52, 89–97. Available online: https://open.icm.edu.pl/handle/123456789/5445 (accessed on 15 April 2025).
- Budeanu, M.; Şofletea, N.; Pârnuţă, G. Qualitative Traits of Norway Spruce [Picea abies (L.) Karst.] Depending on First–Order Branches: Evaluation in Comparative Trials. Not. Bot. Horti Agrobot. Cluj–Napoca 2012, 40, 295–301. [Google Scholar] [CrossRef]
- Nyoka, B.I.; Barnes, R.D. Genetic Parameters and Provenance Productivity of Pinus oocarpa and Pinus patula ssp. tecunumanii. S. Afr. For. J. 1995, 173, 1–7. [Google Scholar] [CrossRef]
- Wang, J.J.; Weng, Y.H.; Krasowski, M.; Yan, G.H.; Fullarton, M. Genetic Parameters of Growth and Stem Forking for Black Spruce Progeny Tested in New Brunswick, Canada. New For. 2018, 49, 265–277. [Google Scholar] [CrossRef]
- Cornelius, J. Heritabilities and Additive Genetic Coeffients of Variation in Forest Trees. Can. J. For. Res. 1994, 24, 1–14. [Google Scholar] [CrossRef]
- Gwaze, D.P.; Woolliams, J.A.; Kanowski, P.J. Genetic Parameters for Height and Stem Straightness in Pinus taeda Linnaeus in Zimbabwe. For. Genet. 1997, 4, 159–169. [Google Scholar]
- Morales González, E.; López Upton, J.; Vargas Hernández, J.J.; Ramírez Herrera, C.; Gil Muñoz, A. Pinus patula Genetic Parameters in a Progeny Test at Two Altitudes. Rev. Fitotec. Mex. 2013, 36, 155–162. Available online: https://revfitotecnia.mx/index.php/RFM/article/view/267/241 (accessed on 12 April 2025).
- Vargas-Hernández, H.H.; Adams, W.T.; Joyce, D.G. Quantitative Genetic Structure of Stem Form and Branching Traits in Douglas–fir Seedlings and Implications for Early Selection. Silvae Genet. 2003, 52, 36–44. Available online: https://api.semanticscholar.org/CorpusID:89026685 (accessed on 25 April 2025).
- Blada, I.; Tânasie, Ş. Growth, Straightness and Survival at Age 32 in a Pinus strobus × P. wallichiana F1 Hybrid Population (Experiment 2). Ann. For. Res. 2013, 56, 15–30. Available online: https://www.afrjournal.org/index.php/afr/article/view/27/31 (accessed on 26 March 2025).
- Gapare, W.J.; Ivković, M.; Dillon, S.K.; Chen, F.; Evans, R.; Wu, X. Genetic Parameters and Provenance Variation of Pinus radiata D. Don. ‘Eldridge collection’ in Australia 2: Wood Properties. Tree Genet. Genomes 2012, 8, 895–910. [Google Scholar] [CrossRef]
- Cambrón-Sandoval, V.H.; Suzán-Azpiri, H.; Sáenz-Romero, C.; Sánchez-Vargas, N.M. Development of Pinus pseudostrobus Under Different Environments of Growth in Common Garden. Madera Bosques 2014, 20, 47–57. [Google Scholar] [CrossRef]
- Gwaze, D.P.; Wolliams, J.A.; Kanowski, P.J.; Bridgwater, F.E. Interactions of Genotype with Site for Height and Stem Straightness in Pinus taeda in Zimbabwe. Silvae Genet. 2001, 50, 135–140. [Google Scholar]
- Zas, R.; Merlo, E. El Programa de Mejora Genética de Pinus pinaster en Galicia. Bol. Inf. CIDEU 2008, 6, 5–24. Available online: http://hdl.handle.net/10261/45946 (accessed on 19 March 2025).
- Fries, A. Genetic Parameters, Genetic Gain and Correlated Responses in Growth, Fibre Dimensions and Wood Density in a Scots Pine Breeding Population. Ann. For. Sci. 2012, 69, 783–794. [Google Scholar] [CrossRef]
- Salaya-Domínguez, J.M.; López-Upton, J.; Vargas-Hernández, J.J. Genetic and Environment Variation in Two Progeny Tests of Pinus patula. Agrociencia 2012, 46, 519–534. Available online: https://www.agrociencia-colpos.org/index.php/agrociencia/article/view/973/973 (accessed on 26 January 2025).
