Patterns of Intra-Order Variation in Shoot Traits Are Order-Specific Along the Branch Basal Height Gradient of Larix principis-rupprechtii
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Species
2.2. Study Area
2.3. Sample Collection
2.4. Shoot Trait Measurements
2.5. Data Analysis
3. Results
3.1. Proportion of Intra-Order Variation to Total Shoot Trait Variation
3.2. Intra-Order Relationships Between Shoot Traits and Basal Height
3.3. Bivariate Relationship Across Shoot Orders
4. Discussion
4.1. Small Intra-Order Variance in Shoot Traits by Branch Basal Height
4.2. Idiosyncratic Shoot Trait Patterns Along a Complex Branch Basal Height Gradient
4.3. Trait Coordination
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, S.; De Frenne, P.; Van Meerbeek, K.; Wu, Q.; Peng, Y.; Zheng, H.; Guo, K.; Yuan, C.; Xiong, L.; Zhao, Z.; et al. Macroclimate and Canopy Characteristics Regulate Forest Understory Microclimatic Temperature Offsets across China. Glob. Ecol. Biogeogr. 2024, 33, e13830. [Google Scholar] [CrossRef]
- Liang, Z.; Liu, T.; Chen, X.; Xu, W.; Dong, T.; Liu, Q.; Xu, X. Twigs of Dove Tree in High-Latitude Region Tend to Increase Biomass Accumulation in Vegetative Organs but Decrease It in Reproductive Organs. Front. Plant Sci. 2023, 13, 1088955. [Google Scholar] [CrossRef]
- Osada, N. Crown Development in a Pioneer Tree, Rhus Trichocarpa, in Relation to the Structure and Growth of Individual Branches. New Phytol. 2006, 172, 667–678. [Google Scholar] [CrossRef]
- Zhao, X.; Miao, Z.; Li, F.; Hao, Y.; Jiang, Y.; Dong, L. Unraveling the Individual and Interactive Effects of Climate and Competition on Branch Growth Dynamics in Pinus Koraiensis in Northeast China. Front. Plant Sci. 2025, 16, 1545892. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Su, J. Effects of Light Acclimation on Shoot Morphology, Structure, and Biomass Allocation of Two Taxus Species in Southwestern China. Sci. Rep. 2016, 6, 35384. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Kokosza, A.; Xie, X.; Pěnčík, A.; Zhang, Y.; Raumonen, P.; Shi, X.; Muranen, S.; Topcu, M.K.; Immanen, J.; et al. Tree Architecture: A Strigolactone-Deficient Mutant Reveals a Connection between Branching Order and Auxin Gradient along the Tree Stem. Proc. Natl. Acad. Sci. USA 2023, 120, e2308587120. [Google Scholar] [CrossRef] [PubMed]
- Costes, E.; Crespel, L.; Denoyes, B.; Morel, P.; Demene, M.-N.; Lauri, P.-E.; Wenden, B. Bud Structure, Position and Fate Generate Various Branching Patterns along Shoots of Closely Related Rosaceae Species: A Review. Front. Plant Sci. 2014, 5, 666. [Google Scholar] [CrossRef]
