Assessing the Extent and Severity of the Impact on Forest Soils of Two Different Fully Mechanized Timber Harvesting Operations
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site Descriptions
2.2. Field Data Collection and Analysis
2.3. Statistical Analyses
3. Results
3.1. Slash Amount after Ground-Based Harvesting Operations
3.2. Visual Disturbance and Rutted Depth after Ground-Based Harvesting Operations
3.3. Soil Compaction after Ground-Based Harvesting Operations
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lundbäck, M.; Häggström, C.; Nordfjell, T. Worldwide trends in methods for harvesting and extracting industrial roundwood. Int. J. For. Eng. 2021, 32, 202–215. [Google Scholar] [CrossRef]
- Bacescu, N.M.; Cadei, A.; Moskalik, T.; Wiśniewski, M.; Talbot, B.; Grigolato, S. Efficiency assessment of fully mechanized harvesting system through the use of fleet management system. Sustainability 2022, 14, 16751. [Google Scholar] [CrossRef]
- Cambi, M.; Certini, G.; Neri, F.; Marchi, E. The impact of heavy traffic on forest soils: A review. Forest Ecol. Manag. 2015, 338, 124–138. [Google Scholar] [CrossRef]
- Nazari, M.; Eteghadipour, M.; Zarebanadkouki, M.; Ghorbani, M.; Dippold, M.A.; Bilyera, N.; Zamanian, K. Impacts of logging-associated compaction on forest soils: A meta-analysis. Front. For. Glob. Chang. 2021, 4, 780074. [Google Scholar] [CrossRef]
- Labelle, E.R.; Hansson, L.; Högbom, L.; Jourgholami, M.; Laschi, A. Strategies to mitigate the effects of soil physical disturbances caused by forest machinery: A comprehensive review. Curr. For. Rep. 2022, 8, 20–37. [Google Scholar] [CrossRef]
- Labelle, E.R.; Poltorak, B.J.; Jaeger, D. The role of brush mats in mitigating machine-induced soil disturbances: An assessment using absolute and relative soil bulk density and penetration resistance. Can. J. For. Res. 2019, 49, 164–178. [Google Scholar] [CrossRef]
- Baek, K.; Lee, E.; Choi, H.; Cho, M.; Choi, Y.; Han, S. Impact on soil physical properties related to a high mechanization level in the row thinning of a Korean pine Stand. Land 2022, 11, 329. [Google Scholar] [CrossRef]
- Bolding, M.C.; Kellogg, L.D.; Davis, C.T. Soil compaction and visual disturbance following an integrated mechanical forest fuel reduction operation in Southwest Oregon. Int. J. Forest Eng. 2009, 20, 47–56. [Google Scholar] [CrossRef]
- DeArmond, D.; Ferraz, J.B.S.; Emmert, F.; Lima, A.J.N.; Higuchi, N. An assessment of soil compaction after logging operations in central Amazonia. Forest Sci. 2020, 66, 230–241. [Google Scholar] [CrossRef]
- Picchio, R.; Mederski, P.S.; Tavankar, F. How and how much, do harvesting activities affect forest soil, regeneration and stands? Curr. For. Rep. 2020, 6, 115–128. [Google Scholar] [CrossRef]
- Picchio, R.; Tavankar, F.; Nikooy, M.; Pignatti, G.; Venanzi, R.; Lo Monaco, A. Morphology, growth and architecture response of Beech (Fagus orientalis Lipsky) and Maple tree (Acer velutinum Boiss.) seedlings to soil compaction stress caused by mechanized logging operations. Forests 2019, 10, 771. [Google Scholar] [CrossRef]
- Lee, E.; Eu, S.; Li, Q. Assessment of soil erosion potential from the disturbed surface of skid trails in small shovel harvesting system. Front. Environ. Sci. 2022, 10, 756848. [Google Scholar] [CrossRef]
- Marra, E.; Wictorsson, R.; Bohlin, J.; Marchi, E.; Nordfjell, T. Remote measuring of the depth of wheel ruts in forest terrain using a drone. Int. J. Forest Eng. 2021, 32, 224–234. [Google Scholar] [CrossRef]
- Latterini, F.; Dyderski, M.K.; Horodecki, P.; Picchio, R.; Venanzi, R.; Lapin, K.; Jagodziński, A.M. The effects of forest oeprations and silviculture treatments on litter decomposition rate: A meta-analysis. Current Forestry Reports 2023, 9, 276–290. [Google Scholar] [CrossRef]
- Latterini, F.; Dyderski, M.K.; Horodecki, P.; Rawlik, M.; Stefanono, W.; Högbom, L.; Venanzi, R.; Picchio, R.; Jagodziński, A.M. A meta-analysis of the effects of ground-based extraction technologies on fine roots in forest soils. Ladn. Degrad. Dev. 2023, 35, 9–21. [Google Scholar] [CrossRef]
- Korea Forest Service. Available online: https://forest.go.kr (accessed on 28 January 2024).