- Lauer, E.; Sims, A.; McKeand, S.; Isik, F. Genetic Parameters and Genotype–by–Environment Interactions in Regional Progeny Tests of Pinus taeda L. in the Southern USA. For. Sci. 2020, 67, 60–71. [Google Scholar] [CrossRef]
- Lee, K.; Kim, I.S.; Lee, S.W. Estimation of Genetic Parameters on Growth Characteristics of a 35–Year–Old Pinus koraiensis Progeny Trial in South Korea. J. For. Res. 2021, 32, 2227–2236. [Google Scholar] [CrossRef]
- Mura Santos, A.; da Silva Rosado, S.C.; Nascimento Oliveira, A. Estimation of Genetic Parameters and Verification of Early Selection Efficiency in Baru (Dipteryx alata). Crop Breed. Appl. Biotechnol. 2014, 14, 238–243. [Google Scholar] [CrossRef]
- Jayawickrama, K.J.S.; Shelbourne, C.J.A.; Carson, M.J. New Zealand’s Long Internode Breed of Pinus radiata. N. Z. J. For. Sci. 1997, 27, 126–141. Available online: https://www.scionresearch.com/__data/assets/pdf_file/0006/59514/NZJFS2721997JAYAWICKRAMA126-141.pdf (accessed on 28 April 2025).
- Magnussen, S.; Yeatman, C.W. Early Testing of Jack Pine. II. Variance and Repeatability of Stem and Branch Characters. Can. J. For. Res. 1987, 17, 460–465. [Google Scholar] [CrossRef]
- Namkoong, G. Introduction to Quantitative Genetics in Forestry, 1st ed.; USDA Forest Service: Washington, DC, USA, 1979; 342p. [Google Scholar]
- Burdon, R.D.; Klápště, J. Alternative selection methods and explicit or implied economic–worth functions for different traits in tree breeding. Tree Genet. Genomes 2019, 15, 79. [Google Scholar] [CrossRef]
- Lindgren, D. El Papel del Mejoramiento Genético de Árboles en La Reforestación. Reforesta 2016, 1, 221–237. [Google Scholar] [CrossRef]
- Zhou, C.; Sun, F.; Jiao, Z.; El-Kassaby, Y.A.; Li, W. Design Strategy of Advanced Generation Breeding Population of Pinus tabuliformis Based on Genetic Variation and Inbreeding Level. For. Ecosyst. 2025, 13, 100320. [Google Scholar] [CrossRef]
- David, A.; Pike, C.; Stine, R. Comparison of Selection Methods for Optimizing Genetic Gain and Gene Diversity in a Red Pine (Pinus resinosa Ait.) Seedling Seed Orchard. Theor. Appl. Genet. 2003, 107, 843–849. [Google Scholar] [CrossRef]
- Machado, J.A.R.; Freitas, M.L.M.; Paiva, D.I.; De Souza, B.M.; De Sousa, V.A.; Martins, K.; Oliveira, E.B.; De Aguilar, A.V. Economic Evaluation of Conservation Through Use of an Araucaria angustifolia Provenance and Progeny Test. Plants 2024, 13, 2580. [Google Scholar] [CrossRef]
Traits | p-Value 1 | Mean | Standard Error | Average per Family | Variance Component (%) | |||
---|---|---|---|---|---|---|---|---|
Minimum | Maximum | Block | Family | Error | ||||