- Gaaliche, B.; Aïachi-Mezghani, M.; Trad, M.; Costes, E.; Lauri, P.-E.; Mars, M. Shoot Architecture and Morphology of Different Branch Orders in Fig Tree (Ficus carica L.). Int. J. Fruit Sci. 2016, 16, 378–394. [Google Scholar] [CrossRef]
- Wang, W.; Jiang, Y.; Chen, Y.; Luo, W.; He, D.; Wang, Y.; Chu, C.; Li, B. Using Intraspecific Variation of Functional Traits and Environmental Factors to Understand the Formation of Nestedness Patterns of a Local Forest Community. J. Plant Ecol. 2022, 15, 1185–1198. [Google Scholar] [CrossRef]
- Xing, H.; Shi, Z.; Liu, S.; Chen, M.; Xu, G.; Cao, X.; Zhang, M.; Chen, J.; Li, F. Leaf Traits Divergence and Correlations of Woody Plants among the Three Plant Functional Types on the Eastern Qinghai-Tibetan Plateau, China. Front. Plant Sci. 2023, 14, 1128227. [Google Scholar] [CrossRef]
- Yang, J.; Lu, J.; Chen, Y.; Yan, E.; Hu, J.; Wang, X.; Shen, G. Large Underestimation of Intraspecific Trait Variation and Its Improvements. Front. Plant Sci. 2020, 11, 53. [Google Scholar] [CrossRef] [PubMed]
- Siefert, A.; Violle, C.; Chalmandrier, L.; Albert, C.H.; Taudiere, A.; Fajardo, A.; Aarssen, L.W.; Baraloto, C.; Carlucci, M.B.; Cianciaruso, M.V.; et al. A Global Meta-Analysis of the Relative Extent of Intraspecific Trait Variation in Plant Communities. Ecol. Lett. 2015, 18, 1406–1419. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.T.; Gezon, Z.J. Plasticity in Functional Traits in the Context of Climate Change: A Case Study of the Subalpine Forb Boechera Stricta (Brassicaceae). Glob. Change Biol. 2015, 21, 1689–1703. [Google Scholar] [CrossRef] [PubMed]
- Violle, C.; Enquist, B.J.; McGill, B.J.; Jiang, L.; Albert, C.H.; Hulshof, C.; Jung, V.; Messier, J. The Return of the Variance: Intraspecific Variability in Community Ecology. Trends Ecol. Evol. 2012, 27, 244–252. [Google Scholar] [CrossRef]
- Fajardo, A.; Piper, F.I. Intraspecific Trait Variation and Covariation in a Widespread Tree Species (Nothofagus Pumilio) in Southern Chile. New Phytol. 2011, 189, 259–271. [Google Scholar] [CrossRef]
- Sides, C.B.; Enquist, B.J.; Ebersole, J.J.; Smith, M.N.; Henderson, A.N.; Sloat, L.L. Revisiting Darwin’s Hypothesis: Does Greater Intraspecific Variability Increase Species’ Ecological Breadth? Am. J. Bot. 2014, 101, 56–62. [Google Scholar] [CrossRef]
- Vasseur, F.; Exposito-Alonso, M.; Ayala-Garay, O.J.; Wang, G.; Enquist, B.J.; Vile, D.; Violle, C.; Weigel, D. Adaptive Diversification of Growth Allometry in the Plant Arabidopsis Thaliana. Proc. Natl. Acad. Sci. USA 2018, 115, 3416–3421. [Google Scholar] [CrossRef]
- Read, Q.D.; Henning, J.A.; Sanders, N.J. Intraspecific Variation in Traits Reduces Ability of Trait-Based Models to Predict Community Structure. J. Veg. Sci. 2017, 28, 1070–1081. [Google Scholar] [CrossRef]