- Laffan, M.; Jordan, G.; Duhig, N. Impacts on soils from cable-logging steep slopes in northeastern Tasmania, Australia. Forest Ecol. Manag. 2001, 144, 91–99. [Google Scholar] [CrossRef]
- Lee, E.; Li, Q.; Eu, S.; Han, S.K.; Im, S. Assessing the impacts of log extraction by typical small shovel logging system on soil physical and hydrological properties in the Republic of Korea. Heliyon 2020, 6, e03544. [Google Scholar] [CrossRef]
- Marra, E.; Laschi, A.; Fabiano, F.; Foderi, C.; Neri, F.; Mastrolonardo, G.; Nordfjell, T.; Marchi, E. Impacts of wood extraction on soil: Assessing rutting and soil compaction caused by skidding and forwarding by means of traditional and innovative methods. Eur. J. Forest Res. 2022, 141, 71–86. [Google Scholar] [CrossRef]
- Latterini, F.; Spinelli, R.; Venanzi, R.; Picchio, R. Acorn Review: Focus on ground-based extraction systems: Is skidding really more impactful than forwarding? Forest Ecol. Manag. 2024, 551, 121514. [Google Scholar] [CrossRef]
- Bergstrom, R.M.; Page-Dumroese, D.S. How Much Soil Disturbance Can Be Expected as a Result of Southern Pine Beetle Suppression Activities? Gen. Tech. Rep. RMRS-GTR-399; United States Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2019; 11 p.
- Napper, C.; Howes, S.; Page-Dumroese, D. Soil-Disturbance Field Guide; San Dimas Technology and Development Center, United States Department of Agriculture, Forest Service: San Dimas, CA, USA, 2009; Volume 0819, p. 1815-SDTDC. 103 p.
- Reeves, D.; Page-Dumroese, D.; Coleman, M. Detrimental Soil Disturbance Associated with Timber Harvest Systems on National Forests in the Northern Region; Res. Pap. RMRS-RP-89; United States Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2011; 12 p.
- Brown, J.K. Handbook for Inventorying Downed Woody Material; USDA gen. tech. Rep. INT-16; United States Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Research Station: Ogden, UT, USA, 1974.
- Kizha, A.R.; Han, H.-S. Forest residues recovered from whole-tree timber harvesting operations. Eur. J. For. Eng. 2015, 1, 46–55. [Google Scholar]
- Poltorak, B.J.; Labelle, E.R.; Jaeger, D. Soil displacement during ground-based mechanized forest operations using mixed-wood brush mats. Soil Till. Res. 2018, 179, 96–104. [Google Scholar] [CrossRef]
- Choi, Y.-S.; Jeong, I.-S.; Cho, M.-J.; Mun, H.-S.; Oh, J.-H.; Han, S.-K. Prediction of moisture content changes during natural drying of forest residues using load-cell-mounted drying platforms. Sens. Mater. 2021, 33, 3873–3884. [Google Scholar] [CrossRef]
- Naik, A.P.; Ghosh, B.; Pekkat, S. Estimating soil hydraulic properties using mini disk infiltrometer. ISH J. Hydraul. Eng. 2019, 25, 62–70. [Google Scholar] [CrossRef]
- R Development Core Team. Available online: https://www.r-project.org/ (accessed on 28 March 2024).