PIBD [cm] | <0.0001 | 5.67 | 1.45 | 3.17 | 6.68 | 26.92 | 11.49 | 61.59 |
PIH [m] | <0.0001 | 1.63 | 0.50 | 0.96 | 2.11 | 19.16 | 11.34 | 69.50 |
CD [m] | <0.0001 | 1.36 | 0.35 | 0.83 | 1.73 | 23.14 | 17.04 | 59.82 |
SS | 0.0016 | 2.99 | 0.81 | 2.41 | 3.60 | 8.99 | 2.94 | 88.07 |
NW | <0.0001 | 4.76 | 1.14 | 3.25 | 5.80 | 1.58 | 10.35 | 88.07 |
NB | <0.0001 | 18.95 | 5.37 | 11.19 | 25.87 | 8.52 | 11.52 | 79.96 |
BD [cm] | <0.0001 | 1.88 | 0.47 | 1.37 | 2.17 | 14.12 | 7.86 | 78.02 |
BIA [°] | <0.0001 | 57.09 | 11.68 | 42.50 | 71.55 | 2.31 | 11.66 | 86.03 |
Variable | CVg (%) | EEh2i | ||
---|---|---|---|---|
Periodic increment in basal diameter [cm] | 15.11 | 0.47 | 0.15 | 0.57 |
Periodic increment in height [m] | 18.21 | 0.42 | 0.15 | 0.55 |
Crown diameter [m] | 18.84 | 0.66 | 0.13 | 0.63 |
Stem straightness | 8.01 | 0.10 | 0.06 | 0.29 |
Number of whorls | 13.29 | 0.31 | 0.13 | 0.51 |
Number of branches | 16.70 | 0.38 | 0.14 | 0.55 |
Branch diameter [cm] | 12.33 | 0.28 | 0.12 | 0.47 |
Branch insertion angle [°] | 12.14 | 0.36 | 0.14 | 0.51 |
PIH | PIDB | CD | SS | NW | NB | DB | BIA | |
---|---|---|---|---|---|---|---|---|
PIH | 0.857 * | 0.738 * | 0.514 ns | 0.524 * | 0.820 * | 0.516 ns | 0.390 ns | |
(0.053) | (0.065) | (0.555) | (0.249) | (0.082) | (0.276) | (0.288) | ||
PIDB | 0.838 | 0.881 * | 0.665 ns | 0.337 ns | 0.553 * | −0.498 ns | −0.245 ns | |
(<0.0001) | (0.026) | (0.731) | (0.312) | (0.182) | (0.769) | (0.528) | ||
CD | 0.733 | 0.848 | −0.026 ns | 0.201 ns | 0.376 * | 0.561 * | 0.160 ns | |
(<0.0001) | (<0.0001) | (0.702) | (0.251) | (0.169) | (0.150) | (0.237) | ||
SS | 0.519 | 0.364 | 0.117 | 0.899 * | 0.873 * | −0.384 ns | 0.335 ns | |
(<0.0001) | (0.003) | (0.359) | (0.147) | (0.159) | (2.183) | (0.868) | ||
NW | 0.460 | 0.373 | 0.242 | 0.585 | 0.873 * | −0.198 ns | 0.468 ns | |
(0.0001) | (0.002) | (0.054) | (<0.0001) | (0.073) | (0.867) | (0.318) | ||
NB | 0.617 | 0.542 | 0.403 | 0.591 | 0.814 | −0.410 ns | 0.461 ns | |
(<0.0001) | (<0.0001) | (0.001) | (<0.0001) | (<0.0001) | (0.882) | (0.279) | ||
BD | 0.468 | 0.658 | 0.666 | 0.028 | 0.072 | 0.100 | −0.112 ns | |
(<0.0001) | (<0.0001) | (<0.0001) | (0.829) | (0.570) | (0.432) | (0.725) | ||
BIA | 0.452 | 0.326 | 0.363 | 0.366 | 0.529 | 0.609 | 0.038 | |
(0.0002) | (0.009) | (0.003) | (0.003) | (<0.0001) | (<0.0001) | (0.763) |
Component | Eigenvalue | Variance Contribution | Cumulative Variance Contribution | Normalized Weight Value |
---|---|---|---|---|
I | 4.303 | 0.538 | 0.538 | 0.633 |
II | 1.810 | 0.226 | 0.764 | 0.266 |
III | 0.688 | 0.086 | 0.850 | 0.101 |
IV | 0.457 | 0.057 | 0.907 | − |