- Messier, J.; McGill, B.J.; Enquist, B.J.; Lechowicz, M.J. Trait Variation and Integration across Scales: Is the Leaf Economic Spectrum Present at Local Scales? Ecography 2017, 40, 685–697. [Google Scholar] [CrossRef]
- Aubin, I.; Cardou, F.; Boisvert-Marsh, L.; Garnier, E.; Strukelj, M.; Munson, A.D. Managing Data Locally to Answer Questions Globally: The Role of Collaborative Science in Ecology. J. Veg. Sci. 2020, 31, 509–517. [Google Scholar] [CrossRef]
- Berzaghi, F.; Wright, I.J.; Kramer, K.; Oddou-Muratorio, S.; Bohn, F.J.; Reyer, C.P.O.; Sabaté, S.; Sanders, T.G.M.; Hartig, F. Towards a New Generation of Trait-Flexible Vegetation Models. Trends Ecol. Evol. 2020, 35, 191–205. [Google Scholar] [CrossRef] [PubMed]
- Freschet, G.T.; Pagès, L.; Iversen, C.M.; Comas, L.H.; Rewald, B.; Roumet, C.; Klimešová, J.; Zadworny, M.; Poorter, H.; Postma, J.A.; et al. A Starting Guide to Root Ecology: Strengthening Ecological Concepts and Standardising Root Classification, Sampling, Processing and Trait Measurements. New Phytol. 2021, 232, 973–1122. [Google Scholar] [CrossRef]
- Liu, R.; Yang, X.; Gao, R.; Huang, Z.; Cornelissen, J.H.C. Coordination of Economics Spectra in Leaf, Stem and Root within the Genus Artemisia along a Large Environmental Gradient in China. Glob. Ecol. Biogeogr. 2023, 32, 324–338. [Google Scholar] [CrossRef]
- Castillo-Figueroa, D.; González-Melo, A.; Posada, J.M. Wood Density Is Related to Aboveground Biomass and Productivity along a Successional Gradient in Upper Andean Tropical Forests. Front. Plant Sci. 2023, 14, 1276424. [Google Scholar] [CrossRef]
- Kotowska, M.M.; Hertel, D.; Rajab, Y.A.; Barus, H.; Schuldt, B. Patterns in Hydraulic Architecture from Roots to Branches in Six Tropical Tree Species from Cacao Agroforestry and Their Relation to Wood Density and Stem Growth. Front. Plant Sci. 2015, 6, 191. [Google Scholar] [CrossRef]
- Mo, L.; Crowther, T.W.; Maynard, D.S.; van den Hoogen, J.; Ma, H.; Bialic-Murphy, L.; Liang, J.; de-Miguel, S.; Nabuurs, G.-J.; Reich, P.B.; et al. The Global Distribution and Drivers of Wood Density and Their Impact on Forest Carbon Stocks. Nat. Ecol. Evol. 2024, 8, 2195–2212. [Google Scholar] [CrossRef]
- Phillips, O.L.; Sullivan, M.J.P.; Baker, T.R.; Monteagudo Mendoza, A.; Vargas, P.N.; Vásquez, R. Species Matter: Wood Density Influences Tropical Forest Biomass at Multiple Scales. Surv. Geophys. 2019, 40, 913–935. [Google Scholar] [CrossRef] [PubMed]
- Chave, J.; Coomes, D.; Jansen, S.; Lewis, S.L.; Swenson, N.G.; Zanne, A.E. Towards a Worldwide Wood Economics Spectrum. Ecol. Lett. 2009, 12, 351–366. [Google Scholar] [CrossRef]