- Cambi, M.; Giannetti, F.; Bottalico, F.; Travaglini, D.; Nordfjell, T.; Chirici, G.; Marchi, E. Estimating machine impact on strip roads via close-range photogrammetry and soil parameters: A case study in central Italy. iForest Biogeosci. For. 2018, 11, 148–154. [Google Scholar] [CrossRef]
- Han, S.-K.; Han, H.-S.; Page-Dumroese, D.S.; Johnson, L.R. Soil compaction associated with cut-to-length and whole-tree harvesting of a coniferous forest. Can. J. For. Res. 2009, 39, 976–989. [Google Scholar] [CrossRef]
- Labelle, E.R.; Jaeger, D.; Poltorak, B.J. Assessing the ability of hard wood and softwood brush mats to distribute applied loads. Croat. J. For. Eng. 2015, 36, 227–242. [Google Scholar]
Unit | Area (ha) | DBH a (cm) | Height (m) | Tree per ha | Soil Texture (%) | ||
---|---|---|---|---|---|---|---|
Sand | Silt | Clay | |||||
S1 | 1.5 | 26.0 | 15.2 | 365 | 55.1 | 19.9 | 25.0 |
S2 | 1.3 b | 26.0 | 15.0 | 420 | 54.8 | 19.8 | 25.4 |
Disturbance Class | Description | |
---|---|---|
0 | No traces of machines or logs Organic layer is present and intact | |
1 | Tracks are identified but are faint and shallow Topsoil is exposed or mixed with subsoil | |
2 | Visible track marks are moderately deep Topsoil is partially present or mixed with subsoil | |
3 | Evident track marks are deep Topsoil is removed and subsoil is exposed |
Unit | Soil Depth (cm) | n | Track | Center | Reference | p-Value |
---|---|---|---|---|---|---|
S1 | 0–10 | 30 | 1.26 ± 0.18 a | 0.94 ± 0.22 b | 0.87 ± 0.22 b | <0.001 |
10–20 | 30 | 1.31 ± 0.13 a | 1.07 ± 0.20 b | 1.05 ± 0.22 b | <0.001 | |
S2 | 0–10 | 15 | 1.41 ± 0.13 a | 1.22 ± 0.22 a | 0.89 ± 0.25 b | <0.001 |
10–20 | 15 | 1.36 ± 0.17 a | 1.24 ± 0.15 ab | 0.99 ± 0.21 b | 0.0034 |
Unit | n | Track | Center | Reference | p-Value |
---|---|---|---|---|---|
S1 | 30 | 0.94 ± 0.57 a | 2.34 ± 2.19 ab | 2.23 ± 1.67 b | 0.0090 |
S2 | 15 | 0.79 ± 0.64 a | 1.28 ± 1.26 ab | 2.24 ± 1.77 b | 0.0101 |
Source | Soil Bulk Density (0–10 cm Depth) | Soil Bulk Density (10–20 cm Depth) | Hydraulic Conductivity | ||||||
---|---|---|---|---|---|---|---|---|---|
DF | F | p-Value | DF | F | p-Value | DF | F | p-Value | |
Extraction methods | 1 | 14.705 | <0.01 | 1 | 18.750 | <0.01 | 1 | 1.258 | <0.01 |
Disturbance type | 2 | 45.663 | <0.01 | 2 | 19.685 | <0.01 | 2 | 7.904 | <0.01 |
Extraction methods × Disturbance type | 2 | 4.072 | <0.01 | 2 | 2.258 | 0.109 | 2 | 1.754 | 0.178 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, E.; Kim, T.; Mun, H.-S.; Oh, J.-H.; Han, S.-K. Assessing the Extent and Severity of the Impact on Forest Soils of Two Different Fully Mechanized Timber Harvesting Operations. Forests 2024, 15, 985. https://doi.org/10.3390/f15060985
Lee E, Kim T, Mun H-S, Oh J-H, Han S-K. Assessing the Extent and Severity of the Impact on Forest Soils of Two Different Fully Mechanized Timber Harvesting Operations. Forests. 2024; 15(6):985. https://doi.org/10.3390/f15060985
Chicago/Turabian StyleLee, Eunjai, Taehyung Kim, Ho-Seong Mun, Jae-Heun Oh, and Sang-Kyun Han. 2024. "Assessing the Extent and Severity of the Impact on Forest Soils of Two Different Fully Mechanized Timber Harvesting Operations" Forests 15, no. 6: 985. https://doi.org/10.3390/f15060985
APA StyleLee, E., Kim, T., Mun, H.-S., Oh, J.-H., & Han, S.-K. (2024). Assessing the Extent and Severity of the Impact on Forest Soils of Two Different Fully Mechanized Timber Harvesting Operations. Forests, 15(6), 985. https://doi.org/10.3390/f15060985