V | 0.357 | 0.045 | 0.952 | − |
VI | 0.148 | 0.019 | 0.971 | − |
VII | 0.143 | 0.018 | 0.989 | − |
VIII | 0.092 | 0.012 | 1.000 | − |
Trait | Component I | Component II | Component III | |||
---|---|---|---|---|---|---|
Factor Loading Value | Component Loading Value | Factor Loading Value | Component Loading Value | Factor Loading Value | Component Loading Value | |
PIH | 0.77037 | 0.46406 | 0.28323 | −0.07874 | 0.22149 | 0.10135 |
PIBD | 0.86869 | 0.47752 | 0.19681 | −0.19135 | 0.10992 | 0.01304 |
CD | 0.87772 | 0.45868 | 0.18826 | −0.23655 | −0.10431 | −0.19287 |
SS | 0.09517 | 0.16060 | 0.0876 | 0.17901 | 0.94400 | 0.88731 |
NW | −0.03813 | 0.21880 | 0.82213 | 0.58163 | 0.22131 | −0.01466 |
NB | 0.20434 | 0.32716 | 0.81520 | 0.47329 | 0.16272 | −0.08026 |
BD | 0.81759 | 0.34255 | −0.18813 | −0.4362 | 0.01075 | 0.02725 |
BIA | 0.13634 | 0.21955 | 0.66728 | 0.34149 | −0.20962 | −0.39703 |
Family | Standardized Value | Component Value | PCV | Rank | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PIH | PIBD | CD | SS | NW | NB | BD | BIA | I | II | III | |||
Chi20 | 1.754 | 0.959 | 0.798 | 1.788 | 0.545 | 1.176 | −0.838 | 2.866 | 2.338 | −0.451 | 0.611 | 1.421 | 1 |
Yol46 | 2.388 | 1.731 | 1.100 | 0.528 | −0.073 | 0.525 | 0.259 | −0.268 | 2.221 | −0.869 | 0.662 | 1.241 | 2 |
Ixt01 | 1.231 | 1.361 | 2.462 | 1.013 | 0.545 | 0.123 | 1.634 | 0.638 | 1.934 | −0.203 | 0.287 | 1.199 | 3 |
Teo40 | 1.499 | 1.402 | 1.190 | 0.480 | 0.100 | −0.091 | 1.538 | 1.006 | 1.690 | 0.418 | −0.081 | 1.172 | 4 |
Chi04 | 1.085 | 1.078 | 0.673 | 0.503 | −0.275 | 0.046 | 0.984 | 0.054 | 1.128 | 0.225 | 0.392 | 0.813 | 5 |
Teo44 | 0.216 | 1.345 | −0.179 | 0.273 | −1.447 | −1.169 | 1.544 | −1.544 | 0.535 | 1.358 | 0.773 | 0.778 | 6 |
Jal20 | 0.998 | −0.179 | 0.135 | 0.528 | −0.197 | −1.436 | 0.400 | −1.113 | 0.656 | 0.606 | 0.855 | 0.663 | 7 |
Ixt09 | 0.871 | 0.380 | 0.806 | 0.962 | −0.158 | 0.784 | 0.113 | 0.577 | 0.976 | −0.193 | 0.620 | 0.629 | 8 |
Ixt08 | 0.208 | 1.612 | 1.048 | 0.262 | −0.679 | 0.158 | 1.603 | −0.528 | 0.821 | 0.313 | 0.241 | 0.627 | 9 |
Ixt12 | 0.231 | 0.949 | 0.437 | 0.044 | −0.568 | 0.135 | −0.658 | 0.155 | 1.107 | −0.263 | −0.051 | 0.625 | 10 |
Ver04 | −0.152 | 0.003 | −0.339 | 0.916 | −1.013 | 0.113 | 0.325 | 1.422 | 0.308 | 1.419 | 0.283 | 0.601 | 11 |
Jal14 | 0.408 | −0.114 | 0.881 | −1.334 | −1.095 | −0.168 | 0.719 | 1.644 | 0.734 | 1.134 | −2.015 | 0.562 | 12 |
Yol45 | 0.177 | −0.299 | 0.307 | −0.174 | −1.013 | −0.521 | 0.258 | 0.267 | 0.415 | 0.979 | −0.370 | 0.485 | 13 |
Jal17 | −0.165 | 0.227 | 0.458 | −0.199 | −0.815 | −0.908 | −0.960 | −1.253 | 0.739 | −0.117 | 0.161 | 0.453 | 14 |