- Pan, Y.; Cieraad, E.; Armstrong, J.; Armstrong, W.; Clarkson, B.R.; Colmer, T.D.; Pedersen, O.; Visser, E.J.W.; Voesenek, L.A.C.J.; van Bodegom, P.M. Global Patterns of the Leaf Economics Spectrum in Wetlands. Nat. Commun. 2020, 11, 4519. [Google Scholar] [CrossRef]
- Huaraca Huasco, W.; Riutta, T.; Girardin, C.A.J.; Hancco Pacha, F.; Puma Vilca, B.L.; Moore, S.; Rifai, S.W.; del Aguila-Pasquel, J.; Araujo Murakami, A.; Freitag, R.; et al. Fine Root Dynamics across Pantropical Rainforest Ecosystems. Glob. Change Biol. 2021, 27, 3657–3680. [Google Scholar] [CrossRef]
- He, X.; Hou, E.; Liu, Y.; Wen, D. Altitudinal Patterns and Controls of Plant and Soil Nutrient Concentrations and Stoichiometry in Subtropical China. Sci. Rep. 2016, 6, 24261. [Google Scholar] [CrossRef]
- Kotilínek, M.; Hiiesalu, I.; Košnar, J.; Šmilauerová, M.; Šmilauer, P.; Altman, J.; Dvorský, M.; Kopecký, M.; Doležal, J. Fungal Root Symbionts of High-Altitude Vascular Plants in the Himalayas. Sci. Rep. 2017, 7, 6562. [Google Scholar] [CrossRef]
- Kumordzi, B.B.; Gundale, M.J.; Nilsson, M.-C.; Wardle, D.A. Shifts in Aboveground Biomass Allocation Patterns of Dominant Shrub Species across a Strong Environmental Gradient. PLoS ONE 2016, 11, e0157136. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, J.; Bai, W.; Zhang, Y.; Zhang, W.-H. The Response of Root Traits to Precipitation Change of Herbaceous Species in Temperate Steppes. Funct. Ecol. 2019, 33, 2030–2041. [Google Scholar] [CrossRef]
- Ma, Z.; Chang, S.X.; Bork, E.W.; Steinaker, D.F.; Wilson, S.D.; White, S.R.; Cahill, J.F., Jr. Climate Change and Defoliation Interact to Affect Root Length across Northern Temperate Grasslands. Funct. Ecol. 2020, 34, 2611–2621. [Google Scholar] [CrossRef]
- Bergmann, J.; Weigelt, A.; van Der Plas, F.; Laughlin, D.C.; Kuyper, T.W.; Guerrero-Ramirez, N.; Valverde-Barrantes, O.J.; Bruelheide, H.; Freschet, G.T.; Iversen, C.M.; et al. The Fungal Collaboration Gradient Dominates the Root Economics Space in Plants. Sci. Adv. 2020, 6, eaba3756. [Google Scholar] [CrossRef]
- McCormack, M.L.; Iversen, C.M. Physical and Functional Constraints on Viable Belowground Acquisition Strategies. Front. Plant Sci. 2019, 10, 1215. [Google Scholar] [CrossRef]
- Valverde-Barrantes, O.J.; Blackwood, C.B. Root Traits Are Multidimensional: Specific Root Length Is Independent from Root Tissue Density and the Plant Economic Spectrum: Commentary on Kramer-Walter et al. (2016). J. Ecol. 2016, 104, 1311–1313. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Ji, X.; Zhang, Z.; Zhang, H.; Zha, T.; Jiang, L. Elevation and Total Nitrogen Are the Critical Factors That Control the Spatial Distribution of Soil Organic Carbon Content in the Shrubland on the Bashang Plateau, China. Catena 2021, 204, 105415. [Google Scholar] [CrossRef]