Teo41 | −0.418 | 0.281 | −0.083 | 0.589 | −0.568 | −0.770 | 0.449 | −0.083 | 0.201 | 0.966 | 0.451 | 0.430 | 15 |
Teo31 | 1.041 | 0.633 | 0.341 | 1.352 | 0.100 | 0.814 | 0.751 | −0.364 | 0.534 | −0.282 | 1.439 | 0.408 | 16 |
Family | Trait Evaluation Value | CEV | Rank | |||||||
---|---|---|---|---|---|---|---|---|---|---|
PIH | PIBD | CD | SS | NW | NB | BD | BIA | |||
Chi20 | 0.939 | 0.933 | 0.846 | 0.944 | −0.862 | −0.833 | −0.797 | 1.000 | 1.473 | 1 |
Yol46 | 1.000 | 1.000 | 0.874 | 0.864 | −0.814 | −0.777 | −0.884 | 0.779 | 1.429 | 2 |
Ixt01 | 0.888 | 0.968 | 1.000 | 0.895 | −0.862 | −0.743 | −0.993 | 0.843 | 1.413 | 3 |
Teo40 | 0.914 | 0.971 | 0.883 | 0.861 | −0.828 | −0.725 | −0.985 | 0.869 | 1.400 | 4 |
Ixt12 | 0.791 | 0.932 | 0.813 | 0.833 | −0.776 | −0.744 | −0.812 | 0.809 | 1.359 | 5 |
Chi04 | 0.874 | 0.943 | 0.835 | 0.863 | −0.799 | −0.737 | −0.941 | 0.802 | 1.356 | 6 |
Ixt09 | 0.853 | 0.882 | 0.847 | 0.892 | −0.808 | −0.800 | −0.873 | 0.839 | 1.354 | 7 |
Jal14 | 0.808 | 0.839 | 0.854 | 0.746 | −0.735 | −0.718 | −0.920 | 0.914 | 1.337 | 8 |
Chi10 | 0.972 | 0.901 | 0.739 | 1.000 | −1.000 | −1.000 | −0.731 | 0.897 | 1.334 | 9 |
Jal17 | 0.752 | 0.868 | 0.815 | 0.818 | −0.757 | −0.655 | −0.788 | 0.709 | 1.328 | 10 |
Ver04 | 0.754 | 0.849 | 0.741 | 0.889 | −0.741 | −0.742 | −0.889 | 0.898 | 1.326 | 11 |
Jal20 | 0.865 | 0.833 | 0.785 | 0.864 | −0.805 | −0.610 | −0.895 | 0.719 | 1.326 | 12 |
Ixt08 | 0.789 | 0.990 | 0.869 | 0.847 | −0.767 | −0.746 | −0.990 | 0.761 | 1.324 | 13 |
Ixt03 | 0.897 | 0.955 | 0.848 | 0.895 | −0.872 | −0.808 | −0.889 | 0.713 | 1.319 | 14 |
Yol45 | 0.786 | 0.822 | 0.801 | 0.819 | −0.741 | −0.688 | −0.884 | 0.817 | 1.316 | 15 |
Jal13 | 0.698 | 0.827 | 0.810 | 0.778 | −0.733 | −0.661 | −0.815 | 0.824 | 1.314 | 16 |
Traits | Principal Component Method | Multi-Trait Comprehensive Evaluation Method | ||||
---|---|---|---|---|---|---|
Genetic Gain | Realistic Gain | Family Selected | Genetic Gain | Realistic Gain | Family Selected | |
Selection intensity 6.25% (4 families) | ||||||
Periodic Increment In Height | 11.92 | 21.68 | Chi20, Yol46, Ixt01, Teo40 | 11.92 | 21.68 | Chi20, Yol46, Ixt01, Teo40 |
Periodic Increment In Basal Diameter | 8.01 | 14.05 | 8.01 | 14.05 | ||
Crown Diameter | 10.44 | 16.57 | 10.44 | 16.57 | ||
Stem Straightness | 2.12 | 7.30 | 2.12 | 7.30 | ||
Number of Whorls | 0.00 | 0.00 | 0.00 | 0.00 | ||
Number of Branches | 0.00 | 0.00 | 0.00 | 0.00 | ||
Branch Diameter | 0.00 | 0.00 | 0.00 | 0.00 | ||
Branch Insertion Angle | 4.78 | 9.37 | 4.78 | 9.37 | ||
Selection intensity 12.5% (8 families) | ||||||
Periodic Increment In Height | 8.71 | 15.84 | Chi20, Yol46, Ixt01, Teo40, Chi04, Teo44, Jal20, Ixt09 | 8.21 | 14.93 | Chi20, Yol46, Ixt01, Teo40, Ixt12, Chi04, Ixt09, Jal14 |
Periodic Increment In Basal Diameter | 5.93 | 10.41 | 5.69 | 9.98 | ||
Crown Diameter | 6.57 | 10.43 | 7.85 | 12.46 | ||
Stem Straightness | 1.69 | 5.82 | 1.11 | 3.82 | ||
Number of Whorls | 0.58 | 1.13 | 0.59 | 1.15 | ||
Number of Branches | 0.03 | 0.06 | 0.00 | 0.00 | ||
Branch Diameter | 0.00 | 0.00 | 0.00 | 0.00 | ||
Branch Insertion Angle | 1.25 | 2.45 | 3.76 | 7.37 | ||
Selection intensity 25% (16 families) | ||||||
Periodic Increment In Height | 4.45 | 8.09 | Chi20, Yol46, Ixt01, Teo40, Chi04, Teo44, Jal20, Ixt09, Ixt08, Ixt12, Ver04, Jal14, Yol45, Jal17, Teo41, Teo31 | 5.74 | 10.43 | Chi20, Yol46, Ixt01, Teo40, Chi04, Jal20, Ixt09, Ixt08, Ixt12, Ver04, Jal14, Yol45, Jal17, Chi10, Ixt03, Jal13 |
Periodic Increment In Basal Diameter | 4.08 | 7.15 | 3.92 | 6.88 | ||
Crown Diameter | 4.63 | 7.36 | 5.08 | 8.07 | ||
Stem Straightness | 0.85 | 2.94 | 1.13 | 3.91 | ||
Number of Whorls | 2.30 | 4.51 | 0.85 | 1.67 | ||
Number of Branches | 1.01 | 1.84 | 0.00 | 0.00 | ||
Branch Diameter | 0.00 | 0.00 | 0.00 | 0.00 | ||
Branch Insertion Angle | 0.18 | 0.36 | 1.70 | 3.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Rosales, B.; Velasco-García, M.V.; Hernández-Hernández, A.; Gómez-Cárdenas, M.; López-Teloxa, L.C. Genetic Parameters and Family Selection of Pinus pseudostrobus var. apulcensis Through Growth and Stem Quality in Mixteca Oaxaqueña Region, Mexico. Forests 2025, 16, 959. https://doi.org/10.3390/f16060959
Sánchez-Rosales B, Velasco-García MV, Hernández-Hernández A, Gómez-Cárdenas M, López-Teloxa LC. Genetic Parameters and Family Selection of Pinus pseudostrobus var. apulcensis Through Growth and Stem Quality in Mixteca Oaxaqueña Region, Mexico. Forests. 2025; 16(6):959. https://doi.org/10.3390/f16060959
Chicago/Turabian StyleSánchez-Rosales, Bertario, Mario Valerio Velasco-García, Adán Hernández-Hernández, Martín Gómez-Cárdenas, and Leticia Citlaly López-Teloxa. 2025. "Genetic Parameters and Family Selection of Pinus pseudostrobus var. apulcensis Through Growth and Stem Quality in Mixteca Oaxaqueña Region, Mexico" Forests 16, no. 6: 959. https://doi.org/10.3390/f16060959
APA StyleSánchez-Rosales, B., Velasco-García, M. V., Hernández-Hernández, A., Gómez-Cárdenas, M., & López-Teloxa, L. C. (2025). Genetic Parameters and Family Selection of Pinus pseudostrobus var. apulcensis Through Growth and Stem Quality in Mixteca Oaxaqueña Region, Mexico. Forests, 16(6), 959. https://doi.org/10.3390/f16060959