- Dorji, Y.; Schuldt, B.; Neudam, L.; Dorji, R.; Middleby, K.; Isasa, E.; Körber, K.; Ammer, C.; Annighöfer, P.; Seidel, D. Three-Dimensional Quantification of Tree Architecture from Mobile Laser Scanning and Geometry Analysis. Trees 2021, 35, 1385–1398. [Google Scholar] [CrossRef]
- Freschet, G.T.; Swart, E.M.; Cornelissen, J.H.C. Integrated Plant Phenotypic Responses to Contrasting Above- and below-Ground Resources: Key Roles of Specific Leaf Area and Root Mass Fraction. New Phytol. 2015, 206, 1247–1260. [Google Scholar] [CrossRef]
- Guo, J.; Li, H.; Yang, Y. Phenotypic Plasticity in Sexual Reproduction Based on Nutrients Supplied From Vegetative Ramets in a Leymus chinensis Population. Front. Plant Sci. 2020, 10, 1681. [Google Scholar] [CrossRef]
- Pérez-Ramos, I.M.; Matías, L.; Gómez-Aparicio, L.; Godoy, Ó. Functional Traits and Phenotypic Plasticity Modulate Species Coexistence across Contrasting Climatic Conditions. Nat. Commun. 2019, 10, 2555. [Google Scholar] [CrossRef]
- Siebenkäs, A.; Schumacher, J.; Roscher, C. Phenotypic Plasticity to Light and Nutrient Availability Alters Functional Trait Ranking across Eight Perennial Grassland Species. AoB Plants 2015, 7, plv029. [Google Scholar] [CrossRef]
- Wen, Z.; Li, H.; Shen, Q.; Tang, X.; Xiong, C.; Li, H.; Pang, J.; Ryan, M.H.; Lambers, H.; Shen, J. Tradeoffs Among Root Morphology, Exudation and Mycorrhizal Symbioses for Phosphorus-Acquisition Strategies of 16 Crop Species. New Phytol. 2019, 223, 882–895. [Google Scholar] [CrossRef]
- Defrenne, C.E.; McCormack, M.L.; Roach, W.J.; Addo-Danso, S.D.; Simard, S.W. Intraspecific Fine-Root Trait-Environment Relationships across Interior Douglas-Fir Forests of Western Canada. Plants 2019, 8, 199. [Google Scholar] [CrossRef]
- An, N.; Lu, N.; Fu, B.; Wang, M.; He, N. Distinct Responses of Leaf Traits to Environment and Phylogeny Between Herbaceous and Woody Angiosperm Species in China. Front. Plant Sci. 2021, 12, 799401. [Google Scholar] [CrossRef]
- Waris, K.; Larjavaara, M.; Luo, A.; Lyu, T.; Li, Y.; Jia, W.; Wang, Z. Climate and Evolutionary History Shape Latitudinal Patterns of Angiosperm Wood Density. J. Plant Ecol. 2025, 18, rtaf003. [Google Scholar] [CrossRef]
- Wang, M.; Le Moigne, M.-A.; Bertheloot, J.; Crespel, L.; Perez-Garcia, M.-D.; Ogé, L.; Demotes-Mainard, S.; Hamama, L.; Davière, J.-M.; Sakr, S. BRANCHED1: A Key Hub of Shoot Branching. Front. Plant Sci. 2019, 10, 76. [Google Scholar] [CrossRef]
- Betz, O.; Srisuka, W.; Puthz, V. Elevational Gradients of Species Richness, Community Structure, and Niche Occupation of Tropical Rove Beetles (Coleoptera: Staphylinidae: Steninae) across Mountain Slopes in Northern Thailand. Evol. Ecol. 2020, 34, 193–216. [Google Scholar] [CrossRef]
- Arnold, P.A.; Wang, S.; Notarnicola, R.F.; Nicotra, A.B.; Kruuk, L.E.B. Testing the Evolutionary Potential of an Alpine Plant: Phenotypic Plasticity in Response to Growth Temperature Outweighs Parental Environmental Effects and Other Genetic Causes of Variation. J. Exp. Bot. 2024, 75, 5971–5988. [Google Scholar] [CrossRef]
- Forsman, A. Rethinking Phenotypic Plasticity and Its Consequences for Individuals, Populations and Species. Heredity 2015, 115, 276–284. [Google Scholar] [CrossRef]
- Schröter, D.M.; Oberhuber, W. Do Growth-Limiting Temperatures at the High-Elevation Treeline Require an Adaptation of Phloem Formation and Anatomy? Front. For. Glob. Chang. 2021, 4, 731903. [Google Scholar] [CrossRef]
Position | n | Diameter | Length | SSL | STD | |||||
---|---|---|---|---|---|---|---|---|---|---|
Height | Order | Mean | SE | Mean | SE | Mean | SE | Mean | SE | |
0.5 m | 2 | 37 | 1.58 | 0.09 | 11.56 | 1.02 | 0.63 | 0.06 | 1.22 | 0.11 |
3 | 40 | 1.44 | 0.07 | 7.24 | 0.82 | 0.84 | 0.07 | 1.06 | 0.09 | |
4 | 12 | 1.25 | 0.12 | 7.85 | 1.21 | 1.05 | 0.16 | 1.07 | 0.12 | |
1.0 m | 2 | 53 | 1.95 | 0.07 | 14.49 | 1.01 | 0.62 | 0.05 | 0.72 | 0.06 |
3 | 92 | 1.32 | 0.05 | 8.57 | 0.55 | 1.06 | 0.05 | 1.02 | 0.06 | |
4 | 14 | 1.16 | 0.13 | 6.85 | 0.82 | 1.21 | 0.18 | 1.19 | 0.15 | |
1.5 m | 2 | 114 | 1.73 | 0.05 | 14.93 | 0.68 | 0.62 | 0.03 | 0.91 | 0.04 |
3 | 142 | 1.27 | 0.03 | 11.19 | 0.45 | 0.86 | 0.03 | 1.19 | 0.04 | |
4 | 32 | 1.01 | 0.06 | 8.24 | 0.75 | 1.25 | 0.08 | 1.27 | 0.10 | |
2.0 m | 2 | 75 | 1.80 | 0.06 | 13.23 | 0.78 | 0.76 | 0.05 | 0.68 | 0.03 |
3 | 122 | 1.50 | 0.03 | 11.67 | 0.57 | 1.02 | 0.04 | 0.68 | 0.02 | |
4 | 25 | 1.42 | 0.09 | 10.21 | 1.08 | 1.08 | 0.07 | 0.71 | 0.05 | |
3.0 m | 2 | 137 | 1.46 | 0.04 | 14.62 | 0.65 | 0.82 | 0.03 | 0.98 | 0.03 |
3 | 146 | 1.27 | 0.03 | 12.97 | 0.54 | 1.07 | 0.04 | 0.99 | 0.03 | |
4 | 28 | 1.43 | 0.10 | 12.04 | 1.11 | 0.91 | 0.05 | 0.91 | 0.08 | |
4.0 m | 1 | 29 | 2.35 | 0.07 | 32.35 | 0.88 | 0.57 | 0.02 | 0.43 | 0.02 |
2 | 136 | 1.79 | 0.04 | 15.12 | 0.65 | 0.73 | 0.02 | 0.67 | 0.03 | |
3 | 83 | 1.50 | 0.05 | 12.93 | 0.64 | 0.93 | 0.04 | 0.78 | 0.04 | |
4.5 m | 1 | 10 | 2.69 | 0.10 | 34.78 | 2.88 | 0.43 | 0.02 | 0.42 | 0.03 |
2 | 56 | 1.83 | 0.04 | 15.67 | 0.71 | 0.78 | 0.03 | 0.55 | 0.02 | |
3 | 12 | 1.89 | 0.10 | 15.40 | 1.02 | 0.82 | 0.05 | 0.47 | 0.03 | |
5.0 m | 1 | 12 | 3.02 | 0.12 | 28.88 | 2.20 | 0.36 | 0.03 | 0.42 | 0.03 |
2 | 21 | 2.26 | 0.10 | 21.79 | 0.93 | 0.58 | 0.05 | 0.51 | 0.04 | |
5.5 m | 1 | 18 | 2.95 | 0.13 | 33.54 | 0.90 | 0.39 | 0.02 | 0.41 | 0.02 |
2 | 84 | 2.14 | 0.05 | 18.06 | 0.78 | 0.63 | 0.03 | 0.52 | 0.02 | |
3 | 21 | 1.81 | 0.08 | 14.54 | 1.45 | 0.82 | 0.07 | 0.55 | 0.02 |
Traits | Order | Model | Shape | F | p | R2 | AIC |
---|---|---|---|---|---|---|---|
Diameter | 1 | Q | ∩ | 15.9 | <0.001 | 0.31 | 83.8 |
2 | Q | ∪ | 42.4 | <0.001 | 0.10 | 1014.7 | |
3 | Q | ∪ | 18.4 | <0.001 | 0.05 | 752.3 | |
4 | L | / | 6.7 | 0.011 | 0.05 | 145.4 | |
Length | 1 | L | \ | 0.0 | 0.999 | 0.00 | 449.5 |
2 | Q | ∪ | 15.3 | <0.001 | 0.04 | 4829.0 | |
3 | Q | ∩ | 31.1 | <0.001 | 0.08 | 4204.3 | |
4 | L | / | 14.3 | <0.001 | 0.11 | 669.1 | |
SSL | 1 | Q | ∪ | 30.8 | <0.001 | 0.47 | −123.3 |
2 | Q | ∩ | 15.6 | <0.001 | 0.04 | 410.0 | |
3 | Q | ∩ | 4.5 | 0.012 | 0.01 | 772.5 | |
4 | Q | ∩ | 4.5 | 0.013 | 0.06 | 131.9 | |
STD | 1 | L | \ | 0.9 | 0.343 | 0.00 | −124.5 |
2 | Q | ∩ | 49.9 | <0.001 | 0.12 | 627.2 | |
3 | L | \ | 43.3 | <0.001 | 0.06 | 826.0 | |
4 | L | \ | 6.0 | 0.016 | 0.04 | 158.4 |
Y-Axis | X-Axis | Order | Model | Shape | F | p | R2 | AIC |
---|---|---|---|---|---|---|---|---|
SSL | Diameter | 1 | Q | ∪ | 59.4 | <0.001 | 0.63 | −148.8 |
2 | Q | ∪ | 325.7 | <0.001 | 0.48 | −23.4 | ||
3 | Q | ∪ | 291.0 | <0.001 | 0.47 | 363.1 | ||
4 | Q | ∪ | 57.5 | <0.001 | 0.51 | 60.3 | ||
All | Q | ∪ | 928.5 | <0.001 | 0.54 | 445.2 | ||
STD | Diameter | 1 | L | \ | 44.6 | <0.001 | 0.39 | −158.8 |
2 | Q | ∪ | 248.5 | <0.001 | 0.41 | 342.7 | ||
3 | Q | ∪ | 216.4 | <0.001 | 0.40 | 536.2 | ||
4 | Q | ∪ | 59.7 | <0.001 | 0.52 | 83.7 | ||
All | Q | ∪ | 639.7 | <0.001 | 0.45 | 974.6 | ||
SSL | STD | 1 | L | / | 0.30 | 0.589 | 0.00 | −80.1 |
2 | Q | ∩ | 2.4 | 0.094 | 0.00 | 436.0 | ||
3 | Q | ∩ | 3.7 | 0.025 | 0.01 | 774.0 | ||
4 | L | / | 0.9 | 0.341 | 0.00 | 137.8 | ||
All | Q | ∩ | 19.0 | <0.001 | 0.02 | 1630.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Zhang, H.; Wang, Z.; Liu, Z. Patterns of Intra-Order Variation in Shoot Traits Are Order-Specific Along the Branch Basal Height Gradient of Larix principis-rupprechtii. Forests 2025, 16, 1016. https://doi.org/10.3390/f16061016
Yu Y, Zhang H, Wang Z, Liu Z. Patterns of Intra-Order Variation in Shoot Traits Are Order-Specific Along the Branch Basal Height Gradient of Larix principis-rupprechtii. Forests. 2025; 16(6):1016. https://doi.org/10.3390/f16061016
Chicago/Turabian StyleYu, Yang, Huayong Zhang, Zhongyu Wang, and Zhao Liu. 2025. "Patterns of Intra-Order Variation in Shoot Traits Are Order-Specific Along the Branch Basal Height Gradient of Larix principis-rupprechtii" Forests 16, no. 6: 1016. https://doi.org/10.3390/f16061016
APA StyleYu, Y., Zhang, H., Wang, Z., & Liu, Z. (2025). Patterns of Intra-Order Variation in Shoot Traits Are Order-Specific Along the Branch Basal Height Gradient of Larix principis-rupprechtii. Forests, 16(6), 1016. https://doi.org/10.3390/f16061016